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Abstract 

Image denoising is an indispensable task where the 

complication of noise is prevalent and the contrast of 

low cost surveillance camera is more over low due to 

various image acquisitions. For the past two decades, 

denoising is performed by the Wavelet transform.  The 

process of removing noise from the original image is 

still a demanding problem for researchers. There have 

been several algorithms and each has its assumptions, 

merits, and demerits. The prime focus of this paper is 

related to the pre processing of an image before it can 

be used in applications. The pre processing is done by 

de-noising of images. Image denoising algorithms are 

applied on images to remove the different types of noise 

that are either present in the image during capturing or 

injected into the image during transmission. In this 

paper, we propose fast and high-quality nonlinear 

algorithm for denoising digital images corrupted by 

mixed Poisson-Gaussian noise over Additive White 

Gaussian Channel (AWGN) Channel. The proposed 

work presents a novel approach of denoising by Poisson 

Unbiased Risk Estimate-Linear Expansion of Threshold 

(PURE-LET) Stein’s unbiased risk estimate-Linear 

Expansion of Threshold (SURE-LET). 

Keywords: Image, Noise, Image denoising, PURE-

LET, SURE-LET. 

Introduction 

An image is a two dimensional function f(x, y), where x 

and y are plane coordinates, and the amplitude of f at 

any pair of coordinates (x, y) is called the gray level or 

intensity of the image at that point. Digital images 

consist of a finite number of elements where each 

element has a particular location and value. These 

elements are called picture elements, image elements 

and pixels. There are two types of images i.e. grayscale 

image and RGB image. Gray scale image has one 

channel and RGB image has three channels i.e. red, 

green and blue. Image noise is unwanted fluctuations. 

There are various types of image noises present in the 

image like gaussian noise[4]. There are various noise 

reduction techniques which are used for removing the 

noise. The result is that it generally reduces the noise 

level. But the image is either blurred or over smoothed 

due to losses like edges or lines. Noise reduction is used 

to remove the noise without losing much detail 

contained in an image.  

 

 

The two predominant sources of noise in digital image 

acquisition are the stochastic nature of the photon-

counting process at the detectors and the intrinsic 

thermal and electronic fluctuations of the acquisition 

devices[1]. Under standard illumination conditions, the 

second source of noise, which is signal-independent, is 

stronger than the first one. This motivates the usual 

Additive-White-Gaussian-Noise (AWGN) assumption. 

However, in many applications such as fluorescence 

microscopy or astronomy, only a few photons are 

collected by the photo sensors, due to various physical 

constraints (low-power light source, short exposure 

time, photo toxicity).Under these imaging conditions, 

the major source of noise is strongly signal-dependent. 

Consequently, it is more reasonable to model the output 

of the detectors as a Poisson-distributed random vector. 

 

Image denoising is a process of removing the noise 

from an image without distorting the quality. In general, 

an image is often corrupted by noise during its 

transmission through a channel. Among various image-

denoising strategies, the transform-domain approaches 

in general, and in particular the multiscale ones, are 

very efficient for AWGN reduction (e.g.,[2]–[3]). As 

many natural images can be represented by few 

significant coefficients in a suitable basis/frame, the 

associated transform-domain processing amounts to a 

(possibly multivariate) thresholding of the transformed 

coefficients, which results in a fast denoising procedure. 

Since the present work lies within this scope of 

transform-domain thresholding strategies, we discuss 

hereafter the main multiscale techniques that have been 

considered for Poisson intensity estimation. Note that 

there are also non-multiscale methods for Poisson 

denoising. 

 

(PURE-LET) is to design and optimize a wide class of 

transform-domain thresholding algorithms for denoising 

images corrupted by mixed Poisson–Gaussian noise. 

We express the denoising process as a linear expansion 

of thresholds (LET) that we optimize by relying on a 

purely data-adaptive unbiased estimate of the mean-

squared error (MSE), derived in a non-Bayesian 

framework (PURE: Poisson–Gaussian unbiased risk 

estimate)[1]. 

Unlike most existing denoising algorithms, using the 

SURE makes it needless to hypothesize a statistical 

model for the noiseless image. A key point of our 

approach is that, although the (nonlinear) processing is 
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performed in a transformed domain typically, an 

undecimated discrete wavelet transform, but we also 

address nonorthonormal transforms this minimization is 

performed in the image domain. 

 

Multiscale Analysis 
      

Many directional wavelet transforms have been 

developed under the multi-scale analysis framework, 

including steerable wavelets, wedgelets, curvelets, 

contourlets, and directionlets. While these methods can 

accurately represent point wise singularities, they are 

weak in representing other discontinuities such as 

contours and edge in images. By using effective PURE-

LET and Gaussian noise can be eliminated. Fast and 

high-quality nonlinear algorithm for denoising digital 

images corrupted by mixed Poisson Gaussian noise [1] 

were proposed in this paper. 

 

During acquisition and transmission, images are often 

corrupted by additive noise. The main aim of an image 

denoising algorithm is then to reduce the noise level, 

while preserving the image features. Transform domain 

image denoising—the most popular approaches to 

process noisy images consist in first applying some 

linear often multiscale transformation, then performing 

a usually nonlinear and sometimes multivariate 

operation on the transformed coefficients, and finally 

reverting to the image domain by applying an inverse 

linear transformation. Among the many denoising 

algorithms to date, we would like to cite the following 

ones. 

• Portilla et al. [2]: The authors‘ main idea is to model 

the neighborhoods of coefficients at adjacent positions 

and scales as a Gaussian scale mixture (GSM); the 

wavelet estimator is then a Bayes least squares (BLS). 

The resulting denoising method, consequently called 

BLS-GSM, is the most efficient up-to-date approach in 

terms of peak signal-to-noise ratio (PSNR). 

• Pizurica et al. [14]: Assuming a generalized Laplacian 

prior for the noise-free data, the authors‘ approach 

called ProbShrink is driven by the estimation of the 

probability that a given coefficient contains significant 

information— notion of ―signal of interest‖. 

• Sendur et al. [15], [16]: The authors‘ method, called 

BiShrink, is based on new non-Gaussian bivariate 

distributions to model interscale dependencies. A 

nonlinear bivariate shrinkage function using the 

maximum a posterior (MAP) estimator is then derived. 

In a second paper, these authors have extended their 

approach by taking into account the intrascale 

variability of wavelet coefficients. 

Theoritical Background 

White Gaussian Noise Modeling: 

Additive White Gaussian Noise (AWGN) is a channel 

model in which the only impairment to communication 

is a linear addition of wideband or white noise with a 

constant spectral density (expressed as watts per hertz 

of bandwidth) and a Gaussian distribution of amplitude. 

The model does not account for fading, frequency 

selectivity, interference, nonlinearity or dispersion. 

However, it produces simple and tractable mathematical 

models which are useful for gaining insight into the 

underlying behavior of a system before these other 

phenomena are considered.  

The noisy image model is expressed as  

g(i, j) = f (i, j)+N(i, j),  

Where g and f respectively represent noisy and noise-

free images, and N (i, j) is the AWGN noise.  

 

Noise in Image 
 

Image noise is random variation of brightness or color 

information in images, and is usually an aspect of 

electronic noise. It can be produced by the sensor and 

circuitry of a scanner or digital camera. The sources of 

noise in digital images arise during image acquisition 

and/or transmission with unavoidable shot noise of an 

ideal photon detector[9].  

 

Additive white Gaussian noise (AWGN) 

The standard model of amplifier noise is additive, 

Gaussian, independent at each pixel and independent of 

the signal intensity, caused primarily by Johnson–

Nyquist noise (thermal noise). In color cameras where 

more amplification is used in the blue color channel 

than in the green or red channel, there can be more 

noise in the blue channel. Gaussian noise is a noise that 

has its PDF equal to that of the normal distribution, 

which is also known as the Gaussian distribution. 

Gaussian noise is most commonly known as additive 

white Gaussian noise. Gaussian noise is properly 

defined as the noise with a Gaussian amplitude 

distribution[11]. Additive white Gaussian noise 

(AWGN) is random statistical noise in the background 

of a communication channel. Among various image-

denoising strategies, the transform-domain approaches 

in general, and in particular the multiscale ones, are 

very efficient for AWGN reduction. 

PURE-LET Approach   

The fundamental tool is a statistical estimate of the 

Mean Square Error (MSE), or ‗‗risk‘‘, between the 

(unknown) noiseless image and the processed noisy 

image. Owing to the Poisson noise hypothesis, we refer 

to this result as the PURE. In particular, interscale 

PURE were developed. Minimization of this MSE 

estimate over a collection of ‗‗acceptable‘‘ denoising 

processes to find the best one, in the sense of the Signal-

to-Noise Ratio (SNR), which is a widespread measure 

of restoration quality [8]. 

 

To our knowledge, this is actually the first reported use 

of an (unbiased) MSE estimate in the Poisson-noise 

case for image processing. The efficiency of our method 
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stems from the use of a simple normalized Haar-wavelet 

transform and from the concept of Linear Expansion of 

Thresholds(LET): the ―acceptable‘‘ denoising processes 

are expressed as a linear combination of elementary 

denoising processes, from which only the weights are 

unknown. It is these weights that are then computed by 

minimizing the PURE, through the resolution of a 

simple linear system of equations. This means that all 

the parameters of the algorithm are adjusted completely 

automatically, without requiring user input. For each 

sub band, our restoration functions involve several 

parameters, which provide more flexibility than 

standard single-parameter thresholding functions. 

Importantly, the thresholds are adapted to local 

estimates of the (signal-dependent) noise variance; this 

is a fundamental difference with our previous work[10]. 

 

These estimates are derived from the corresponding 

low-pass coefficients at the same scale; the latter are 

also used to incorporate inter-scale relationships into the 

denoising functions. The resulting procedure can be 

easily integrated into the wavelet decomposition, which 

is non-redundant. The MSE estimate is optimized 

independently for each sub band by exploiting the 

orthogonality of the Haar wavelet basis. As a result, our 

algorithm has low computational complexity and 

modest memory requirements. These are valuable 

features for denoising large data sets, such as those 

typically produced in biomedical applications. 

Importantly, this computational efficiency is not traded 

for quality. On the contrary, the algorithm yields 

improved results compared to traditional Gaussian-

inspired approaches, and it performs competitively with 

state-of- the-art multiscale method that was specially 

developed for Poisson data[10]. 

 

Our driving principle is the minimization of a purely 

data-adaptive unbiased estimate of the mean-squared 

error (MSE) between the processed and the noise-free 

data. In a general PURE-LET framework, we first 

devise a fast interscale thresholding method restricted to 

the use of the (unnormalized) Haar wavelet transform. 

We then lift this restriction and show how the PURE-

LET strategy can be used to design and optimize a wide 

class of nonlinear processing applied in an arbitrary (in 

particular, redundant) transform domain. We finally 

apply some of the proposed denoising algorithms to real 

multidimensional fluorescence microscopy images. 

Such in vivo imaging modality often operates under 

low-illumination conditions and short exposure time; 

consequently, the random fluctuations of the measured 

fluorophore radiations are well described by a Poisson 

process degraded by AWGN. 

 

SURE-LET Approach   

 

This approach is made possible by the existence of an 

excellent unbiased estimate of the mean squared error 

(MSE) between the noiseless image and its denoised 

version—Stein‘s unbiased risk estimate (SURE). 

Our approach, thus, consists in reformulating the 

denoising problem as the search for the denoising 

process that will minimize the SURE—in the image 

domain. In practice, the process is completely 

characterized by a set of parameters. Now, to take full 

advantage of the quadratic nature of the SURE, we 

choose to consider only denoising processes that can be 

expressed as a linear combination of ―elementary‖ 

denoising processes—linear expansion of thresholds 

(LET). This ―SURE-LET‖ stategy is computationally 

very efficient because minimizing the SURE for the 

unknown weights gives rise to a mere linear system of 

equations, which in turn allows to consider processes 

described by quite a few parameters[13].There is, 

however, a tradeoff between the sharpness of the 

description of the process which increases with the 

number of parameters, and the predictability of the 

MSE estimate, which is inversely related to the number 

of parameters. We have already applied our approach 

within a nonredundant, orthonormal wavelet 

framework, and showed that a simple thresholding 

function that takes interscale dependences into account 

is very efficient, both in terms of computation time and 

image denoising quality. 

Conclusion 

In this paper, a powerful method is proposed to address 

the issue of image recovery from its noisy counterpart. 

we will obtain denoised image using Image denoising 

technique PURE-LET and SURE-LET during the 

transmission of image over the AWGN channel. Thus 

noises are eliminated in the images. 
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