
A Review of Numerical Techniques of Solving

Ordanary Differential Equations using C and C++

Languages.

Rahul Solanki1

Department Of Mathematics, Jodhpur Institute Of

Enginering And Technology,

Jodhpur, Rajasthan.

Rakshak Solanki2

Department Of Applied Sciences, I-Year, Jodhpur Institute

Of Enginering And Technology,

Jodhpur, Rajasthan.

Abstract: Ordinary differential equations (ODEs) are basically

involved in many engineering problems. Many applications of

differential equation are useful to solve problems like heat-time

relation, velocity-time relation, traffic transportation problems

etc. They arise in models throughout mathematics, science, and

engineering. By itself, a system of ODEs has many solutions.

Some systems work with initial values called Initial Value

Problems. However, in many applications a solution is

determined in a more complicated way. A boundary value

problem (BVP) specifies values or equations for solution

components at more than one variable. Unlike IVPs, a boundary

value problem may not have a solution, or may have a finite

number of solution or infinitely many solutions. Some problems

are so complex that we need computer programme to solve them

so programs are developed for solving BVPs require users to

provide a guess for the solution desired. Often there are

parameters that have to be determined so that the BVP has a

solution. Again there might be more than one possibility, so

programs require a guess for the parameters desired. Many

problems, arising in a wide variety of application areas, give rise

to mathematical models which form boundary value problems

for ordinary differential equations. These problems rarely have

a closed form solution, and computer simulation is typically

used to obtain their approximate solution.

The study being carried out is based on the investigation of the

numerical methods for solving first-order ordinary differential

equations. The aim of the study is to give a comparative analysis

of the numerical methods for solving first-order differential

equations by use of an alternative approach which is the use of

numerical approximation methods to find an accurate

approximation to the desired solution of an initial value

problem. The methods are presented in the simplest context

possible which is a single scalar first order differential equation.

AMS 2010 Subject Classification: 65D, 65F.

Key Words: ODE, LDE, R-K 4th order method, Milne’s P-C

method, Euler’s method.

1. INTRODUCTION

Numerical analysis is the study of algorithms that use

numerical approximation for the problems of mathematical

analysis. Numerical analysis naturally finds applications in all

fields of engineering and the physical sciences, but in the

21st century also the life sciences and even the arts have

adopted elements of scientific computations. Ordinary

differential equations appear in celestial mechanics (planets,

stars and galaxies); numerical linear algebra is important for

data analysis; stochastic differential equations and Markov

chains are essential in simulating living cells for medicine

and biology. When using numerical methods or algorithms

and computing with finite precision, errors of approximation

or rounding and truncation are introduced. In numerical

analysis, Numerical integration constitutes a broad family

of algorithms for calculating the numerical value of a definite

integral, and by extension, the term is also sometimes used to

describe the numerical solution of differential equations. This

article focuses on calculation of definite integrals. The

term numerical quadrature (often abbreviated to quadrature)

is more or less a synonym for numerical integration,

especially as applied to one-dimensional integrals. Numerical

integration over more than one dimension is sometimes

incorrectly described as cubature,[1] since the meaning

of quadrature is understood for higher-dimensional

integration as well. Many differential equations cannot be

solved using symbolic computation ("analysis"). For practical

purposes, however – such as in engineering – a numeric

approximation to the solution is often sufficient.

The algorithms studied here can be used to compute such an

approximation. An alternative method is to use techniques

from calculus to obtain a series expansion of the solution.

Ordinary differential equations occur in many scientific

disciplines, for instance in physics, chemistry, biology,

and economics. In addition, some methods in numerical

partial differential equations convert the partial differential

equation into an ordinary differential equation, which must

then be solved.

2. IMPLEMENTATION OF C++ PROGRAM IN SOLVING

ORDINARY LINEAR DIFFERENTIAL EQUATION.

Numerical methods help us to find a better solution of any

problems. In engineering, we face practical problems and the

solution of those problems can only be obtain using

numerical methods. In advanced technology, we use

computer programming to solve ODE. Here we are going to

use C++ programming to solve a LDE using Runga-Kutta 4th

order method, Milne’s Predictor & Corrector method and

Euler’s method.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETRASECT - 2016 Conference Proceedings

Volume 4, Issue 12

Special Issue - 2016

1

2.1. Algorithm 1

 Euler’s Method

 #include<stdio.h>

#include<conio.h>

int fn;

float a,b,x,y,h,t,k,q;

float fun(float x,float y)

 {

 switch(fn)

 {

 case 1 : return ((3*x)+(y/2));

 case 2 : return ((y-x)/(y+x));

 case 3 : return (y-2*x/y);

 case 4 : return ((x*x+1)*(y*y)/2);

 case 5 : return (3*exp(x)+2*y);

 // default: cout<<"Enter a Valid

Choice: ";

 }

 }

void main()

 {

 clrscr();

 printf("Select a function (1-5) from following:\n1.

dy/dx=3x+y/2");

 printf("\n2. dy/dx=(y-x)/(y+x)");

 printf("\n3. dy/dx=y-2x/y");

 printf("\n4. dy/dx=(1/2)(x^2+1)(y^2)") ;

 printf("\n5. dy/dx=3e^x+2y\n");

 scanf("%d",&fn);

 printf("\nEnter x(0) : ");

 scanf("%f",&a);

 printf("\nEnter y(0) : ");

 scanf("%f",&b);

 printf("\nEnter step size (h) : ");

 scanf("%f",&h);

 printf("\nEnter end point (xn) : ");

 scanf("%f",&t);

 x=a;

 y=b;

 clrscr();

 printf("\n\t X\t Y\n");

 while(x<t)

 {

 k=h*fun(x,y);

 y=y+k;

 x=x+h;

 printf("\t%0.3f\t%0.3f\n",x,y);

 }

 scanf("%f",&q);

}

 2.2 Algorithm 2

Milne’s Predictor & Corrector Method.

#include<iostream.h>

#include<conio.h>

#include<math.h>

float n,xf,h,x[150],y[150],f[150];

int fn;

void input();

void milne();

void output();

float function(float, float);

void select(void);

void main()

{

 clrscr();

 select();

 input();

 milne();

 clrscr();

 output();

 getch();

}

 void input()

 { cout<<"\nEnter value of x(0): " ;

 cin>>x[0];

 cout<<"\nEnter value of y(0): ";

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETRASECT - 2016 Conference Proceedings

Volume 4, Issue 12

Special Issue - 2016

2

 cin>>y[0];

 cout<<"\nEnter value of xf: ";

 cin>>xf;

 cout<<"\nEnter value of number of iteration (n): ";

 cin>>n;

 }

2.3 Algorithm 3

Runga-Kutta 4th order Method.

#include<iostream.h>

#include<conio.h>

#include<math.h>

int fn;

float f(float x,float y);

void main()

 {

 clrscr();

 float x0,y0,k1,k2,k3,k4,k,y,x,h,xn,u,n;

 cout<<"Select a function (1-5) from following:\n1.

dy/dx=3x+y/2";

 cout<<"\n2. dy/dx=(y-x)/(y+x)";

 cout<<"\n3. dy/dx=y-2x/y";

 cout<<"\n4. dy/dx=(1/2)(x^2+1)(y^2)" ;

 cout<<"\n5. dy/dx=3e^x+2y\n";

 cin>>fn;

 cout<<"\n\nEnter x0 : ";

 cin>>x0;

 cout<<"\n\nEnter y0 : ";

 cin>>y0;

 cout<<"\n\nEnter end point (xn) : ";

 cin>>xn;

 cout<<"\n\nEnter step size (h) : ";

 cin>>h;

 x=x0;

 y=y0;

 clrscr();

 cout<<"\n\nX\t\tY\n";

 n=(xn-x0)/h;

 for(int i=0; i<=n; i++)

 {

 k1=h*f(x,y);

 k2=h*f((x+h/2),(y+k1/2));

 k3=h*f((x+h/2),(y+k2/2));

 k4=h*f((x+h),(y+k3));

 k=((k1+k2+k2+k3+k3+k4)/6);

 cout<<"\n"<<x<<"\t\t"<<y;

 y=y+k;

 x=x+h;

 }

 getch();

 }

float f(float x,float y)

 {

 switch(fn)

 {

 case 1 : return ((3*x)+(y/2));

 case 2 : return ((y-x)/(y+x));

 case 3 : return (y-2*x/y);

 case 4 : return ((x*x+1)*(y*y)/2);

 case 5 : return (3*exp(x)+2*y);

 // default: cout<<"Enter a Valid

Choice: ";

 }

 }

3. WHY NUMERICAL METHODS?

Basically Numerical method are key of every practical

problem. We can reach to a particular solution of every

practical problem using numerical methods. Generally every

wave equation, heat equation, Laplace equation, equation of

motions deal with partial differential equation and using some

parameters we can convert them into ordinary differential

equations. After converting them into ordinary differential

equation, numerical method is the best tool to solve them, to

compare those equations with some other previous results,

make graphs to compare them.

Hence to obtain solution of any differential equation for given

boundary conditions, we must use numerical methods.

4. CONCLUSION

1. Generally many engineering problems associated with

ordinary differential equations or partial differential equations.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETRASECT - 2016 Conference Proceedings

Volume 4, Issue 12

Special Issue - 2016

3

2. Solutions of these differential equations can be obtained

using analytical methods.

3. Where analytical methods failed, we use numerical

techniques to solve them.

4. As there are so many numerical techniques available, we

can use any of one and can obtain solution of differential

equation using given boundary conditions.

5. C++ is an important technique to solve mathematical

problems, so we use it to solve ordinary differential by Euler’s

method, Milne’s P-C method and R-K 4th order method.

5. REFERENCES

 [1]

Corbit, D. "Numerical Integration: From Trapezoids to RMS: Object-

Oriented Numerical Integration."

Dr. Dobb's J., No.

252, 117-120, Oct.

1996.

 [2]

Davis, P.

J. and Rabinowitz, P.

Methods of Numerical Integration, 2nd

ed.

New York: Academic Press, 1984.

 [3]

Hildebrand, F.

B.

Introduction to Numerical Analysis.

New York:

McGraw-Hill, pp.

319-323, 1956.

 [4]

Krommer, A.

R. and Ueberhuber, C.

W.

Numerical Integration on
Advanced Computer Systems.

Berlin: Springer-Verlag, 1994.

 [5]

Milne, W.

E.

Numerical Calculus: Approximations, Interpolation,

Finite Differences, Numerical Integration and Curve Fitting.

Princeton,
NJ: Princeton University Press, 1949.

 [6]

Press, W.

H.; Flannery, B.

P.; Teukolsky, S.

A.; and Vetterling,

W.

T.

Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed.

Cambridge, England: Cambridge University Press,

1992.

 [7]

Smith, J.

M. "Recent Developments in Numerical Integration."

J.
Dynam. Sys., Measurement and Control

96, 61-70, Mar.

1974.

 [8]

Ueberhuber, C.

W. "Numerical Integration." Ch.

12 in

Numerical

Computation 2: Methods, Software, and Analysis.

Berlin: Springer-
Verlag, pp.

65-169, 1997.

 [9]

Weisstein, E.

W. "Books about Numerical

Methods."

http://www.ericweisstein.com/encyclopedias/books/Numeric
alMethods.html.

 [10]

Whittaker, E.

T. and Robinson, G. "Numerical Integration and

Summation." Ch.

7 in

The Calculus of Observations: A Treatise on
Numerical Mathematics, 4th ed.

New York: Dover, pp.

132-163, 1967.

 [11]

Wikkipedia.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETRASECT - 2016 Conference Proceedings

Volume 4, Issue 12

Special Issue - 2016

4

