
A Review of OpenStack Cloud Projects

Koffka Khan
Department of Computing and Information Technology

The University of the West Indies,

Trinidad and Tobago, W.I

Abstract— OpenStack is a collection of software modules

called projects that work together to create and manage cloud

infrastructures. OpenStack delivers infrastructure as a service

functionality. It pools provisions and manages compute, storage

and network resources. It's one of the many open source

technologies that help IT teams create and manage cloud

workloads and is often seen as an alternative to cloud platforms

like AWS, and Azure. In order to run multiple operating

systems and applications, organizations often turn to

virtualization, which abstracts computing resources from

physical hardware such as servers. Installing OpenStack on top

of the virtualized environment forms a cloud operating system

and broadens this pool of resources to support many uses from

web and application hosting to big data tasks. With OpenStack,

software components called projects are selected to build out the

features of an enterprise's cloud setups vary, but typically start

with a handful of central components, like a compute Virtual

Machine (VM) image, networking, storage, identity

management and resource management. It business can add

other components to further build up this infrastructure to fit its

growing needs. OpenStack boasts many benefits for businesses

like affordability as it's freely available under the Apache 2.0

license. Reliability, with almost a decade of development in use.

In vendor neutrality, as its open source nature makes it

attractive to businesses trying to avoid vendor lock in, but

adopters also must consider some drawbacks including

complexity, requiring IT staff with significant knowledge of the

platform support as it's not owned by any one vendor or team

and relies on the open source, community and consistency. The

OpenStack components suite is always in flux as components are

added and depreciated. OpenStack adoption is a process where

organizations looking to build a private cloud based on

OpenStack need time financial investment and support from

upper management. (Abstract)

Keywords— OpenStack; software; projects; cloud; workloads,

big data, virtual; machine; reliability

I. INTRODUCTION

In OpenStack [25], there are many projects, each of them

with a different adoption status. And if you want to learn

OpenStack, it is important to become familiar with the

different products that are around. You should also realize that

at the OpenStack Summit, that happens twice a year, decisions

are made on new projects. So, new projects are being added

on a regular basis. I want to show you the project navigator

website. On this website, you can get an overview of all the

current projects that currently are existing, including their

current status. So, here's the project navigator website. So, you

can see that the OpenStack Foundation distinguishes between

core services and optional services.

The core services are Nova [9], Neutron [10], Swift [2],

Cinder [21], Keystone [7], and Glance [14]. I will explain in a

while what these services are all about. The interesting thing

here is that you can see the current adoption. So, Nova appears

to be a very essential part of OpenStack, because 93% of all

OpenStack clouds are currently using it. And it appears to be

very mature, because it has a maturity score of eight out of

eight. And it has been around for a long time - six years, as

you can see here ... which is the case for Swift, as well, and

which is the case for Glance, as well. Now, you can also see

that there are optional services. And some optional services

are doing quite well, like Horizon, for example, that has been

around for five years and is adopted for 86% of all OpenStack

deployments. But there's also new services, like Project

Magnum and Project Congress. Congress is an interesting one;

it is being used by 1% of all OpenStack clouds only.

As you can see, this is how the OpenStack Foundation

decides upon the majority score. And, as you can see, the only

majority indicator is that this project team has achieved

corporate diversity and everything else is still being worked

upon. That doesn't necessarily mean that it's a bad project, it's

just a project that has just been started. So, if you want to

know before starting to use a specific project in OpenStack, if

you want to know about its current status, this is where you

can find it.

Now, let me give you an overview of the core OpenStack

projects. So, currently there are six core OpenStack projects,

as you have been able to see in the previous lesson. To start

with, there is Nova Compute. Nova Compute is the interface

to the hypervisor. It makes sure that virtual machines can be

running somewhere in the cloud. Then, there is Neutron

Networking. Neutron Networking is providing Software

Defined Networking to the cloud. Then, we have Swift Object

Storage. This is a smart way of using storage in a cloud,

storage in a way that it is not bound to physical devices, but it

is organized in binary objects that can be scattered all over the

cloud in a distributed and replicated way. Then, there is

Cinder Block Storage. Cinder Block Storage is what you can

use as an administrator to provide persistent storage to the

virtual machine that you are deploying in the cloud. We also

have Keystone Identity. Keystone Identity is the glue that is

matching everything. In Keystone Identity you will create

users, roles, and tenants, and services and Keystone decides

which user has access to which specific service and how

specific services can communicate to one another. And there

is Glance Image. Glance Image is the image service and you

need it, because you don't want to install an instance in the

cloud, you want to deploy it. And in order to deploy it, that's

the Glance Image service.

This paper consists of eleven Sections. In Sections II to

VIII we present details of individual OpenStack projects. They

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

9

www.ijert.org
www.ijert.org
www.ijert.org

are NOVA (Section II), NEUTRON (Section III), SWIFT

(Section IV), GLANCE (Section V), CINDER (Section VI),

KEYSTONE (Section VII) and HORIZON (Section VIII). In

Section IX we give a brief description of other important

OpenStack projects. In Section X we give a discussion of

OpenStack services. Finally, in Section XI the conclusion is

given.

II. NOVA

Nova is maybe the most important core project in

OpenStack. It is responsible for managing compute instance

lifecycle. Now, what is a compute instance? Compute is a

different name for Nova, and an instance is a virtual machine.

And Nova takes care of running the virtual machine. Some

people think that Nova is the hypervisor. That is not the case.

Nova interfaces to the hypervisor. It is not the hypervisor

itself. And that makes it very interesting. No matter which

hypervisor you are running, it may be Xen, or KVM, or

VMware, or vSphere, or you imagine, and it can be dealt with

by Nova [13].

Nova will install an agent on the hypervisor to make sure

that it's supported in your OpenStack environment. Nova itself

is responsible for spawning, scheduling, and decommissioning

of virtual machines on demand. And it includes Nova service

processes that are running on the cloud controller, as well as

Nova agents, that are running on the hypervisor. And you will

see more frequently, Nova is using a distributed architecture,

where some agents are addressed that are running there where

work needs to be done, and some service processes are

running on the centralized cloud controller. Figure 1 shows

the icon used to represent OpenStack NOVA.

Figure 1: Icon for OpenStack NOVA

III. NEUTRON

Neutron enables Software Defined Networking. Now, let's

talk about Software Defined Networking - what is it all about?

Well, it allows users to define their own networking between

the instances that are deployed. Let me make a small drawing

to explain what this is about. So, imagine your typical

OpenStack environment. Let's say that in this environment

there are two different compute nodes. So, that will be c for

compute node and there is another c for compute node. These

compute nodes will be connected by using a physical network

[28]. We call that the underlay network. And this physical

network may involve routing and stuff. And that is typically

what the user of OpenStack won't be aware of. So, at the

usage level, that will be the higher level, that is what we call

the Overlay Network.

At the user level, there may be an instance running here,

and there may be another instance running here. But the user

may want to deploy these instances as being used in the same

broadcast domain. So, this might be a Logical Network, right?

In a broadcast domain, the instances will be in the same

network. Now, there's an issue here. How can this be the same

broadcast domain if, in the underlay network, we have

different physical networks? And that is exactly what Neutron

is taking care of by using Software Defined Networking.

In order to do this, Neutron needs to interface the physical

network architecture. And to do that, Neutron is using a

pluggable architecture. And this pluggable architecture

supports many networking vendors and technologies. So, if

you have made a large investment in some proprietary

networking technology, chances are that there's a good

Neutron plugin available. Most network vendors do have

Neutron plugins, so you won't have an issue there. And also,

Neutron provides an API for users to define networks and the

attachments into them. And that means that, for a

programmer, as well as an administrator, it is relatively easy to

create their own Software Defined Networking. Figure 2

shows the icon used to represent OpenStack NEUTRON.

Figure 2: Icon for OpenStack NEUTRON

IV. SWIFT

The next core OpenStack project that we'll be talking

about is Swift. Swift is designed to provide scalability at the

storage level. Now, how does it do that? It works with binary

objects to store data in a distributed, replicated way. Let me

explain why we need this. Storage ultimately ends on a hard

drive. And a hard drive is a physical device, right? And the

problem with physical devices is that they are limited and they

are not very scalable. So, if all your cloud storage will be on a

server that is providing hard drives, that isn't very scalable.

Now, Swift is doing that by providing the object-based storage

model. Let me sketch what this looks like. So, the idea about

Swift is that we have an application. And this application

normally, in order to write data, would write a file. Now, in an

OpenStack environment, the application doesn't write a file to

hard drive.

In an OpenStack environment, an application can interface

with Swift object storage. And the Swift object storage is

talking to many, many storage nodes. Let me just draw three

items that represent storage nodes. You know what? Let's

draw four of them. Now Swift is using a proxy. And when the

Swift proxy received data from the application, it is going to

create binary objects. And these binary objects are the chunks

of data. So, let's say we have binary objects A, B, and C. Let's

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

10

www.ijert.org
www.ijert.org
www.ijert.org

make it very small. In Swift, binary objects A may be stored

here, and binary object B may be stored here, and binary

object C may be stored here. But if it's just stored once, that is

not very fault tolerant, right? And that is why Swift includes a

replication algorithm - to store the binary objects on multiple

servers. By default, that will be three times, there's nothing

against storing the binary objects four times, if that is needed.

So, how does this make your storage more efficient? Well,

it makes storage more efficient because, at the moment that

the application needs to retrieve the data, it will address the

Swift proxy again. And the Swift proxy is using an advanced

algorithm to determine exactly where the binary objects

resides. And it will send calls to all the storage nodes that are

involved. And because of all these storage nodes that will be

able to work in parallel, the data will be arriving at the Swift

proxy, and hence, at the application, in a very fast way. And

this is how you make storage scalable in OpenStack [1].

Because, imagine that these storage nodes are one terabyte

each. When you are running out of available storage, well,

then it is pretty easy to add a couple of more Swift storage

nodes, and you can even rebalance the binary objects that are

written in the Swift storage configuration. There's one thing

about Swift, and that is the application.

For the application, in order to talk to Swift, it is using a

Restful API. And REST is a standard way of communicating

in an OpenStack environment. And that means that the

application is not writing a file to a filesystem, it is using a

RESTful API call, which is understood by Swift proxy [18].

RESTful API is the native language of OpenStack, and that

makes Swift the native choice for object storage in

OpenStack. Let's get back to the slide, where we can see that

Swift is using access via the RESTful API, and it is designed

to be very fault tolerant. Figure 3 shows the icon used to

represent OpenStack SWIFT.

Figure 3: Icon for OpenStack SWIFT

V. GLANCE

The next important OpenStack project is Glance. Glance is

used to store virtual machine disk images. So what is it about

virtual machine disk images? Well, virtual machines, which

are the instances, are not installed, they are spawned off from

an image. It's like booting Linux from a live CD. And images

can be easily downloaded or they can be created to match

specific needs within an organization. This is a link where you

can find a list of ready-to-download images. Let's have a look

at it. So, at this web page, you can see that different cloud

images are provided for different operating systems, that

include CentOS, and Debian, and Fedora, so basically, all the

major Linux distributions, and it even includes Microsoft

Windows.

An interesting cloud image is the CirrOS (test) image. And

this one is interesting because it is very small. Download of

the CirrOS (test) image is only like thirteen megabytes, and

this is a minimal Linux operating system. But as you can see,

you can download other instances as well, such as Windows

cloud-based images, which is a little bit specific, by the way,

and not as easy to deploy in OpenStack, as is the case for the

Linux-based cloud images, because they are running a free

and open operating system [3].

Glance is the image store. So, that means that, if an

administrator wants to boot an instance, he will boot the

instance from the Glance image store. And that is why Glance

is a very important part of OpenStack. And to make it all

scalable, the Glance image store typically is using Swift or

Ceph object storage [6] as a backend. Of course, you don't

have to use Swift or Chef object storage as a backend, but it

makes it more scalable. In a small all-in-one deployment, you

are more than welcome to use local storage as a backend to

Glance, but, as you can imagine, if you are using local storage,

then everything you do is bound to the physical server that

contains the physical images. And that's not very scalable.

Figure 4 shows the icon used to represent OpenStack

GLANCE.

Figure 4: Icon for OpenStack GLANCE

VI. CINDER

The next essential OpenStack project is Cinder. It provides

persistent storage to instances. Now, what is the idea? Well,

the idea is that instant storage, by default, is ephemeral. That

is also like booting from a Linux live CD. If you are working

from a Linux live CD, if you ever try to change the

configuration file, where would you change it to? Because the

live CD image is loaded to RAM and it doesn't really exist on

any writable hard disk. And that's the same problem with

Glance images, and that is why, in OpenStack, instant storage

is ephemeral.

Cinder is what allows the administrators to attach

additional persistent block devices to instances [20]. So, if you

want to make sure that it will be saved, then you will be using

Cinder. Cinder can use different backends, as well. It can be

local storage, which, by default, will be local Linux LVM

[Logical Volume Manager], or it can include Swift and Ceph

object storage as well for increased scalability. Figure 5 shows

the icon used to represent OpenStack CINDER.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

11

www.ijert.org
www.ijert.org
www.ijert.org

Figure 5: Icon for OpenStack CINDER

VII. KEYSTONE

No OpenStack cloud would be able to exist without the

services provided by Keystone service. So, Keystone is used

for authentication and authorization and it lists all current

services and endpoints [11]. A service is one of the projects

that is implemented in OpenStack. So, if you want to be able

to access Nova, Nova needs to be defined as a service in

Keystone. And the endpoint is providing a URL that provides

access to the specific service. As an administrator, you will

figure that you can query these services and endpoints, as

well. And I will show you that in an upcoming lesson in this

course.

Keystone is a core element in OpenStack. In Keystone,

also, the users and roles are created and they are assigned to

projects, which are also known as tenants. A project, also

known as tenant, typically, is a customer of OpenStack. If

OpenStack is used as a public cloud, that can be different

companies that are hiring cloud space in OpenStack. And, in

order to distinguish between the resources available to one

customer and another customer, OpenStack is using this

notion of projects or tenants.

Within a project environment, you will typically be

creating user accounts - user accounts that will be assigned

specific roles and, depending on the role that is assigned to a

user account, users will have more or less options to do in

OpenStack. And Keystone is taking care of all that. So, it's a

central repository for all services and endpoints results, and

we will see that there are nice commands that allow you to

query this repository. By default, Keystone is using a

database, which is the MariaDB database [24], to store

information. The default is MariaDB, but that doesn't mean

that you can't change it. OpenStack is very flexible. So, if you

have an OracleDB [31] that you want to use, that's fine as

well. Or, if you want to put it in an Lightweight Directory

Access Protocol (LDAP) directory [8], that can be done also.

Figure 6 shows the icon used to represent OpenStack

KEYSTONE.

Figure 6: Icon for OpenStack KEYSTONE

VIII. HORIZON

Horizon is the Dashboard and it provides a web interface

for easy management of instances and other OpenStack

properties [29]. So, Horizon is one of the most popular

components of OpenStack. It's used very frequently, because

it's a lot easier than using the powerful command line

interface, and that is why end-uses like using Horizon.

This is what anybody can use, or any application can use,

to request information directly from OpenStack. And the

answer is provided in the json format. That's not very

readable. So, if you are not a developer, probably you are not

going to like the API too much. That is why, from the

command line, you can use OpenStack commands, as well.

For example, OpenStack endpoint list, which is presenting

more or less the same information as the API call, that I've just

shown using curl. But still, this is not something that many

users will get very enthusiastic from, because you need to be

able to work with complicated commands, and that is why

there is Horizon.

So, login to the Horizon interface on OpenStack. Let me

login as admin for instance. You'll notice when working from

Horizon that the perspective that you get as the admin user is

different from the perspective that you will see as a tenant

user. The admin user is responsible for managing tenants, as

well as cloud infrastructure. And a tenant user is responsible

for managing the tenant environment. So, here we can see that

currently three tenants exist. There's the admin tenant that's

the scope-free administrator, the demo tenant, which on the

CentOS PackStack deployment has been created

automatically, providing you a demo environment that you

can use to get started in the easy way with OpenStack. And

there's a services tenant. Now, within this admin environment,

you can do generic stuff, like monitoring resource usage, like

getting an overview of what your cloud is doing ... So, here

you can see the different resources and what they are currently

doing. Now, let me login as an end user, as well. So, here we

can see the environment that the demo user can use. For

example, there's some networking. That's networking that has

been created automatically.

This is Software Defined Networking [32]. It will be

presented in an easy way to the tenant user. So we can see

there's a router, there's a private network, we can see the

subnet range on the private network, we can see the public

network, as well, which is the external network, and we can

see the router that exists, as well. And like this, there is

everything the user wants to be able to use. For example, the

instances - no instances have been created yet, and I will

explain this later, but, what you can see here is a limited

environment, where tenant users can create whatever

environment they need to be creating. Figure 7 shows the icon

used to represent OpenStack HORIZON.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

12

www.ijert.org
www.ijert.org
www.ijert.org

Figure 7: Icon for OpenStack HORIZON

IX. OTHER OPENSTACK PROJECTS

Heat is used for deploying stacks of instances in an

OpenStack environment. This allows multiple related virtual

machines to be deployed in an easy way. Heat uses the HOT

(Heat Orchestration Template) or the AWS CloudFormation

template format to define the stacks. There are many other

third party solutions offering additional options for working

with templates [23]. Figure 8 shows the icon used to represent

OpenStack HEAT.

Figure 8: Icon for OpenStack HEAT

Trove is Database-as-a-Service for OpenStack,

provisioning relational and non-relational Database engines.

Its purpose is to offer database functionality to users without

the need to deal with complex administration tasks [22]. As a

result, users, as well as administrators, can easily deploy

database instances. Figure 9 shows the icon used to represent

OpenStack TROVE.

Figure 9: Icon for OpenStack TROVE

Sahara is big data in OpenStack. It was configured to offer

easy Hadoop deployment on top of OpenStack. Sahara takes

care of Hadoop parameters, such as version, cluster topology,

and hardware. The user provides these parameters and Sahara

will then automatically deploy the cluster [12]. After the

cluster is deployed, Sahara can easily add and remove nodes

to the cluster, as necessary. Figure 10 shows the icon used to

represent OpenStack SAHARA.

Figure 10: Icon for OpenStack SAHARA

Ironic is the OpenStack bare metal provisioning program

and was developed to deploy physical machines (and not

virtual machines). Ironic is a bare metal hypervisor API with a

set of plugins which interact with the bare metal hypervisors.

It uses PXE (Preboot Execution Environment) or IPMI

(Intelligent Platform Management Interface) in order to

provision and turn machines on or off. Ironic also works with

vendor-specific plugins to provide additional functionality

[19]. Figure 11 shows the icon used to represent OpenStack

IRONIC.

Figure 11: Icon for OpenStack IRONIC

Zaqar is the OpenStack Messaging Service. It is an

alternative to a stand-alone installation of the messaging

service, such as AMQP (Advanced Message Queuing

Protocol) or ZeroMQ. Zaqar can use an HTTP-based REST

API, as well as a websocket-based API for communication.

Zaqar enables the handling of multi-tenant queues and

provides internal high availability and scalability (which is

challenging in the stand-alone messaging services) [26].

Figure 12 shows the icon used to represent OpenStack

ZAQAR.

Figure 12: Icon for OpenStack ZAQAR

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

13

www.ijert.org
www.ijert.org
www.ijert.org

Originally based on Cinder, Manila is the OpenStack

shared file system service. It offers an alternative to local

storage or object storage, thus providing a flexible storage

solution. The file access is share-based, not block-based, like

running Samba in the cloud [17].

The Designate project provides DNS as a Service for

OpenStack:

• REST API access for domain and record

management

• Usable in a multi-tenant environment

• Integrated with Keystone for authentication

• Integrates with Nova and Neutron for auto-

generation of DNS records

• Native support for Bind9 and PowerDNS [4].

Figure 13 shows the icon used to represent OpenStack

DESIGNATE.

Figure 13: Icon for OpenStack DESIGNATE

Barbican implements security and key management in the

cloud, providing a REST API. It is designed for storage,

provisioning, and management for all kinds of secrets,

including passwords, encryption keys, and X.509 certificates

[16]. Figure 14 shows the icon used to represent OpenStack

BARBICAN.

Figure 14: Icon for OpenStack BARBICAN

The Magnum project was developed to enable container

management in OpenStack. Its purpose is to integrate

container orchestration engines as first-class resources in

OpenStack [5]. This makes it possible to run containers in a

similar way as instances do on top of Nova. OpenStack

Magnum is a relatively new project, and it's final direction is

not yet clear. Figure 15 shows the icon used to represent

OpenStack MAGNUM.

Figure 15: Icon for OpenStack MAGNUM

The Murano project provides an Application Catalog to

OpenStack. The purpose of this project is to enable

application developers and cloud administrators to publish

available applications in a catalog [30]. This allows users to

consult a list of cloud applications in an easy browsable way.

Figure 16 shows the icon used to represent OpenStack

MURANO.

Figure 16: Icon for OpenStack MURANO

Congress is Policy as a Service. This project provides

Governance and Compliance as services in the cloud. The

administrator can define policies and Congress will take care

of implementing these policies [27].

X. DISCUSSION: OPENSTACK SERVICES

So, we have just talked about these core OpenStack

services. Behind the core OpenStack services there's

something else as well. Some vital services are always

required, and these include, to start with, time

synchronization. That is required because many services are

using time stamps for communication. In Keystone, Keystone

is issuing tickets that are based on time stamps and, if the

services don't agree on the right time, then, there will be no

communication. There's a database. The MariaDB database

that we've been talking about when we talked about Keystone.

This is used for storing all of the cloud-related information.

That's pretty interesting, because, as an administrator, you will

be able to query the database and get the information about

what's happening out of the database. And there is the

message queue.

The message queue is an essential component that services

access to pass messages in an orderly way between services. It

is like an Simple Mail Transfer Protocol (SMTP) mail server

in email handling. It is a service that takes care of delivering

the message to the right destination. So, in an OpenStack

deployment that is automated, all of this will be created

automatically for you and you will notice that it is created as

one of the first things. If you want to deploy OpenStack

manually, you need to take care of these three essential

services yourself.

To understand OpenStack, you should understand

RESTful API. Representational state transfer (REST) is a

generic method to provide access to all OpenStack

components. All OpenStack APIs are RESTful, which

provides uniform access. And this makes work for developers

easy, as the same standards are used throughout. And a

developer can use the same language throughout everything

he's doing. RESTful API access can be used while

implementing commands, but also directly using curl. And I

want to give you a short demo of what the RESTful API

makes possible.

XI. CONCLUSION

I have certainly not listed every project available for

OpenStack nor is this paper an endorsement of a specific

project, but it might give everyone a context of some of those

major projects that you tend to hear about related to

OpenStack. For example, Neutron is the networking core.

Swift is a storage technology that we can do direct puts and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

14

www.ijert.org
www.ijert.org
www.ijert.org

gets HTTP calls directly into that object storage environment.

Virtualization is done through Nova and that image

management. The repository of images used for the virtual

machines is Glance. Zaqar helps with messaging and moving

messages throughout the infrastructure and then Designate

assists with our domain name services. Service identity

management is handled by Keystone. Key management is

enabled by Barbican where you're keeping your tokens your

secret data within the environment that needs to be highly

secure. Orchestration and dashboard services are handled by

Heat and Horizon. Governance which would typically be

external to an operating system is maintained by Congress.

OpenStack is very API-oriented is handled by Manila. The

database-as-a-services is managed by Trove which allows you

to connect to multiple data structures within your

environment, both SQL and noSQL. Future OpenStack

projects can include computational intelligence techniques as

shown in [15] to expand its services range.

REFERENCES

[1] Anilkumar, Chunduru, and Sumathy Subramanian. "A novel predicate

based access control scheme for cloud environment using open stack

swift storage." Peer-to-Peer Networking and Applications 14, no. 4
(2021): 2372-2384.

[2] Arnold, Joe. Openstack swift: Using, administering, and developing for
swift object storage. " O'Reilly Media, Inc.", 2014.

[3] Benjamin, Bruce, Joel Coffman, Hadi Esiely-Barrera, Kaitlin Farr,

Dane Fichter, Daniel Genin, Laura Glendenning et al. "Data protection
in OpenStack." In 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), pp. 560-567. IEEE, 2017.

[4] Benomar, Zakaria, Francesco Longo, Giovanni Merlino, and Antonio

Puliafito. "A Stack4Things-based web of things architecture." In 2020

International Conferences on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData) and IEEE Congress on Cybermatics (Cybermatics), pp.
113-120. IEEE, 2020.

[5] Bolivar, Luis Tomas, Christos Tselios, Daniel Mellado Area, and

George Tsolis. "On the deployment of an open-source, 5G-aware
evaluation testbed." In 2018 6th IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering (MobileCloud),
pp. 51-58. IEEE, 2018.

[6] Bollig, Evan F., Graham T. Allan, Benjamin J. Lynch, Yectli A.

Huerta, Mathew Mix, Edward A. Munsell, Raychel M. Benson, and
Brent Swartz. "Leveraging openstack and ceph for a controlled-access

data cloud." In Proceedings of the Practice and Experience on
Advanced Research Computing, pp. 1-7. 2018.

[7] Chadwick, David W., Kristy Siu, Craig Lee, Yann Fouillat, and

Damien Germonville. "Adding federated identity management to
openstack." Journal of Grid Computing 12, no. 1 (2014): 3-27.

[8] Chitpinityon, Surachai, and Maharat Tossa. "New Approach for Single

Sign-on Improvement using Load Distribution Method." In 2021
Research, Invention, and Innovation Congress: Innovation Electricals
and Electronics (RI2C), pp. 44-47. IEEE, 2021.

[9] Datt, Aparna, Anita Goel, and S. C. Gupta. "Analysis of infrastructure

monitoring requirements for OpenStack Nova." Procedia Computer
Science 54 (2015): 127-136.

[10] Denton, James. Learning OpenStack Networking (Neutron). Packt
Publishing Ltd, 2015.

[11] Ismail, Salih, Hani Ragab Hassen, Mike Just, and Hind Zantout.

"Availability in Openstack: The Bunny that Killed the Cloud." In

International Conference on Applied CyberSecurity, pp. 114-122.
Springer, Cham, 2021.

[12] Jadhav, Bhushan, and Archana B. Patankar. "A framework for

integrating cloud computing and big data analytics into e-governance
using Openstack Sahara." In Information and Communication

Technology for Intelligent Systems, pp. 705-714. Springer, Singapore,

2019.

[13] Jain, Pragya, Aparna Datt, Anita Goel, and Suresh Chand Gupta.
"Cloud service orchestration based architecture of OpenStack Nova and

Swift." In 2016 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 2453-2459. IEEE,
2016.

[14] Kengond, Shivaraj, D. G. Narayan, and Mohammed Moin Mulla.

"Hadoop as a Service in OpenStack." In Emerging Research in
Electronics, Computer Science and Technology, pp. 223-233. Springer,
Singapore, 2019.

[15] Khan, Koffka, and Ashok Sahai. A levy-flight neuro-biosonar

algorithm for improving the design of eCommerce systems. Journal of
Artificial Intelligence, 4(4), pp. 220–232, 2011.

[16] Kuzminykh, Ievgeniia, Bogdan Ghita, and Stavros Shiaeles.

"Comparative analysis of cryptographic key management systems." In

Internet of Things, Smart Spaces, and Next Generation Networks and
Systems, pp. 80-94. Springer, Cham, 2020.

[17] León, José Castro. "Advanced features of the CERN OpenStack

Cloud." In EPJ Web of Conferences, vol. 214, p. 07026. EDP Sciences,
2019.

[18] Lima, Stanley, Álvaro Rocha, and Licinio Roque. "An overview of
OpenStack architecture: a message queuing services node." Cluster
Computing 22, no. 3 (2019): 7087-7098.

[19] Lingayat, Ashish, Avinash Singh, Vinay Naik, Ranjana R. Badre, and

Anil Kumar Gupta. "Horizon, a web-based user interface for managing

services in openstack: an introspection." In 2018 9th International
Conference on Computing, Communication and Networking
Technologies (ICCCNT), pp. 1-6. IEEE, 2018.

[20] Malla, Akash A., Sumedha Shinde, D. G. Narayan, and Mohammed

Moin Mulla. "Self-Managed Block Storage Scheduling for OpenStack-
based Cloud." Procedia Computer Science 171 (2020): 1439-1448.

[21] Noertjahyana, Agustinus, Henry Novianus Palit, Reynaldo Chandra,

Justinus Andjarwirawan, and Lily Puspa Dewi. "Comparative Analysis

of NFS and iSCSI Protocol Performance on OpenStack Cinder
Technology." Procedia Computer Science 171 (2020): 1498-1506.

[22] Okafor, K. C., J. A. Okoye, and R. M. Onoshakpor. "Towards Smart

Green Energy Metering Design for OpenStack/Amazon Elastic Cloud

Integration." In 2019 IEEE PES/IAS PowerAfrica, pp. 328-333. IEEE,
2019.

[23] Pinzaru, Ciprian, Valeriu Vraciu, Paul Gasner, and Octavian Rusu.

"Testing of Grid Worker Nodes Integration in OpenStack." In 2021

20th RoEduNet Conference: Networking in Education and Research
(RoEduNet), pp. 1-4. IEEE, 2021.

[24] Robillard, Simon, and Hélène Coullon. "SMT-Based Planning
Synthesis for Distributed System Reconfigurations." In International

Conference on Fundamental Approaches to Software Engineering, pp.
268-287. Springer, Cham, 2022.

[25] Rosado, Tiago, and Jorge Bernardino. "An overview of openstack

architecture." In Proceedings of the 18th International Database
Engineering & Applications Symposium, pp. 366-367. 2014.

[26] Serrano-Iglesias, Sergio, Eduardo Gómez-Sánchez, Miguel L. Bote-

Lorenzo, Juan I. Asensio-Pérez, and Manuel Rodríguez-Cayetano. "A
self-scalable distributed network simulation environment based on
cloud computing." Cluster Computing 21, no. 4 (2018): 1899-1915.

[27] Tabiban, Azadeh, Suryadipta Majumdar, Lingyu Wang, and Mourad

Debbabi. "Permon: An openstack middleware for runtime security

policy enforcement in clouds." In 2018 IEEE Conference on
Communications and Network Security (CNS), pp. 1-7. IEEE, 2018.

[28] Tkachova, Olena, Mohammed Jamal Salim, and Abdulghafoor Raed

Yahya. "An analysis of SDN-OpenStack integration." In 2015 Second
International Scientific-Practical Conference Problems of

Infocommunications Science and Technology (PIC S&T), pp. 60-62.
IEEE, 2015.

[29] Wang, Hongbin, Shaoxu Li, Dan Deng, Leixiao Li, Jing Gao, and Jie

Li. "A Simple Dashboard for OpenStack Horizon." In 2021 4th
International Conference on Computing and Big Data, pp. 135-141.
2021.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

15

www.ijert.org
www.ijert.org
www.ijert.org

[30] Wang, Ning, Qianlong Lan, Xuemin Chen, Gangbing Song, and Hamid

Parsaei. Development of a Remote Laboratory for Engineering
Education. CRC Press, 2020.

[31] Wee, Chee Keong, Xujuan Zhou, Raj Gururajan, Xiaohui Tao, and

Nathan Wee. "Adaptive Fault Resolution for Database Replication

Systems." In International Conference on Advanced Data Mining and
Applications, pp. 368-381. Springer, Cham, 2022.

[32] Yang, Renbo, and Junxing Zhang. "imuLab: Internet of Things

Simulation Platform Based on OpenStack and Container Technology."

In 2021 IEEE 6th International Conference on Computer and
Communication Systems (ICCCS), pp. 927-932. IEEE, 2021.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS040003
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 04, April-2022

16

www.ijert.org
www.ijert.org
www.ijert.org

