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Abstract  
 

Anomaly detection has been a crucial analysis topic in 

data processing and machine learning. Several real-

world applications like intrusion or MasterCard fraud 

detection need a good and efficient framework to spot 

deviated data instances. A good anomaly detection 

methodology must to be able to accurately establish 

many varieties of anomalies, be robust, need 

comparatively very little resources, and perform 

detection in period of time. This paper provides an 

outline of major technological perspective and 

appreciation of the basic progress of online anomaly 

detection and conjointly provides overview technique 

developed in every stage of online anomaly detection. 

This paper helps in selecting the technique together 

with their relative deserve & demerits. 

 

1. Introduction  
Anomaly (or outlier) detection aims to spot a little 

group of instances that deviate remarkably from the 

existing data. A renowned definition of “outlier” in [1]: 

“An observation which deviates so much from other 

observations as to arouse suspicions that it was 

generated by a different mechanism,” which gives the 

general idea of an outlier. The importance of anomaly 

detection is as a result of the actual fact that anomalies 

in information translate to vital, and infrequently 

crucial, unfair data in a very wide range of application 

domains. Basically, anomaly detection may be found in 

applications like Office of Homeland Security, 

MasterCard fraud detection, intrusion and business 

executive threat detection in cyber-security, fault 

detection, or malignant diagnosing. However, since 

exclusively a restricted quantity of labelled data 

accessible within the higher than real-world 

applications, a way to confirm anomaly of unseen data 

(or events) attracts attention from the researchers in 

data processing and machine learning communities.  

 

 

1.1 Types of Anomaly 

1.1.1 Point Anomalies 

If an individual data instance can be considered as 

anomalous with respect to the rest of data, then the 

instance is termed a point anomaly. This is the simplest 

type of anomaly and is the focus of majority of research 

on anomaly detection. 

1.1.2 Contextual Anomalies 

If a data instance is abnormal in a very specific context, 

but not otherwise, then it's termed a contextual anomaly 

(also brought up as conditional anomaly [2]). The 

notion of a context is included by the structure within 

the data set and should be specified as a neighborhood 

of the problem formulation. 

1.1.3 Collective Anomalies  

If a group of connected data instances is abnormal with 

respect to the whole data set, it's termed a collective 

anomaly. The individual knowledge instances in an 

exceedingly collective anomaly might not be anomalies 

by themselves; however their occurrence together as a 

group is abnormal. 

The techniques used for detecting collective anomalies 

are very different than the point and contextual 

anomaly detection techniques. 

2. Anomaly Detection Techniques 

2.1 Unsupervised Anomaly Detection 
Techniques that operate in unsupervised mode do not 

need training data, and therefore most generally 

applicable. The techniques in this class create the 

implicit assumption that standard instances area unit 

much more frequent than anomalies within the test 

data. If this assumption isn't true then such techniques 

suffer from high warning rate. Many semi-supervised 

techniques may be custom-made to control in Associate 

in unsupervised mode by employing a sample of the 
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unlabeled data set as test data. Such adaptation assumes 

that the test data contains only a few anomalies and 

therefore the model learned throughout training is 

robust to those few anomalies. 

 

2.2 Supervised Anomaly Detection 
Techniques trained in supervised mode assume the 

availability of training data set that has labeled 

instances for traditional still as anomaly categories. A 

typical approach in such cases is to make a prophetical 

model for traditional vs. anomaly categories. Any 

unseen information instance is compared against the 

model to work out that category it belongs to. There are 

two major problems that arise in supervised anomaly 

detection. First, the abnormal instances are much fewer 

compared to the conventional instances within the 

training data. Problems that arise owing to unbalanced 

category distributions are addressed within the data 

processing and machine learning literature[3][4]. 

Second, getting correct and representative labels, 

especially for the anomaly category is typically 

difficult. Numbers of techniques are planned that inject 

artificial anomalies into a traditional data set to get a 

labeled training data set [5]. Away from these two 

issues, the supervised anomaly detection disadvantage 

is comparable to assembling prophetical models. 

 

2.3 Semi- Supervised Anomaly Detection 
Techniques that operate in a semi-supervised mode, 

assume that the training data set has labeled instances 

just for the traditional category. Since they are doing 

not need labels for the anomaly category, they're 

additional wide applicable than supervised techniques. 

As an example, in spacecraft capsule fault detection 

[6], Associate in anomaly situation would signify an 

accident, that isn't simple to model. The typical 

approach utilized in such techniques is to create a 

model for the category corresponding to traditional 

behavior, and use the model to spot anomalies within 

the take a look at test data. A restricted set of anomaly 

detection techniques exists that assumes availableness 

of only the anomaly instances for training [7]. Such 

techniques are not usually used; primarily as a result of 

it is troublesome to get a training data set that covers 

each potential abnormal behavior that can occur within 

the data. 

3. Online Anomaly Detection Techniques 

3.1 SCAN Statistics 
SCAN statistics is a robust methodology for detecting 

remarkably high rates of events, conjointly referred to 

as anomalies. Scanning for bursts of events has several 

applications in numerous fields such as 

telecommunications, medicine, biological science, 

astronomy, internal control, and dependability [8]. In 

monitoring and management of communication 

networks, SCAN statistics will be used to monitor the 

prevalence of events in time, a degree method, like 

standing messages, alarms, and faults. It did not have a 

tendency to look for outliers, however rather 

uncommon bursts in events. In an online application for 

events occurring in time, the amount of events that 

have occurred in the scanning window [𝑡 –  𝑤, 𝑡], where 

𝑡 is that the current time and 𝑤 is that the scanning 

window size, are compared with the amount of events 

expected to possess occurred in that window under 

traditional conditions. If that variety of events is 

massive compared to what expected, then an alert of an 

abnormality will be given. SCAN statistics will be used 

to compute the distribution of events under traditional 

conditions (the null hypothesis, 𝐻0) to see what is a 

significantly sizable amount (the vital value) within the 

scanning window, whereas properly dominant the false 

positive rate (FPR), that is that the chance of 

exceptional the critical value for any scanning window 

of size w within the larger time interval [0;  𝑇) 

under 𝐻0. A key advantage of scan statistics is that it 

permits for computationally easy implementation; 

therefore, it is possible to observe several processes at 

once with a tiny low process burden. In the usual 

treatment of scan statistics the time of events occurring 

within the interval [0;  𝑇) are assumed to be generated 

by a Poisson method under 𝐻0. In a Poisson process 

with rate 𝜆 over [0;  𝑇), the number of events is given 

by Poisson (𝜆 𝑇). The inter-arrival times are iid 

distributed according to Exponential 𝜆. Conditional on 

there being 𝑘 events, the times of the events are 

distributed uniformly in [0;  𝑇). Assuming that 𝜆 is 

known, the scan statistic is defined as follows. Let 

𝑋1, 𝑋2 , . . . , 𝑋𝑁  denote the ordered values of the events 

occurring in the interval [0;  𝑇) and let 𝑌𝑡(𝑤) be the 

number of points (𝑋’𝑠) in the interval [𝑡 −  𝑤;  𝑡] 
(Extensions of scan statistics exist in discrete time and 

on circular data, such as time of year, but we do not 

focus on them here.). The scan statistic 𝑆𝑤  is then 

defined as the maximum number of points to be found 

in any subinterval of [0;  𝑇) of length 𝑤 [9]. That is, 

 

           𝑆𝑤 = max
𝑤≤𝑡≤𝑇

𝑌𝑡 𝑤                        

     = max𝑡  || 𝑡 − 𝑤 ≤ 𝑋𝑖 ≤ 𝑡 .𝑁
𝑖=1      1  

 

A related statistic is 𝑊𝑘 , the minimum subinterval of 

[0;  𝑇) containing 𝑘 points 

𝑊𝑘 = min
0≤𝑤≤𝑇

 𝑤: 𝑆𝑤 ≥ 𝑘                   
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 = min
1≤𝑖

 𝑋𝑖+𝑘−1− − 𝑋𝑖 .   (2) 

The distributions of these statistics are related by 

𝑃(𝑆𝑤  ≥ 𝑘)  =  𝑃(𝑊𝑘 ≤ 𝑤). Equivalently, 𝑆𝑤  and 𝑊𝑘  

are inverses: 𝑆𝑤𝑘  =  𝑘 for 𝑘 ≤  𝑁. One should also 

note the edge cases of 𝑆𝑤  and 𝑊𝑘 : 𝑊𝑘  =  1 for 𝑘 >

 𝑁, 𝑊1  =  0 and 𝑆0  =  1 for 𝑁 ≥  1, and 𝑆𝑇  =  𝑁. 

The key trick in scan statistics is controlling the FPR by 

accounting for the overlapping multiple comparisons 

that are a result of the rolling scan window while 

maintaining more power than simple Bonferroni 

correction. 

For a Poisson process with mean rate 𝜆 per unit time 

over the interval [0;  𝑇), [10] gives the following 

approximation for the distribution 𝑃(𝑆𝑤  ≥  𝑘 │µ, 𝐿), 

where µ =  𝜆𝑤 and 𝐿 =  𝑇│𝑤 (also equal to 𝑃(𝑊𝑘  ≤

 𝑤 │ µ, 𝐿)). Let 𝑝(𝑘;  µ) be the probability of exactly 𝑘 

events occurring for a Poisson distribution with mean  

and 𝐹(𝑘;  µ) the cumulative distribution function 

(CDF) for the Poisson, then 

𝑃 𝑆𝑤 ≥ 𝑘 𝜇, 𝐿 1 − 𝑄2(𝑄3/𝑄2)𝐿−2.                     (3)  
 

𝑄2 = 𝐹(𝑘 − 1, 𝜇)2 −  𝐾 − 1 𝑝 𝑘; 𝜇 𝑝 𝑘 − 2; 𝜇 
−  𝑘 − 1 − 𝜇 𝑝 𝑘; 𝜇 𝑝 𝑘
− 3; 𝜇 ,                                      (4) 

 

𝑄3 = 𝐹(𝑘 − 1, 𝜇)3 − 𝐴1 + 𝐴2 + 𝐴3 − 𝐴4,         (5) 

Where, 

𝐴1 = 2𝑝 𝑘; 𝜇 𝐹 𝑘 − 1; 𝜇 

×   𝑘 − 1 𝐹 𝑘 − 2; 𝜇    

− 𝜇𝐹 𝑘 − 3; 𝜇  , 

𝐴2 = 0.5𝑝(𝑘; 𝜇)2  𝑘 − 1  𝑘 − 2 𝐹 𝑘 − 3; 𝜇 

− 2 𝑘 − 2 𝜇𝐹 𝑘 − 4; 𝜇 

+ 𝜇2𝐹 𝑘 − 5; 𝜇  , 

𝐴3 =  𝑝 2𝑘 − 𝑖; 𝜇 𝐹(𝑖 − 1; 𝜇)2,

𝑘−1

𝑖=1

 

𝐴4 =  𝑝 2𝑘 − 𝑖; 𝜇 𝑝 𝑖; 𝜇  

𝑘−1

𝑖=2

×   𝑖 − 1 𝐹 𝑖 − 2; 𝜇   

                            −𝜇𝐹 𝑖 − 3; 𝜇  

To test the null hypothesis, 𝐻0, that the background rate 

𝜆 =  𝜆0  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 at the significance level 𝛼, find 

the smallest 𝑘, which we call 𝑘𝐶𝑟𝑖𝑡 , such that 

𝑃 𝑆𝑤 ≥ 𝑘𝐶𝑟𝑖𝑡  𝜇0, 𝐿 ≤ 𝛼.                                  (6) 

Where µ
0

 =  𝜆0𝑤. For an online test with fixed 𝑤, if at 

time 𝑡 (the current time) the number of points, 𝑘, 

occurring in the time interval of length 𝑤 ending at 𝑡, 

[𝑡 −  𝑤;  𝑡], is ≥  𝑘𝐶𝑟𝑖𝑡 , then the null hypothesis is 

rejected at significance level 𝛼 and an alert may be 

given indicating that the rate of events has likely 

increased. An equivalent alternative test is to determine 

the length of time separating the most recent 𝑘𝐶𝑟𝑖𝑡  

points, 𝑊𝐶𝑟𝑖𝑡  =  𝑋𝑖  –  𝑋𝑖 − 𝑘𝐶𝑟𝑖𝑡 + 1, where 𝑋𝑖  =

 𝑡 [11]. If 𝑊𝐶𝑟𝑖𝑡  ≤  𝑤 then an alert may be given. 

3.2 Incremental Local Outlier Factor 
The incremental LOF technique provides equivalent 

detection performance as the iterated static LOF 

technique (applied when insertion of every data 

record), whereas requiring considerably less machine 

time. Additionally, the incremental LOF technique 

conjointly dynamically updates the profiles of data 

points. This is often a really necessary property, since 

data profiles might amendment over time. Incremental 

LOF algorithm is computationally efficient, whereas at 

a similar time successfully detect outliers and changes 

of distribution behavior in numerous data stream 

applications. The Local Outlier Factor algorithm [11] 

has been successfully applied in many domains for 

outlier detection in a batch mode [12, 13]. Incremental 

LOF algorithm is applicable for detection of outliers in 

data streams and this technique is the first incremental 

outlier detection algorithm. It provides equivalent 

detection performance as the static LOF technique, and 

has 𝑂(𝑛 log 𝑛) time complexity, where 𝑛 is that the 

total range of data points. 

In the designing of incremental LOF algorithm, two 

things are focused. First, the results of the incremental 

algorithm should be such as the results of the “static” 

algorithm every time 𝑡 a replacement purpose is 

inserted into a data set. Thus, there would not be a 

distinction between applying progressive LOF and also 

the “periodic” static LOF once all data records up to 

time instant 𝑡 are available. Second, asymptotic time 

complexity of incremental LOF algorithm should be 

like the static LOF algorithm. In order to have feasible 

incremental algorithm, it is essential that, at any time 

moment 𝑡, insertion/deletion of the data record leads to 

restricted (preferably small) variety of updates of 
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algorithm parameters. Specifically, the amount of 

updates per every insertion/deletion should not be 

captivated with this number of records within the 

dataset; otherwise, the performance of the incremental 

LOF algorithm would be 𝛺(𝑛2) wherever 𝑛 is that the 

final size of the dataset. 

Incremental LOF algorithm computes LOF value for 

every data record inserted into data set and instantly 

determines whether or not inserted data record is 

outlier. Additionally, LOF values for existing data 

records are updated if required. And hence work in two 

phases that are insertion and deletion. 

3.2.1 Insertion 

In the insertion half, the algorithm performs two steps:  

a) insertion of latest record, once it computes reach-

dist, lrd and LOF values of a replacement point; b) 

maintenance, once it updates k-distances, reach-dist, lrd 

and LOF values for affected existing points. The 

evaluation of the insertion half is done on the basis of 

following Theorems1-4[14]. 

 Theorem 1. The insertion of point 𝑝𝑐  affects the 

𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 at points 𝑝𝑗  that have point 𝑝𝑐  in their 

𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑, i.e., where 𝑝𝑗 ∈

 𝑘𝑅𝑁𝑁(𝑝𝑐). New 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of the affected 

point’s 𝑝𝑗  are updated as follows: 

𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑒𝑤   𝑝𝑗  

=  
𝑑 𝑝𝑗 , 𝑝𝑐 ,    𝑝𝑐  𝑖𝑠 𝑡𝑒 𝑘 − 𝑡 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑓 𝑝𝑗

 𝑘 − 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑙𝑑   𝑝𝑗  , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.              (7)  
  

      

Proof.  In insertion, 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of an existing point 

𝑝𝑗  changes when a new point enters the 𝑘 − 𝑡 nearest 

neighborhood of 𝑝𝑗 , since in this case the 𝑘 −

𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 of 𝑝𝑗  changes. If a new point 𝑝𝑐  is the 

new 𝑘 − 𝑡 nearest neighbor of 𝑝𝑗 , its distance from 

𝑝𝑗 becomes the new 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑝𝑗 ). Otherwise, old 

𝑘 − 1𝑡 neighbor of 𝑝𝑗  becomes the new 𝑘 − 𝑡 

nearest neighbor of 𝑝𝑗  (see Fig. 1). 

Corollary 1. During insertion, 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 cannot 

increase, i.e., 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑒𝑤 )( 𝑝𝑗  ) ≤  𝑘 −

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜𝑙𝑑 )( 𝑝𝑗  ). 

 
Fig. 1. Update of k-nearest neighbor distance upon 

insertion of a new record (k=3). a) New record 𝑃𝑐  is not 

among 3 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 of record 𝑝𝑗  ⇒  3 −

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑗 ) does not change; b) new record 𝑃𝑐  is 

among 3 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 of 𝑝𝑗  ⇒  3 −

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑗 ) decreases. Cyan dashed lines denote 

updates of reachability distances between point 𝑝𝑗  and 

two old points. 

Theorem 2. Change of 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑗 ) may affect 

𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡𝑘 (𝑝𝑖 , 𝑝𝑗 ) for points 𝑝𝑖  that are k-

neighbours of 𝑝𝑗 . 

 Proof. 

Using 𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡𝑘 𝑞, 𝑝 = max(𝑑 𝑞, 𝑝 , 𝑘 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)), where 𝑑(𝑞, 𝑝) is Euclidean distance 

from q to p. ∀ 𝑝𝑖  𝑑  𝑝𝑖 , 𝑝𝑗  >  𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑜𝑙𝑑   𝑝𝑗  , ⇒

 𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡(𝑜𝑙𝑑 )𝑘
 
(𝑝𝑖 , 𝑝𝑗 ) =  𝑑(𝑝𝑖 , 𝑝𝑗 ). According to 

Corollary 1, 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑗 ) cannot increase, hence 

if 𝑑 (𝑝𝑖 , 𝑝𝑗 )  >  𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐(𝑜𝑙𝑑 )(𝑝𝑗 ), 𝑟𝑒𝑎𝑐 −

𝑑𝑖𝑠𝑡𝑘
(𝑛𝑒𝑤 ) 

(𝑝𝑖 , 𝑝𝑗 )  =  𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡𝑘
(𝑜𝑙𝑑 ) 

(𝑝𝑖 , 𝑝𝑗 ). 

Theorem 3. lrd value needs to be updated for every 

record (denoted with 𝑝𝑚  
in [14] a general framework) 

for which its 𝑘 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 changes or for which 

reachability distance to one of its 𝑘𝑁𝑁 changes. Hence, 

after each update of 𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡𝑘(𝑝𝑖 , 𝑝𝑗 ) we have to 

update 𝑙𝑟𝑑(𝑝𝑖) if 𝑝𝑗  is among 𝑘𝑁𝑁(𝑝𝑗 ). Also, lrd is 

updated for all points 𝑝𝑗
 

whose 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 was 

updated. 

 Proof . Change of 𝑘 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 of 𝑝𝑚  affects 

the scope of the sum in Eq. (8) computed for all 

𝑘 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 of 𝑝𝑚 . Change of the reachability 

distance between 𝑝𝑚
 

and some of its 

𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 affects corresponding term in 

the denominator of Eq. (8). 

 

𝑙𝑟𝑑 𝑞 =
1

 𝑟𝑒𝑎𝑐 − 𝑑𝑖𝑠𝑡𝑘(𝑞, 𝑝)/𝑘𝑝∈𝑘𝑁𝑁 (𝑞)

.        (8) 
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Theorem  4.  LOF value needs to be updated for all data 

records 𝑝𝑚  which lrd has been updated (since lrd(𝑝𝑚 ) 

is a denominator in Eq. (9)) and for those records that 

have records 𝑝𝑚
 
in their 𝑘𝑁𝑁𝑠. Hence, the set of data 

records where LOF needs to be updated (according to 

(9)) corresponds to union of records 𝑝𝑚
 

and their 

𝑘𝑅𝑁𝑁. 

Proof . Similar to the proof of Theorem 3, using (9). 

𝐿𝑂𝐹 𝑞 =

1
𝑘

 𝑙𝑟𝑑(𝑝)𝑝𝜖𝑘𝑁𝑁

𝑙𝑟𝑑(𝑞)
 .                                      (9) 

3.2.2 Deletion 

The general framework for deleting the block of data 

records 𝑆𝑑𝑒𝑙𝑒𝑡𝑒  from the dataset S is given in [14]. The 

deletion of each record 𝑝𝑐  ∈  𝑆𝑑𝑒𝑙𝑒𝑡𝑒
 
from dataset 𝑆 

influences the 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of its 𝑘𝑅𝑁𝑁. 𝑘 −
𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 increases for each data record 𝑝𝑗  that is 

in reverse 𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 of 𝑝𝑐 . For such 

records, 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑗 ) becomes equal to the 

distance from 𝑝𝑗
 
to its new 𝑘 − 𝑡 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟.  

The reachability distances from 𝑝𝑗 ’𝑠 (𝑘 − 1) nearest 

neighbors 𝑝𝑖 to 𝑝𝑗
 
need to be updated. Observe that the 

reachability distance from the 𝑘 − 𝑡 neighbor of 𝑝𝑗
 
to 

record 𝑝𝑗
 
is already equal to their Euclidean distance 

𝑑(𝑝𝑖 , 𝑝𝑗 ) and does not need to be updated (Fig. 2). 

Analog to insertion, lrd value needs to be updated for 

all points 𝑝𝑗
 

where 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is updated. In 

addition, lrd value needs to be updated for points 𝑝𝑖
 

such that 𝑝𝑖
 
is in 𝑘𝑁𝑁 of 𝑝𝑗

 
and 𝑝𝑗

 
is in 𝑘𝑁𝑁 of 𝑝𝑖 . 

Finally, LOF value is updated for all points 𝑝𝑚
 
on 

which lrd value is updated as well as on their 𝑘𝑅𝑁𝑁. 

The correctness of the deletion algorithm can be proven 

analog to the correctness of the insertion algorithm. 

3.3 Kernel Estimation Based Anomaly 

Detection Technique 
Large backbone networks are regularly affected by a 

range of anomalies. This technique gives an online 

anomaly detection based on mathematical technique of 

Kernel Density Estimates (KDE) [15]. This technique 

sequentially and adaptively learns the definition of 

normality in the online applications and assumes no 

prior knowledge regarding the underlying distributions, 

and then detects anomalies. The anomaly detection 

threshold has been mathematically linked to the user’s 

specified tolerance level for false alarms. 

 

Fig. 2. Update of k-nearest neighbour distance upon 

deletion of record 𝑝𝑗 (𝑘 = 3). a) Prior to deletion, data 

record 𝑝𝑐  
is among 3 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑠 of record 

𝑝𝑗 ; b) After deletion of 𝑝𝑐 , 3 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑗 ) increases 

and reachability distances from two nearest neighbors 

of 𝑝𝑗  (denoted by cyan dashed lines) are updated to 

3 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑗 ). 

 
This technique is basically generated by focusing on 

two problem statements: 

 

Problem 1. Given a sequence of datapoints {𝑋𝑖}𝑖=𝑡−𝐿
𝑡+𝐿 ∈

 ℝ𝐷  , It need to determine if 𝑋𝑡  is a realisation of 

probability distribution 𝑃𝑛 ,𝑡  or 𝑃𝑎 . It is considered that 

the points {𝑋𝑖}𝑖=𝑡−𝐿
𝑡+𝐿 ∈  ℝ𝐷 are independent 

observations from the mixture distribution 𝑃𝑡 : 

 

𝑃𝑡 =  1 − 𝜋 𝑃𝑛 ,𝑡 + 𝜋𝑃𝑎 .                                  (10) 

where 𝜋 is the mixing faction. Here 𝑃𝑛 ,𝑡  is slowly time-

varying, while 𝑃𝑎 is time-invariant. And needed to 

compute an operator-specified probability of false 

discovery, 𝑃𝐹𝐷
∗ . 

 

Problem 2. Need to make a preliminary decision about 

the underlying distribution of 𝑋𝑡  at time 𝑡, and a final 

decision at time 𝑡 + ℓ  𝑤here ℓ ≪ 𝐿. Thus the 

preliminary decision is based on the data sequence 

{𝑋𝑖}𝑖=𝑡−𝐿
𝑡 and the final decision on {𝑋𝑖}𝑖=𝑡−𝐿

𝑡+ℓ , instead of 

on {𝑋𝑖}𝑖=𝑡−𝐿
𝑡+𝐿 . 

As explicit in Problem 2, the aim is to form a 

preliminary decision about the underlying distribution 

of Xt  at time 𝑡, and a final decision at time t + ℓ . Thus 

the decision needs to be initially made using  {Xi}t−L
t , 

and eventually using {Xi }t−L
t+ℓ  , as the sample from Pt  
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from the interval {Xi}t−L
t+L  . The subsequent technique of 

getting an estimated detection statistic T t  is proposed, 

and T t  is subsequently used as the online detection 

statistic that approximates the probability of false 

discovery achieved with the algorithm [15] for Problem 

1. 

 

At each timestep 𝑡, the KEAD first evaluates the mean 

squared error δt  in representing Xt  using a relatively 

small dictionary of approximately linearly independent 

elements Dt = {X j}j=1
m t  in the feature space defined by 

the kernel function. Error  δt  may be derived to be [16]: 

 

𝛿𝑡 = min
𝑎𝑡

{𝑎𝑡
𝑇𝐾 𝑡−1𝑎𝑡 − 2𝑎𝑡𝑘 𝑡−1 𝑋𝑡 

+ 𝑘(𝑋𝑡 , 𝑋𝑡)}.                        (11) 

where [K t−1]i,j = k(X i , X j) and [K t−1]i,j = k(X i , X j) for 

i, j = 1 … mt−1. Note that here {X j}j=1
m t−1  represent those 

selections from  {Xi }i=1
t−1 that have been entered into the 

dictionary up to time t − 1. The optimum sparsification 

coefficient vector at  that minimises δt  at time 𝑡 is then: 

𝑎𝑡 =  𝐾 𝑡−1
−1  . 𝑘 𝑡−1 𝑋𝑡  .                                            (12) 

The expression for error 𝛿𝑡  is simplified into: 

𝛿𝑡 =  𝑘𝑡𝑡 − 𝑘 𝑡−1(𝑋𝑡)𝑇  . 𝑎𝑡 .                                    (13) 

It also maintain a sliding window 𝐴𝑡  of the optimal 

sparsification coefficient vectors 𝑎𝑡  for the past L  

timesteps. One may then use the dictionary 𝐷𝑡−1 and 

the matrix of past optimal sparsification coefficient 

vectors 𝐴𝑡  to obtain the online detection statistic 𝑇 𝑡 : 

𝑇 𝑡 =
1

𝐿
  𝑎ℓ𝑗

𝑚𝑡−1

𝑗 =1

. 𝑘 𝑋 𝑗 , 𝑋𝑡 

𝐿

ℓ=1

 

                          =
1

𝐿
 𝐴𝑡−1. 𝑘 𝑡−1(𝑋𝑡)

𝐿

𝑖=1

.                 (14) 

𝑇 𝑡  is an approximation of 𝑇𝑡  in two respects. First, the 

(sparse) dictionary sample of representative input 

vectors from the interval {𝑡 − 𝐿 ∶ 𝑡} is used. The error 

introduced on this count is governed by the 

sparsification parameter 𝜈. Second, the interval 

{𝑡 − 𝐿 ∶ 𝑡} is used as representative of the interval of 

interest  {𝑡 − 𝐿 ∶ 𝑡 + 𝐿}. The error introduced on this 

count is governed by the window length L. 

 

3.4 Online Oversampling Principal 

Component Analysis 
In this a way is  propose known as online oversampling 

principal Component analysis (osPCA) algorithm [17] 

to handle anomaly problem, and that aims to detect the 

presence of outliers from an outsized quantity of  data 

via a online updating  technique. Unlike prior principal 

component analysis (PCA)-based approaches, it does 

not store the entire data matrix or covariance matrix, 

and thus this approach is especially of interest in online 

or large-scale problems. The task is completed by 

oversampling the target instance and extracting the 

principal direction of the data, osPCA permits to work 

out the anomaly of the target instance consistent with 

the variation of the ensuing dominant eigenvector. 

It uses the leave one out (LOO) strategy along with 

PCA. LOO strategy states that adding (or removing) a 

abnormal data will have an effect on the principal 

direction a lot of as compared with the adding or 

removing normal data. Using the above strategy, the 

principal direction of data set is calculated without 

considering the target instance of the initial data set. 

Thus, the outlierness of the targeted instance may be 

determined by the variation of the ensuing principal 

directions. A lot of exactly, the distinction between 

these two eigenvectors can indicate the anomaly of the 

target instance. By ranking the dissimilarity of all data 

points, one will establish the outlier instance by a 

predefined threshold or a preset portion of the data. 

While it works well for applications with moderate data 

set size, the variation of principal directions won't be 

important once the size of data sets is massive. 

However, this LOO anomaly detection procedure with 

an oversampling strategy will markedly increase the 

computational load. For every target instance, one has 

to produce a dense covariance matrix and solves the 

associated PCA drawback. This may refuse the 

framework for real-world large-scale applications. 

Though the standard power technique is used to 

approximate PCA solutions, it needs the storage of the 

covariance matrix and cannot be simply extended to 

applications with streaming data or online settings. 

Therefore, online updating technique is used along with 

osPCA. This change technique permits to efficiently 

calculate the approximated dominant eigenvector while 

not performing eigen analysis or storing the info 

covariance matrix. Compared to the ability technique or 

different well-liked anomaly detection algorithms, the 

desired process prices and memory needs are 

considerably reduced, and so this technique is very 
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preferred in online, streaming data, or large-scale 

issues. 

osPCA technique duplicates the target instance multiple 

times, and also the plan is to amplify the result of 

outlier instead of that of traditional data. Whereas it 

might not be adequate to perform anomaly detection 

merely supported the foremost dominant eigenvector 

and ignore the remaining ones, on-line osPCA 

methodology aims to expeditiously confirm the 

anomaly of every target instance while not sacrificing 

computation and memory efficiency. More specifically, 

if the target instance is associate outlier, this 

oversampling scheme permits to hyperbolize its impact 

on the foremost dominant eigenvector, and so it 

specialize in extracting and approximating the 

dominant principal direction in an online fashion, rather 

than hard multiple eigenvectors rigorously. The 

detailed formulation of the osPCA is given now, 

suppose that it oversample the target instance 𝑛 times; 

the associated PCA can be formulated as follows: 

 

 𝑢𝑡

Ã 

=  𝜆𝑢𝑡  ,                                                            (15) 

where Ã = 𝐴 𝑈  𝑋𝑡 ,ñ , 𝑋𝑡   ∈ ℝ(𝑛+ñ)×𝑃 . The mean of  

is , and thus 

 =
1

𝑛 + ñ
 𝑋𝑖𝑋𝑖

𝑇 +
1

𝑛 + ñ
 𝑋𝑖𝑋𝑖

𝑇 − 𝜇𝜇𝑇

ñ

𝑖=1𝑋𝑖∈𝐴Ã

 

     =
1

𝑟

𝐴𝐴𝑇

𝑛
+

𝑟

1 + 𝑟
𝑋𝑡𝑋𝑡

𝑇 − 𝜇𝜇𝑇 .                        (16) 

osPCA framework, duplicates the target instance 𝑛 

times (e.g., 10 percent of the size of the original data 

set), and we will compute the score of outlierness 𝑠𝑡  of 

that target instance, as defined in (17). 

𝑠𝑡 = 1 −  
 𝑢𝑡 , 𝑢 

 𝑢𝑡  𝑢 
                                                   (17) 

If this score is above some predetermined threshold, it 

considers targeted instance as associate degree outlier. 

With this oversampling strategy, if the target instance 

may be traditional data, it will observe negligible 

changes within the principal directions and also the 

mean of the data. Its value noting that the employment 

of osPCA not exclusively determines outliers from the 

present data; it will be applied to anomaly detection 

issues with streaming data or those with on-line 

necessities. Clearly, the most important concern is that 

the computation value of scheming or changes the 

principal directions in massive scale issues. 

 

4. Comparison 

The overall paper describes the anomaly detection 

techniques that are been developed for on-line 

applications or data streams. In section 3 we have 

described briefly the various online anomaly detection 

techniques. The studied techniques are compared with 

that of the computational complexity and memory 

requirement. The table 1 shows the basis on which we 

have compared these different online anomaly 

detection techniques. 

 

Table 1. Comparisons of SCAN Statistics, Incremental 

LOF, KEAD and osPCA for Online Anomaly 

Detection in Terms of Computational Complexity and 

Memory Requirement. 

 

SCA

N 

Stat. 

[9] 

Incret. 

LOF 

[14] 

KEAD 

[15] 

osPCA 

[17] 

Computation

al 

Complexity 

O(n) 
O(nlogn

) 

O(np
2
+n

2

) 
O(p) 

Memory 

Requirement 
O(n) O(np) O(n

3
) O(p) 

Note that n and p are the size and dimensionality of 

data respectively. 

 

5. Conclusion 

In this paper studied a number of the anomaly detection 

technique developed for on-line applications or data 

streams. Through we've got found that the bulk of the 

work has been in done offline mode and a little work 

has been done or goes on for the online application. 

The technique that has been developed is in preliminary 

stage and does not work with the large data sets. The 

accuracy of this developed technique is a smaller 

amount compared with offline applications. 

This study additionally describes the most options of 

many anomaly detection techniques that are presently 

available in brief manner. The presented information 

constitutes a crucial purpose to begin for addressing 

Research & Development within the field of online 

anomaly detection.  
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Countermeasures that are quicker and more effective 

are required to cope up with the data with higher 

dimension. We discover that the bulk of surveyed 

works don't meet these necessities. On the whole, the 

findings ensure a standard trend within the 

experimental technology. 
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