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Abstract - Electrically insulating composites that are 

lighter, stronger, more rigid, and more durable than metals 

have replaced metals in numerous uses because to 

advancements in materials engineering. Due to the 

drawbacks or curb of the traditional non-destructive testing 

(NDT) methods, which include thermography, eddy current 

testing, ultrasonic, X-ray, and magnetic particles, these 

synthetic materials require alternative inspection 

procedures. Due to inadequate signal penetration, typical 

non-destructive inspection methods operating at low 

frequencies necessitate removing insulating material to 

permit examination. a number of high-frequency 

inspections Without removing the insulations, methods like 

the microwave approach have demonstrated successful 

examination in finding the problem under them.  A 

potential method to find flaws in both metal and composite 

materials is the use of microwave NDT with open-ended 

rectangular waveguides (OERW). The microwave 

approach, however, confronts a number of difficulties, 

including inadequate spatial imaging, significant 

inaccuracies in defect size and depth caused by variations in 

stand-off distance, the best frequency point choice, and the 

existence of outliers in microwave measurement 

information. For determining corrosion beneath insulation, 

the microwave method in combination with machine 

learning strategies offers great promise and feasibility.  For 

the purpose described here, microwave NDT using OERW 

in combination with strong artificial intelligence techniques 

has a great deal of potential and feasibility. Because the 

influence of artificial intelligence methods has been 

demonstrated in several conventional NDT techniques, 

combining methods of artificial intelligence with methods 

for signal processing is extremely likely to increase the 

effectiveness and resolution of the microwave NDT 

technique. 
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I. INTRODUCTION 

 
Corrosion Under Insulation (CUI) is a serious flaw in many 

essential applications, particularly in the oil and gas, nuclear, 
marine, aerospace, and power developing sectors[1], [2]. Due to 
inherent coating flaws, moisture intrusion, and structural 
weakening in these industries, corrosion grows covertly in the 
metal backing behind insulation[3], [4]. This structure's 
vulnerability might result in a catastrophic collapse of asset 
integrity, which would have a number of negative effects on 
people's health and safety as well as production losses and 

maintenance costs[5], [6]. Therefore, to minimise the aforesaid 
effects and improve the system's all inclusive integrity, a precise 
and speedy examination for CUI identification is necessary.  
NDT is a auspicious idea in practical use to identify, track, and 
gather important data on the severity of CUI. 

In the realm of non-destructive testing (NDT), the 
advancement of imaging techniques for examining items that are 
physically inaccessible has been a study focus for many years. 
Nondestructive testing (NDT) is the process of assessing 
changes in a material's various properties, such as delamination, 
which corrosion, cracks, and fatigue, as well as any inside flaw 
or metallurgical condition, without compromising the material's 
integrity or suitability for use[1]. NDT is essential to many 
industrial applications, particularly in the fields of aviation, 
power generation, petro chemistry, railroads, and automobiles. 
To reduce maintenance costs and increase the overall system's 
safety and dependability, NDT examinations to evaluate 
structural or component damage are essential[7]. 

Due to field penetration restrictions, the requirements of 
replacing or coating composite materials with metals in 
numerous uses need the use of an alternate inspection 
methodology to the usual NDT method. These components' 
capabilities are affected by a variety of issues as a result of 
wearing and the repeated process, such as corrosion, cracks 
occurring in the undercoating of metallic substrates, and 
breakdown between coverings and substrates made of metal. 
Since electromagnetic waves at microwave wavelengths have 
the potential to provide composite materials with improved 
inspection resolution, the microwave non-destructive testing 
(MNDT) approach is ideally suited for examining composite 
materials [4]. 

Microwave signals are a very appealing applicant for 
composite inspection because, unlike ultrasonic sound and 
acoustic signals, they can interact with the inner structure of 
composite materials like dielectric insulations and can penetrate 
inside them. The conventional microwave-based techniques, 
Notwithstanding their encouraging outcomes, they struggle with 
an assortment of issues, such as data intricacy, poor geographic 
quality of images, hazy defect form as an outcome of distance 
between objects fluctuations, and optimal frequency site 
selection, all of which affect the geometric assessments of 
faults[5], [8]. Consequently, the development of smart systems, 
including methods based on neural networks, makes it feasible 
for soft computing techniques to emerge, which in turn makes it 
viable to address these issues. Machine learning techniques' 
great capacity to handle complicated data makes them useful to 
handle the complexity of microwave data and minor fluctuations 
as well as to increase the sensor's sensitivity and spatial 
resolution of images[9]. 
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 Some studies recommend the use of artificial 
intelligence (AI) for finding flaws and identification, citing the 
development of a classification system based on machine 
learning that automates defect detection throughout fabrication 
or in service and raises the standard of NDT inspection [6]. The 
present efforts to combine MNDT and AI, notwithstanding the 
individual approaches' bright futures, have a great chance of 
overcoming the aforementioned difficulties. 

 

II. CONVENTIONAL NON-DESTRUCTIVE TESTING 

 
Conventional non-destructive testing (NDT) techniques are 

employed in many different factories, such as from the oil and 
gas, renewable energy, rail, engineering and manufacturing, 
shipbuilding, steel manufacturing, biochemistry, and 
amusement parks and fairs to name a few. 

Conventional NDT techniques include x-ray inspection, 
thermographic inspection, eddy  inspection, magnetic inspection 
and ultrasonic inspection nevertheless, they all have one thing in 
common: the substances being tested are not affected in any way. 
These techniques are tried-and-true and often used. 

 

A. X-ray Inspection 

 
One of the radiometric inspection methods for spotting 

penetrating radiation modification in objects is the X-ray 
examination methodology [10]. The X-rays approach uses 
radiation from the electromagnetic spectrum with short 
wavelengths to assess the thickness of the specimen and capture 
photographs of the framework's contour [11]. A detector is used 
to calculate the quantity of radiation that is flowing through the 
test sample. In contrast to defect-free sections, Figure 1 shows 
how cavities and interruptions change the amount of rays 
obtained at the detector, revealing thickness variations in the 
item under investigation. 

 

 

Figure 1 :- Xray inspection 

 

In epoxy-coated mild steel, the Compton X-ray 
backscattering technique is used to locate and examine the 
corrosive undercoating [12]. The radiographic picture and the 
usual profile of grey levels in the radiological picture show the 
thickness variance in the test specimen. The existence of 

thickness loss indicates that the specimen has corrosion damage. 
The greyscale picture generated by scanning the experimental 
sample in a linear motion serves as evidence of the test sample’s 
level of corrosion. But the quantitative analysis the corrosion 
level cannot be reliably estimated using information gleaned 
from the observed corrosion's grayscale. Additionally, wearing 
protective gear is necessary when doing an X-ray check since 
prolonged exposure to radiation from X-rays has negative effects 
on one's health and safety [13]. 

 

B. Thermographic Inspection 

 

 
  

Figure 2 :- Thermographic inspection 

 

Safety and medical concerns brought on by radioactive sources 

can be eliminated using the thermography examination method. 

This method is another NDT methodology for detecting the 

specimen Under Test (SUT)’s temperature distribution[14]. An 

infrared camera that can detect even the smallest thermal 

differences is used to record the temperature distribution. Figure 

2 [15] depicts the classification of thermography inspection 

procedures into active as well as passive thermography.  

 

C. Eddy Current Inspection 

 

      Quantitative information, such as the extent of CUI, may be 

provided via the Eddy Current Examination (ECT) approach. 

Heavy industries often analyse conductive materials using the 

ECT method to find surface and subsurface flaws[16], [17]. As 

seen in Figure 3 [15], the ECT probe employs a main transmitter 

coil to determine the magnetic field surrounding the examined 

metallic spot. As a result, ripples are produced on the metallic 

item. The eddy currents generate an additional magnetization 

that is polarisation in the opposite manner as the originating 

field [18]. Whenever an error exists, the eddy currents 

deteriorate and have an effect on the second-degree field of 

magnetism [19]. For the purpose of trying to differentiate 

amongst a site with a defect and one that is free of errors, a coil 

or magnetised sensor is employed to determine the disparity in 

magnetization. 
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        Figure 3 :- Eddy currents inspection 

 

D. Magnetic Inspection 

 

 
  

 

Figure 4 :- Magnetic separation method 

 

 The irregularities in the sample or specimes causes magnetic 

flux to seep [20]. In Figure 5, a magnetised particulate scanner 

that is placed close to the surface being examined may absorb 

magnetic ions and provide the precise position, shape, size, and 

level of the gap. In the areas of heavy engineering, welding 

faults, and applications in aerospace, MT is frequently used to 

evaluate surface breaks, flaws, and discontinuities on surfaces 

that are either being produced or utilised.Because it relies on the 

material’s capacity to be magnetised and can only identify flaws 

a few millimetres below the surface, the MT approach in NDT 

currently struggles with dependability and sensitive to identify 

surface fractures [21]. In [22], it is examined if MT can reliably 

and sensitively identify fractures in welded components. The 

study demonstrates that the method is unreliable for detecting 

fractures with a tiny size and is not able to identify any faults 

with an expanse of less than 1.5 mm. 

 

E. Ultrasonic Inspection 

 

 

 
 

Figure 3:- Ultrasonic testing 

 

      The conventional ultrasonic testing (UT) system is shown 

in Figure 3. It uses a transducer to produce a beam of high-

frequency sound waves that are directed towards the specimen 

being tested, pass through it, and are reflected off of its rear 

surface or other flaws [23]. The wave that is reflected is changed 

into an electrical signal that may be analysed to find flaws and 

their locations. 

Ultrasonic technology is utilised in NDT for a number of 

inspection purposes, including the identification of cracks, 

delaminations, and corrosion [24] studies the various amounts 

of corrosion between the gran of many stainless-steel pipes. The 

investigation measured a longitudinal ultrasound wave over the 

tube wall using both receiver and transmitter ultrasonic 

transducers. The study demonstrates that when corrosion levels 

rise, its ultrasonic non-linear coefficient increases dramatically. 

As an outcome, ultrasonic NDT can identify and gauge the 

degree of corrosion in steel pipes. Nevertheless, since the length 

of the examined pipe degrades along the longitudinal wave, it 

had a significant impact on the unpredictable coefficient. 
 

III. MICROWAVE NON-DESTRUCTIVE TESTING 

 
Microwave NDT techniques have had a lot of success in 

inspecting composite materials during the past 20 years. [25]–
[27]. Due to their reliability, strength, and lightweight qualities, 
composite materials have gained popularity and have begun to 
replace metals in numerous applications, including the 
aerospace, automotive, and aviation sectors. Since microwave 
signals may pass through composite materials and communicate 
with the material’s exterior and internal structure, this 
necessitates the widespread use of microwave techniques [28], 
[29], present microwave nondestructive testing (NDT) 
employing a microwave line of communication (MTL) sensor. 
The examined specimen serves as an electrically conducting 
substance for a microwave circuit in the MTL process. Any flaw 
in the specimen causes a change in the material permittivity, 
which is measured in the signals’ responses.These alterations are 
utilised to spot anomalies in the specimen under inspection, such 
as variations in the material layers and defect size and position. 

The amount of pollen cleanliness is determined using MTL, 
a very efficient technology for assessing the permeability of 
resources, which is used to ensure manufacturing quality [30]. 
Additionally, MTL is employed in [29] to find hidden glass and 
stone bits that were added to the vegetable salad. To find foreign 
things in food, the suggested approach calculated the ratio of the 
transmitted signals’ real and imaginary components.Microwave 
NDT is a strong method for evaluating under-coating flaws like 
CUI in comparison to traditional NDT. The composite insulation 
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may be deeply penetrated by electromagnetic waves with 
frequencies between 300 MHz and 300 GHz, and these waves 
are sensitive to variations in the thickness of the metal substrate’s 
surface [15], [31], [32]. The microwave NDT method has a 
number of benefits, including non-contact inspection and the 
lack of a couplant required for the transmission of signals into 
the material being tested [33]–[35]. Unlike ultrasonic waves, 
microwave impulses can pass through the insulation of 
composite constructions and interact with the underlying 
structural materials [36]. 

Microwave waveguides known as "Open-Ended Cylindrical 
Waveguides" (OERW) are frequently used to investigate 
metallic surfaces coated with hybrid and slippery polymers. In 
order to check faults including delamination, which fractures, 
and CUI, OERW is frequently utilised. A high-frequency signal 
is sent in the course of the SUT by the OERW. Modifications in 
the radio frequency signal's reflection index are used for 
capturing the faults, resonance frequency, magnitude, and phase. 
The microwave NDT methods described in [37] use a sweeping 
frequency. In order to assess the plated environment’s corrosion 
on mild steel, the OERW detector runs in the K-band. 

 

IV. NON-DESTRUCTIVE BASED MACHINE LEARNING 

IN MICROWAVE INSPECTION 

 
Conventional NDT methods continue to have various 

drawbacks that lower the effectiveness of examination of CUI, 
such as inadequate spatial image processing, field penetration 
restrictions, and fuzzy defect shapes. On the advancements of 
NDT automation, recent study is very trustworthy. As a result, 
there is less reliance on the knowledge and experience of the 
operators. To increase the accuracy of the investigation of CUI, 
signal processing using classifiers constructed from machine 
learning is used in NDT procedures. Additionally, it can raise the 
CUI level’s forecast accuracy. Three phases are often involved 
in NDT techniques based on Machine Learning (ML) 
approaches: pre-processing, feature extrication, and 
categorization [38]. Prior to data analysis, a series of activities 
called pre-processing are carried out with the goal of cleaning up 
and removing extraneous data in order to reduce analytical 
mistakes. The feature extraction step, on the other hand, seeks to 
extract a number of useful characteristics from a huge amount of 
data for improved data interpretation. 

 

Figure 6 :- The process of machine learning 

 

The collected characteristics are categorised using a 
classifier based on machine learning during the classification 
step in order to divide comparable data into different categories, 
such as defect versus fault-free. Simulation as well as 
information processing have definitely improved thanks to 
machine learning. ML-based models have proven to have high 
fitting analysis capabilities and good forecast precision. 
Configuration simplification, structural hypotheses, fault 
performance evaluation, experimental advancement in the last 
few years, and materials science all apply machine learning 
(ML) [39]. The ML-based models employed in CUI are used to 
identify, image, and assess the seriousness of CUI or compute 
the failure probabilities and growth rates of CUI defects. 
Numerous algorithms that are often employed in the three phases 
are explained in the following sub-sections. 

 

A. Pre-Processing 

 
Only acknowledged early processing techniques, such as the 

separate wavelet transforms transform (DWT), the 
transformation using Hilbert (HT), and variational mode 
dismemberment (VMD), are described as examples for the 
signal processing step in this section. For the purpose of 
identifying and eliminating electrical noise from indications, the 
DWT is a divided wavelet transformation (WT) [128]. WT 
divides a data stream into several levels that represent various 
frequencies [40], [41]. The electrical noise is based on the WT’s 
location on each scale. The noise data is used to create a 
threshold. By removing a threshold number below the threshold, 
the amount of noise is effectively reduced. The DWT approach 
is used to remove background noise from an electrical signal 
acquired using the plated Perfect Renewable Conductor (PEC) 
in order to identify the miniatured delamination a dual-ridges 
OERW [42].To forecast the extent of the delamination, are the 
DWT is used when combined with the signal strength analysis. 
The use of DWT output combination of methods significantly 
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improves the accuracy of the fault magnitude measurement. To 
ensure that the signal’s data will be retained, the quantity of 
scales that are used to deconstruct the signal must be carefully 
chosen. 

 

B. Feature Extraction 

 
The practise of feature extraction makes data sets easier to 

manage for analysis of data [43]. A selection technique used in 
feature extraction tries to retrieve the dominant information and 
eliminate redundant raw data factors. These repeated properties 
reduce the predicting model's reliability and acceleration, which 
has a significant impact on the model's diagnostic correctness 
and execution efficacy. The frequency sweeping process in 
microwave NDT creates a feature vector with a high degree of 
dimension. The large dimensionality of the characteristics makes 
the machine learning methods more computationally 
complicated and time-consuming to process. Due to their ability 
to conduct analysis of features and dimensionality reduction 
simultaneously, Partial Least Squares (PLS), Principal Com 
component analysis (PCA), and Nonnegative Mapping 
Factorization (NMF) are covered in this section. 

 

C. Classification Stage 

 
Throughout the classification process, a classifier approach 

is employed to classify a set of information into subgroup groups 
according to their the outdoors. The two forms of data 
segmentation involve supervised deep learning (SML) 
methodologies and unorganised machine learning approaches. 
Supervised training provides a function for translating inputs to 
expected outputs [44]. These techniques need input 
information—or status labeling—from well-known domains. 
Throughout the classification process, a classifier approach is 
employed to classify a set of information into subgroup groups 
according to their the outdoors. The two forms of data 
segmentation involve supervised deep learning (SML) 
methodologies and unorganised machine learning approaches. 
Supervised training provides a function for translating inputs to 
expected outputs [44]. These techniques need input 
information—or status labeling—from well-known domains. 
Figure 8 depicts the SML procedure. When learning without 
supervision, it picks up framework from the data that have not 
been labelled. When previous information is unavailable or the 
number of samples is tiny, unsupervised learning can be helpful 
[45]. 

One of the SML algorithms is the artificial neural network 
(ANN). The artificial neural network (ANN) model is a crucial 
tool for handling complex problems [46]. Information is fed to 
the first level's brain neurons through the hypothetical network 
from the information source. The neurons transform the data into 
a sensation and send the impulse as an input to the synapses in 
the layer below. As the artificial brain learns, the accuracy with 
which the outcomes were generated increases. The neural 
networks extrapolate on earlier learning to arrive at a choice. A 
typical ANN's architecture is shown in Figure 9. 

 

V. ARTIFICIAL INTELLIGENCE AND IT’S APPLICATION 

 

AI based on machinelearning algorithms play a crucial role 
in terms of output processing for intelligent systems in NDT. 
Post-processing for evaluating and detecting flaw. AI can deal 
with the intricate nature of the data that has been gathered to 
increase the sensitivity of fault detection [47]. Machine learning 
algorithms offer reliable and real-time inspection in traditional 
NDT methods while eliminating complicated mathematical 
modelling. However, despite its success in other NDT 
approaches that attain high inspection accuracy, the application 
of AI in electromagnetic NDT (MNDT) is still limited. As 
already noted, conductive and non-conductive objects may be 
inspected more effectively using microwave-based . The OERW 
sensor responsiveness was improved in the first effort to deploy 
adaptive MNDT in [47]. To locate the minute fluctuations in the 
reflected coefficient that are hard to see, the approach used SVM 
and ANN classifiers. In order to improve fault detection, the 
great capacity of the artificial intelligence (AI) model to locate 
minute changes is applied. The method is used to divide coated 
steel items into fault and defect-free categories. The flawed and 
defect-free specimens are used to calculate the reflection 
coefficient, which is then divided into both testing and training 
samples, totaling 45 and 371 samples, respectfully. The samples 
from training are classified as having defects and not having 
defects. By 30 MHz steps, the spectrum is swept from 12 to 18 
GHz using a network analyzer with vector networks (VNA). 201 
frequency points are thus created and used as characteristics. To 
reduce the little stand-off fluctuations, every repetition point is 
normalised to its highest value. On the basis of the PCA’s 
principle component analysis (PCA) characteristics, the rate of 
the point vector is categorised. Prior to being utilised as data 
sources for SVM and ANN, PCA is used to identify the 
important characteristics. PCA breaks down the starting point 
into a small number of uncorrelated values using a set of 
diagonal transformations. 

 

Figure 7 :- Neural networks of aritificial intelligence 

 

Though the approach is confined to categorising the 
examined specimen as either defective or without defects 
without doing a fault evaluation, intelligent inspection 
nonetheless manages to accomplish accurate flaw identification 
even when no complex noise preprocessing is taken into 
account. Additionally, when there are little stand-off 
fluctuations, the features normalisation greatly enhances the 
fault identification. Because it is not restricted to categorising the 
examined material into defects and fault-free groups, an AI 
model may contribute more to MNDT. Another goal in defect 
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analysis that intelligent MNDT may accomplish is flaws 
imaging. The microwave waves' ability to interact with the 
interior layers of a complex structure effectively accounts for the 
high classification rate. Additionally, [48]’s novel fusion of 
microwave and AI approaches examination of the fault in terms 
of its location and extent. Despite the minimal efforts made to 
include AI approaches into NDT, the microwave performed 
well. Therefore, further research is needed in the future to fully 
integrate AI and MNDT and also to reduce the amount of data 
collected during the first stage of microwave inspection. 

VI. FUTURE SCOPE 

 

Noise in signal quality and signal intricacy can be resolved 

using comfort computing techniques like processing signals and 

artificial intelligence-based learning algorithms. Therefore, the 

constraints may be overcome and a successful outcome for the 

assessment of CUI can be obtained by combining soft 

computation methods with microwave NDT techniques. As 

previously noted, microwave NDT methods used for materials 

analysis might result in fallback-free divergence on the borders 

of the defect. Because machine learning can solve complicated 

and indiscriminate data, it may be used to detect fault and non-

defect regions. Additionally, because statistical algorithms for 

machine learning have a great capacity to estimate unknown 

values based on training set instances, they may be used to 

anticipate the depth of a defect using examples of known flaws. 

However, the effectiveness of machine learning algorithms for 

both classification and estimate depends on the volume of the 

retrieved features to distinguish error position and depth. By 

choosing the proper and distinctive characteristics, one may 

increase classifier accuracy, shorten processing time, and make 

the system implementable in a real setting. In this case, a 

thorough investigation is required to determine the impact of 

transferring traditional feature extraction techniques, including 

HOG and LBP, from the image processing to the signal 

processing domains. 

 

VII. CONCLUSION 

 

OERW is a standard MNDT technique that is heavily utilised 
in non-destructive assessment and has shown excellent results in 
terms of erros, CFRP, GFRP, TBC, and dielectric components. 
However, due to the absence of application of comfort 
computing approaches in MNDT applications, researchers have 
focused their study on sensor-based improvement, which 
presents a number of obstacles for OERW-based solutions, 
including stand-off variations, the right frequency point, and 
poor picture quality. Rectangular waveguides outperform all 
other microwave NDT methods in the examination of CUI. The 
rectangular broadband can work independently or in tandem 
with other elements. Rectangular waveguides still have a 
problem with being able to identify the entire region of 
corrosion. This is due to the researchers' emphasis on 
strengthening the standard of sensing without the use of soft 
computing approaches for microwave NDT. Soft computing 
techniques may be used to eliminate the outliers and increase the 
precision of CUI detection.Additionally, the degree of severity 
of the CUI may be detected and visualised using AI-based 
machine learning approaches. Additionally, machine learning 

can anticipate the CUI and calculate how long the material is 
expected to last. Therefore, companies can make early 
preparations to fix or replace the items being tested. Utilising 
deep learning in electromagnetic NDT techniques may also 
provide an automated system for improving the efficacy and 
management of goods throughout production and use. Artificial 
intelligence (AI) provides a substantial influence on many 
sectors, notably detection of patterns, data extraction, systems 
digitization, and traditional NDT procedures. It is thus extremely 
likely that signal processing methods and AI approaches will be 
combined in MNDT. The efficacy of the system of checks would 
enhance as a result. The application of AI in MNDT goes beyond 
only overcoming the aforementioned difficulties; it can also be 
used to construct automated systems that may enhance quality 
assurance as well as tracking during manufacture or in service, 
which improves NDT applications qualitatively. Additionally, 
MNDT automation attempts to avoid depending on the 
knowledge and expertise of the operators, reducing the chance 
of human mistake. 
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