
A Review on Distributed File System in Hadoop

Mr. Amol M. Kadam
PG Student ME Computer Science & Engineering

SIETC, Paniv

Akluj, India

Dr. Pradip K. Deshmukh
Principal Computer Science & Engineering

SIETC, Paniv

Akluj, India

Prof. Prakash B. Dhainje
Vice-Principal, Computer Science & Engineering

SIETC, Paniv

Akluj, India

Abstract— When a dataset exceeds the storage capacity of a

single physical machine, it becomes require to divide it across a

number of separate machines. File systems that manage the

storage over a network of machines are called distributed file

system. Hadoop meets with a distributed file system called

Hadoop Distributed File System (HDFS). HDFS is a file system

designed for storing huge files with streaming data access

patterns, running on clusters of commodity hardware. HDFS

files are hundreds of gigabytes or in terabytes in size. There are

Hadoop clusters running currently that store petabytes of data.

HDFS is built around the most efficient data processing patterns

is a write-once, read-many time patterns.

Keywords— DataNode, Hadoop, HDFS, NameNode

I. INTRODUCTION

Hadoop was originally built by a Yahoo! An Engineer named

Doug Cutting and is now an open source project managed by

the Apache software Foundation [13]. Hadoop is created to

parallelize data processing over computing nodes to speed

computations and hide latency.

Hadoop has two primary components [12]:

A. Hadoop Distributed File System- A reliable, low cost, data

storage cluster that facilitates the management of equivalent

files across machines.

B. MapReduce Engine- A high performance Distributed data

processing implementation of the MapReduce algorithm.

Hadoop is designed to process huge amounts of structured

and unstructured data (terabytes to petabytes). It is executed

on the racks of commodity servers as a Hadoop cluster.

Servers can be attached or detached from the cluster

dynamically, because Hadoop is designed to be “self-

healing”. Also, Hadoop is able to identify changes, including

failures and adjust to those changes and continue to operate

without interruption.

The HDFS is an adaptable, flexible, clustered approach to

managing files in a big data environment. HDFS is not the

terminal destination for the files. Rather, it is a data service

that offers a unique set of capabilities needed when data

volumes and velocity are big.

HDFS is an excellent choice for supporting big data

analysis. The service includes a “NameNode” and multiple

“DataNodes” running on a commodity hardware cluster. It

provides the highest levels of performance, when the whole

cluster is in the alike physical rack in the data center. In

Hadoop cluster, data is distributed over the machines of the

cluster when it is loaded.

II. ARCHITECTURE

Fig. 1. Architecture of HDFS

A. NameNode-

HDFS works by dividing large files into smaller pieces called

blocks. The blocks are stored in the data nodes. It is the

responsibility of the NameNode to know what blocks on

which data nodes make up the complete file. The NameNode

managing all access to the files, including reads, writes,

create, deletes, and replication of data blocks on the data

nodes. System namespace is the complete collection of all the

files in the cluster. NameNode will control this namespace.

NameNode and the strong relationship between Datanode's

and they operate in a “loosely coupled” mode. In a typical

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

14

configuration, you find one NameNode and possibly a data

node running on one physical server in the rack. The

NameNode is smarter than the Data nodes. NameNode is so

critical for correct operation of the cluster; it can and should

be replicated to guard against a single point failure.

HDFS break files into a related collection of little blocks.

These blocks are distributed among the data nodes in the

HDFS cluster and are managed by the NameNode.

NameNode uses a “rack ID” to keep track of the data nodes

in the cluster.

B. DataNode-

Data nodes are flexible but not smart. Within the HDFS

cluster, data blocks are replicated over multiple data nodes

and access is managed by the NameNode. Data nodes also

provide “heartbeat” messages to detect and ensure

connectivity between the NameNode and the data nodes.

During normal operation, data-nodes periodically send

heartbeats to the name-node to indicate that the data-node is

alive. The default heartbeat interval is three seconds. If the

name-node does not accept a heartbeat from a data-node in 10

minutes, it considered as the data-node dead and schedules its

blocks for replication on other nodes.

To ensure integrity over the cluster, HDFS uses transaction

logs and Checksum validation.

The failure of one server may not necessarily corrupt a file,

because data blocks are replicated over several data Nodes.

All parameters can be adjusted during the operation of the

cluster. So, when the cluster is performed in their degree of

replication, the number of data Nodes, and HDFS

namespaces are accepted.

C. Data replication-

HDFS keeps one replica of every block locally. It places a

second replica on a different rack to guard against an entire

rack failure. It sends a third replica to the same remote rack,

but to a different server in the rack. It can then send

additional replicas to random locations in local or remote

clusters. Client applications do not need to worry about

where all the blocks are situated. To ensure highest

performance clients are directed to the nearest replica [10].

To provide high availability of data in high demand is the

most important advantage of the replication technique. The

reliability and availability points of view replication are

important.

D. Secondary NameNode-

NameNode snatch a copy of the NameNode’s in memory

metadata and files used to store metadata, because secondary

NameNode sometimes attached to the NameNode.

E. HDFS Client-

HDFS client can access the file system through user

application. HDFS can manage read, write, copy and delete

operations.

III. HDFS READ AND WRITE OPERATIONS

A. File Read Operation-

File read operation in HDFS contains six steps [13], as shown

in fig. Suppose an HDFS client wants to read a file. So,

reading the file contains following steps:

Step1- By calling open () method on a file system object, the

client will unlock the file. In which HDFS is an object of

Distributed file system class.

Fig. 2. File read operation in HDFS

Step2- To determine the location of the blocks for the file,

Distributed File System calls the NameNode by using RPC.

The NameNode will return the addresses of all the

DataNodes for each block that has a copy of that block.

Step3- To connect to the first closest DataNode for the first

block in the file, the client calls the read () method on the

stream (FsDataInputStream).

Step4- Client will call the read () method repeatedly over the

stream and DataNode will send streamed data to the client.

Step5- The connection between DataNode and

DFSInputStream will be closed when the end of the block is

reached. After that it finds the next block on the best

DataNode.

Step6- Client read blocks in order through the stream, when

the DFSInputStream open the new connection to the

DataNodes. Finally, the client will call close () method on the

FsDataInputStream, when the client finishes there reading.

B. File Write Operation-

There are seven steps [13] in writing a data to HDFS as

shown in fig. 3:

Step1- With the help of Create () method client can create the

file on Distributed File System.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

15

Step2- By making an RPC call to the NameNode, Distributed

File System creates a new file in the namespace and there is

no block associated with it. NameNode will examine that

client has the right permission to create the file. NameNode

also checks file doesn’t already exist. The NameNode makes

a record of the new file if these checks pass, else file creation

fails. The Client will throw an IOException if the file creation

fails. For handling communication between the DataNodes

and NameNodes, FSDataOutputStream wraps a

DFSOutputStream.

Fig. 3. File writes operation in HDFS

Step3- When the client writes data, DFSOutputStream divide

data into different packets. After that it writes to a within

queue. The pipeline is created with the list of DataNodes;

here we will assume the degree of replication is there, i.e.

three nodes in the pipeline.First DataNode streams the

packets from DataStreamer in the pipeline. So, stores the

packet in the current node and forwards it to the next

DataNode in the pipeline.

Step4- similarly packet is stored in second DataNode and

forwards it to the next or last DataNode in the pipeline.

Step5- When the DataNodes in the pipeline will send packet

acknowledgement. The packet is removed from the

acknowledgement queue.

Step6- client calls close () method on the stream, after the

client has finished writing data.

Step7- finish () method cleans all the remaining packets to the

DataNode pipeline.

IV. HDFS FILE PERMISSIONS

For files and directories, HDFS has supplied different

permission models.

There are three types of permission [12]: the read permission

(r), the write permission (w), and the execute permission (x).

To read files or list the contents of a directory the read

permission is necessary. To write a file, to create or delete

files in it the write permission is necessary. The execute

permission is avoided for a file since you can’t execute a file

on HDFS, and for a directory it is necessary to access its

children.

Each file and directory has an owner, a group user, and other

user. The mode is build up of the permissions for the user

who is the owner, the permissions for the users who are

members of the group, and the permissions for users who are

not the owners and members of the group.

V. HADOOP AND NETWORK TOPOLOGY

 Fig. 4. Network distance in Hadoop

Hadoop network is represented as a tree and the distance

between two nodes is the sum of their distances to their

closest common ancestor [13]. Levels in the tree are not

affecting, but it is common to have levels that correlate to the

node, the rack, and the data center that a process is running

on.

For each of the following scenarios, less bandwidth is

available:

 • Processes on the identical node

 • Distinct nodes in the identical rack

 • Nodes in distinct racks in the identical data

 Center

 • Nodes in distinct data centers.

This is illustrated diagrammatically in fig. 4

For example [12], imagine a node n1 on rack r1 in data center

d1. This can be expressed as /d1/r1/n1. Using this notations,

here are the distances for the four scenarios:

 • Distance (/d1/r1/n1, /d1/r1/n1) = 0

 (Processes on the identified node)

 • Distance (/d1/r1/n1, /d1/r1/n2) = 2 (distinct

 Nodes in the identical rack)

 • Distance (/d1/r1/n1, /d1/r2/n3) = 4 (nodes

 On distinct racks in the identical data center)

 • Distance (/d1/r1/n1, /d2/r3/n4) = 6 (nodes in

 Distinct data centers)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

16

VI. ALGORITHM

1: Mapper Class

2: method Map(docuid a; docu d)

3: for all term trm ε docu d do

4: Emit(term trm; count 1)

1: Reducer Class

2: method Reduce(term trm; counts [cnt1; cnt2; : :])

3: sum=0

4: for all count cnt ε counts [cnt1; cnt2; : :] do

5: sum=sum + cnt

6: Emit(term trm; count sum)

VII. RESULTS

A. Fig.5 shows Adding DataNode in Hadoop

Fig. 5. Hadoop DataNode

B. Fig.6. shows Hadoop NameNode and Cluster

information

Fig. 6. Hadoop NameNode and cluster

C. Fig.7 shows Installing single node in Hadoop

Fig. 7. Installation of Node

D. Fig. 8 shows Data replication factor in Hadoop

Fig. 8. Data replication factor

E. Fig. 9 shows file permissions for Hadoop file

Fig. 9. File permissions for Hadoop

F. Fig. 10 shows Selecting network and topology in

Hadoop

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

17

Fig. 10. Selecting topology and network

VIII. CONCLUSION

A high throughput access to the data of an application is

provided by using Hadoop distributed file system. HDFS

designed to carry petabytes of data with high fault tolerance.

petabytes of data are saved redundantly over several numbers

of servers or machines. MapReduce model is used to process

data stored in HDFS. We can analyze and count the number

of words in a large data file by using HDFS.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/

[2] www.bigdataplanet.info
[3] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert

Chansler,“Hadoop Distributed File System”,2010
[4] Haojun Liao, Jizhong Han, Jinyun Fang “Multi-Dimensional

Index on Hadoop Distributed File System”, Fifth IEEE

International Conference on Networking, Architecture, and

Storage, 2010

[5] Kyriacos Talattinis, Aikaterini Sidiropoulou, Konstantinos Chalkias,

and George Stephanides, “Parallel Collection of Live Data
Using Hadoop”, in 14th Panhellenic Conference on

Informatics, 2010

[6] Shafer, J, “The Hadoop Distributed File System: Balancing Portability
and Performance”, 2010

[7] Zhi-Dan Zhao, “ User-Based collaborative Filtering Fig 10: users on

HDFS Recommendation Algorithms on Hadoop”, 2010
[8] Rini T. Kaushik, Milind Bhandarkar, “Evolution and Analysis of

GreenHDFS”,2010.

[9] Garhan Attebury, Andrew Baranovski, “Hadoop Distributed File. The
Fig 11 shows the Data Chunks distributed over the System for

Grid”,2009
[10] K. V. Shvachko, “HDFS Scalability: The limits to growth,”;

login:.April 2010,pp. 6–9.

[11] Jeffrey Dean and Sanjay Ghemawat “MapReduce: Simplified Data

Processing on Large Clusters “GoogleInc.

[12] Tom White, “Hadoop The Definitive Guide”, 2nd ed., O’REILLY,

2011, pp. 41–73.
[13] Pooja S.Honnutagi, “The Hadoop distributed file system”, International

Journal of Computer Science and Information Technology, Vol.5(5),

2014, pp. 6238-6243.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050104

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

18

