A Review Paper on "Multicriteria Decision Making Approaches and Criterion" Used in Supplier Selection and Evaluation

Abhishek P. Mohite^a, Tushar R. Mohite^b, Ketan M. Mathakari^c, Sachin B. Khot^d

Students, Mechanical Engineering Dept., A.D.C.E.T., Ashta^{a,b,c} Assistant Professor, Mechanical Engineering Dept., A.D.C.E.T., Ashta^d

Abstract

The objective of this paper is review of all developed appropriate methods and tools that deal with decision making problems in supplier selection. Supplier selection has become an important part of supply chain management and hence selecting and evaluating suppliers is complicated task due to the fact that various criterion must be considered in the decision making process. An extensive range of decision making methods have been suggested to handle the supplier selection problem by a large number of authors in this area. Review of international journal articles published between 2000 and 2013 have been surveyed for this purpose. The articles are observed and studied to summarize the existing methods and the repeatedly used most popular method is identified and presented in this paper. Finally, suggestions for future researches are proposed for the decision makers.

1. Introduction

Selecting and evaluating suppliers is complicated task due to the fact that various criterion must be considered in the decision making process. Supplier selection is one of the strategic elements in managing purchases, as the ability of a company to satisfy its clients, as well as its own continuity, depends to a large extent on its suppliers. The researchers in supplier selection field have been applied multi-criteria decision making methods, such as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Artificial Neural Network(ANN), Data Envelopment Analysis(DEA), fuzzy set theory, mathematical programming. The process involves different types of criteria with these approaches.

There are at least six journal articles reviewing the literature regarding supplier evaluation and selection models (Weber et al. 1991; Holt 1998; Degraeve et al. 2000; de Boer et al. 2001; Ho et al. 2010; Amindoust et al. 2012). This paper presents a comprehensive review

of literature to identify the existing supplier selection methods and determine the most popular ones.

2. Approaches of Supplier Selection

Most common reviewed methods that are used in decision making are briefly discussed below:

2.1 Analytic Hierarchy Process (AHP):

A AHP method was first introduced by Saaty. In AHP, the problem is constructed as a hierarchy breaking down the decision top to bottom. The goal is at the top level, criteria and sub-criteria are in middle levels, and the alternatives are at the bottom layer of the hierarchy.

2.2 Analytic Network Process (ANP) :

The ANP methodology is a general form of the AHP, both were introduced by Saaty . Although AHP is easy to use and apply, its unidirectional relationship characteristic cannot handle the complexity of many problems. ANP, however, deals with the problem as a network of complex relationships between alternatives and criteria where all the elements can be connected.

2.3 Technique for order preference by similarity to ideal solutions (TOPSIS):

The basic concept of this method is that the selected alternative is the one that has the best value for all criteria, i.e. has the shortest distance from the negative ideal solution.

2.4 Multi-attribute utility theory (MAUT):

This is one of the most popular MSDM methods. The theory takes into consideration the decision maker's preferences in the form of the utility function which is defined over a set of attributes, where the utility of each attribute or criterion doesn't have to be linear.

2.5 Simple Additive Weighting (SAW):

It is probably the most used MCDA method. It is intuitive and easy. Simple Additive Weighting (SAW) which is also known as weighted linear combination or scoring methods is a simple and most often used multi attribute decision technique. The method is based on the weighted average. An evaluation score is calculated for each alternative by multiplying the scaled value given to the alternative of that attribute with the weights of relative importance directly assigned by decision maker followed by summing of the products for all criteria. The advantage of this method is that it is a proportional linear transformation of the raw data which means that the relative order of magnitude of the standardized scores remains equal.

2.6 Artificial Neutral Network :

The human brain provides proof of the existence of massive neural networks that can succeed at those cognitive, perceptual, and control tasks in which humans are successful. The brain is capable of computationally demanding perceptual acts (e.g. recognition off aces, speech) and control activities (e.g. body movements and body functions). The advantage of the brain is its effective use of massive parallelism, the highly parallel computing structure and the imprecise information-processing capability. Hence the student stress is dealing with the biological factor ANN is the best method to validate problems associated with it. Artificial neutral networks (ANN) have been developed as generalizations of mathematical models of biological nervous systems.

2.7 Data Envelopment Analysis:

Data envelopment analysis (DEA) is a mathematical programming method to provide a relative efficiency evaluation for a group of decision making units (DMU) with multiple numbers of inputs and outputs. It is proposed by Charnes, Cooper and Rhoders in 1978. To allow for applications to a wide variety of activities, it uses the term DMU to refer to any entity that it to be evaluated in terms of its abilities to covert inputs into outputs. It assumes that there are n DMUs to be evaluated.

3. Individual and Integrated Approaches Reviewed From The Papers During Year 2000-2013

APPROACH	YEAR	AUTHOR
Data	1997	1.Baker and
Envelopment		Talluri
Analysis(DEA).	2000	2. Braglia and
	2000	Petroni
		3. Liu et al
	2001	4.Forker and
		Mendez
	2001	5.Narasimhan et al
	2001	6. Narasimhan et
		al.
	2002	7. Talluri and
		Baker
	2002	8. Talluri and
		Sarkis
	2004	9. Talluri and
		Narasimhan
	2006	10. Garfamy
	2006	11. Ross et al.
	2006	12. Saen
	2006	13.Seydel
	2006	14.Talluri et al.
	2007	15. Saen
	2007	16.Wu et al.
Linear	2003	1. Talluri and
Programming		Narasimhan
(LP).	2005	2. Talluri and
	2000	Narasımha
T . T .	2008	3 .Ng
Integer Linear	2002	1. Talluri
Programming	2005	2. Hong et al.
Integer Non-	2001	Ghodsypour
Linear		O'Brien
Programming	2001	17 1 1 1
Goal	2001	Karpak et al
Programming	2007	1.1.1.4
Multi-objective	2006	1.Narasimhan et
programming	2007	al.
	2007	2. Wadhwa and \mathbf{D}
		Ravindran
Analytic	2001	1. Akarte et al
Hierarchy	2002	2. Muralidharan et
Process(AHP)		al.
	2004	3. Chan and
		Chan
	2005	4. Liu and Hai
	2007	5. Chan et al.
	2007	6. Hou and Su

] Г
Analytic	2002	1 Contria and	┥┝
Analytic	2002	T.Sarkis and	
Network Process	2006	1 alluri 2 Devezit	
(ANP)	2006	2.Bayazit	
	2007	3.Gencer and	-
F 0.4	2006	Gurpinar	-
Fuzzy Set	2006	1. Chen et al.	
Ineory	2006	2. Sarkar and	-
	2007	3.Mohapatra	
	2002	Florez-Lopez	
Simple Multi-	2003	I.Barla	
Attribute Rating		2.Huang and	
Technique		Keska (2007)	
(SMART)	2007		-
Genetic	2005	Ding et al.	
Algorithm (GA)			
Integrated AHP	2007	Chen and	
And Bi-		Huang	
Negotiation			
Integrated AHP	2007	1.Ramanathan	
And DEA	2007	2.Saen	
	2007	3.Sevkli et al	
Integrated AHP,	2008	Ha and Krishnan	
DEA And			
Artificial Neural			
Network			
Integrated AHP	2003	1.Çebi and	
And GP		Bayraktar	\sim
	2004,2005	2.Wang et al	
	2006	3.Perçin	
	2008	4.Kull and	
		Talluri	
		5. Mendoza et al.	
Integrated AHP	2008	.Mendoza and	
And Mixed		Ventura	
Integer Non-			
Linear			
Programming			
Integrated AHP	2007	.Xia and Wu	
And Multi-			
Objective			
Programming			
Integrated Fuzzy	2003	1. Kahraman et al.	
And AHP		2.Chan and	-
		Kumar	
	2007		
Integrated	2008	Bottani and Rizzi	1
Fuzzy, AHP			
And Cluster			
Analysis			
Integrated Fuzzy	2004	Jain et al.	1
And GA	2001	sum et un	
Integrated Fuzzy	2006	Amid et al.	1 - F
And Multi-	2000	- mino et uit	
ing mun-		l	1

Objective		
Integrated Fuzzy	2006	Bevilacqua et al
And Quality	2000	Devilacqua et al.
Function		
Deployment		
Integrated Euggy	2002	1 Kwong et al
Integrated Fuzzy	2002	1. Kwong et al
And SMAKI	2008	2. Cho u and
	2002 2004	Chang
Integrated ANN	2003, 2004	Choy et al.
And CBR		
Integrated ANN	2006	Lau et al.
And GA		
Integrated ANP	2008	Demirtas and
And Multi-		Ustün
Objective		
Programming		
Integrated ANP	2009	Demirtas and
And GP		Üstün
Integrated DEA	2000	1. Weber et al.
And Multi-	2008	2. Talluri et al.
Objective		
Programming		
Integrated DEA	2005	Seydel
And SMART		
Integrated GA	2007	Liao and Rittscher
And Multi-		
Objective		
Programming		
Fuzzy logic	2009	Gulcin
, , , , , , , , , , , , , , , , , , ,		Buvukozkan et al.
Fuzzy	2009	Fatih Emre Boran
Technique for		et al.
Order of		
Preference by		
Similarity to		
Ideal Solution		
(TOPSIS)		
Analytic	2011	Katica Simunovic
Hierarchy	2011	et al
Process (AHP)		et al.
Fuzzy Analytic	2011	Adnan Aktene et
Hierarchy	2011	al
Process		ui.
Technique for	2011	Mohammad Saeed
Order of	2011	Zaeri et al
Preference by		
Similarity to		
Ideal Solution		
(TOPSIS)		
Fuzzy Analytic	2011	He-Vau Kang at
Network Process	2011	ol
(ΔNP)		a1.
Data	2011	Moheen Isferi
Envelopment	2011	Songhori et al
Enveropment		Soughorr et al.

Analysis (DEA)				Hierarchy		
An integrated	2012	Bahar Sennaroglu		Process (AHP)		
approach of		et al.		Individual		
Analytic				Technique for		
Hierarchy				Order Preference		
Process (AHP)				by Similarity to		
and Technique				Ideal Solution		
for Order of				(TOPSIS)		
Preference by				An integrated		
Similarity to				approach of		
Ideal Solution				Analytic		
(TOPSIS)				Hierarchy		
(TOLSIS). Technique for	2012	Aiit Dol Singh at		Process (AHP)		
Order of	2012			and Technique		
Order of Drafaran as has		al.		for Order		
Preference by				Droforonce hy		
Similarity to				Preference by		
Ideal Solution				Similarity to		
(TOPSIS).				Ideal Solution		
An integrated	2012	Ali A. Yahya		(TOPSIS)		
approach of		Tabar et al.		Individual Grey	2013	Pandian Pitchipoo
Analytic				relational		et al.
Network Process				analysis (GRA)		
(ANP)				Individual		
and Fuzzy				Analytic		
Technique for				Hierarchy		
Order of				Process (AHP)		
Preference by				An integrated		
Similarity to			\sim	approach of		
Ideal Solution				Grey relational		
(TOPSIS).			5	analysis (GRA)		
Analytic	2012	David Asamoah ef		and Analytic		
Hierarchy	2012	al		Hierarchy		
Process (AHP)		u1.		Process (AHP)		
An integrated	2012	K Shahroudi et al		Fuzzy Decision-	2013	Ozer Uygun et al.
approach of	2012	K. Shanouui et al.		Making Trial	2013	ober offsan et al.
Apploach				and Evaluation		
Anarytic Nativork Dropos				L aboratory		
(AND)				(DEMATEL)		
(ANP)				(DEMATEL) Technique for		
and Technique				Order of		
for Order of				Druference by		
Preference by				Similarity to		
Similarity to				Ideal Solution		
Ideal Solution				Ideal Solution		
(TOPSIS).				(TOPSIS)		
Measuring	2012	Prasad Karandea		Analytic		
Attractiveness		et al.		Network Process		
By a				(ANP)		
Categorical-				Fuzzy Analytic	2013	Mustafa Batuhan
Based				Hierarchy		et al.
Evaluation				Process		
Technique				Technique for	2013	Ashish H. et al.
(MACBETH)				Order of		
Individual	2013	Emrah Onder et		Preference by		
Analytic		al.		Similarity to		

International Journal of Engineering Research & Technology (IJERT
ISSN: 2278-018
Vol. 3 Issue 1, January - 2014

Ideal Solution		
An integrated approach of Fuzzy Analytic Network Process (ANP) and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).	2013	Massoud Kassaee et al.
Green Supplier selection Fuzzy Analytic Network Process (ANP)	2013	Malihe Dehghani et al.

5. Most Popular Criterion Observed In These Review Papers

The most popular criterion used for evaluating the performance of suppliers is quality, price/cost, performance, service, management, technology, production and development, finance, flexibility, reputation, relationship, risk, and safety and environment.

6. Future Work

Since in the proposed methodology all the inputs are ordinary or single-value numbers. The review it has been found that individual approaches were used more than the integral approaches in earlier days and Environmental criterion not precisely focused in many articles. Further study can be based on the integrated approaches along with the green supplier selection. Some criteria may be impractical to evaluate, information may be difficult to obtain, complex to analyze, or there may not be sufficient time to perform such evaluations. When the performance of alternative suppliers can only be approximated. The proposed model can be implemented to reduce the number of criteria to most important ones in some other problems, to which MCDM approaches can be applied. Among the numerous methods that have been proposed for assessing the supplier, loss functions such as Taguchi loss function without any range are considered one of the most effective techniques for identifying quality parts. Quality loss functions are more reliable and precise functions in order to assess the quality. Also integrating Taguchi loss function with other methods can be applied.

7. Conclusion

This paper review the multi criteria decision making approaches for supplier evaluation and selection on literature from 2000 to 2013 and it has been found that many individual and integrated approaches were proposed for supplier selection. The supplier selection process is a technique for evaluating suitable companies to meet a particular need, and in order to narrow the field for such a selection, some evaluative criteria are needed. Even with the large number of available MCDA methods, none of them is considered the best for all kinds of decision-making situations. Different methods often produce different results even when applied to the same problem using same data. There is no better or worse method but only a technique that fits better in a certain situation. The most prevalent individual approach used earlier is DEA and now a days the TOPSIS method is used whereas the most popular integrated approach is AHP-Mathematical Programming. The most popular criterion used for evaluating the performance of suppliers is quality, price/cost, performance, service, management, technology, production and development, finance, flexibility, reputation, relationship, risk, and safety and environment. Recently also the Environmental criteria are widely used in supplier selection systems called green supplier selection method along with integrated approaches.

10. References

[1]Adnan Aktepe and Suleyman Ersoz, 2011." A Fuzzy Analytic Hierarchy Process Model For Supplier Selection And A Case Study", International Journal of Research and Development, Vol.3, No.1, January 2011. [2]Ajit Pal Singh, "Supplier Selection Using MCDM Method in TV Manufacturing Organization", Global Journal of researches in engineering, Industrial engineering, February 2012.

[3]Akarte, M.M., Surendra, N.V., Ravi, B., Rangaraj, N., 2001. "Web based casting supplier evaluation using analytical hierarchy process". Journal of the Operational Research Society 52 (5), 511–522.

[4]Ali A. Yahya Tabar and Hadi Charkhgard, "Supplier Selection in Supply Chain Managment by Using ANP and Fuzzy TOPSIS", International Journal of Applied Physics and Mathematics, Vol. 2, No. 6, November 2012.

[5]Amid, A., Ghodsypour, S.H., O'Brien, C., 2006." Fuzzy multiobjective linear model for supplier selection in a supply chain". International Journal of Production Economics 104 (2), 394–407. [6]Amid, A., Ghodsypour, S.H., O'Brien, C., in press. "A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain". International Journal Production Economics.

[7]Ashish H. Makwana, Jayeshkumar Pitroda," An Approach for Ready Mixed Concrete Selection For Construction Companies through Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) Technique", International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-3, Issue-5, October 2013.

[8]Bahar Sennaroglu , Seda Şen ,2012. "Integrated AHP and TOPSIS Approach for Supplier Selection", International Conference Manufacturing Engineering & Management 2012.

[9]Baker, R.C., Talluri, S., 1997. "A closer look at the use of DEA for technology selection". Computers and Industrial Engineering 32 (1), 101–108.

[10]Barla, S.B., 2003." A case study of supplier selection for lean supply by using a mathematical model". Logistics Information Management 16 (6), 451–459.

[11]Bayazit, O., 2006. "Use of analytic network process in vendor selection decisions". Benchmarking: An International Journal 13 (5), 566–579.

[12]Bevilacqua, M., Ciarapica, F.E., Giacchetta, G., 2006. "A fuzzy-QFD approach to supplier selection". Journal of Purchasing and Supply Management 12 (1), 14–27.

[13]Bottani, E., Rizzi, A., 2008. "An adapted multicriteria approach to suppliers and products selection – An application oriented to lead-time reduction".

[14]Braglia, M., Petroni, A., 2000. "A quality assurance-oriented methodology for handling trade-offs in supplier selection". International Journal of Physical Distribution and Logistics Management 30 (2), 96–111. [15]Çebi, F., Bayraktar, D., 2003. "An integrated approach for supplier selection". Logistics Information Management 16 (6), 395–400.

[16]Chan, F.T.S., 2003. "Interactive selection model for supplier selection process: An analytical hierarchy process approach". International Journal Production Research 41 (15), 3549–3579.

[17]Chan, F.T.S., Chan, H.K., 2004. "Development of the supplier selection model – A case study in the advanced technology industry". Proceedings of the Institution of Mechanical Engineers Part B – Journal of Engineering Manufacture 218 (12), 1807–1824.

[18]Chan, F.T.S., Kumar, N., 2007. "Global supplier development considering risk factors using fuzzy extended AHP-based approach. OMEGA" – International Journal of Management Science 35 (4), 417–431. [19]Chan, F.T.S., Chan, H.K., Ip, R.W.L., Lau, H.C.W., 2007. "A decision support system for supplier selection in the airline industry". Proceedings of the Institution of Mechanical Engineers Part B – Journal of Engineering Manufacture 221 (4), 741–758.

[20]Chen, C.T., Lin, C.T., Huang, S.F., 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management". International Journal of Production Economics 102 (2), 289–301.

[21]Chen, Y.M., Huang, P.N., 2007. "Bi-negotiation integrated AHP in suppliers selection". Benchmarking: An International Journal 14 (5), 575–593.

[22]Chou, S.Y., Chang, Y.H., 2008. "A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach". Expert Systems with Applications 34 (4), 2241–2253.

[23]Choy, K.L., Lee, W.B., 2002. "A generic tool for the selection and management of supplier relationships in an outsourced manufacturing environment: The application of case based reasoning". Logistics Information Management 15 (4), 235–253.

[24]Choy, K.L., Lee, W.B., Lo, V., 2002. "Development of a case based intelligent customer – Supplier relationship management system". Expert Systems with Applications 23 (3), 281–297.

[25]Choy, K.L., Lee, W.B., 2003. "A generic supplier management tool for outsourcing Manufacturing". Supply Chain Management: An International Journal 8 (2), 140–154.

[26]Choy, K.L., Fan, K.K.H., Lo, V., 2003a. "Development of an intelligent customer– supplier relationship management system: The application of case-based reasoning". Industrial Management and Data Systems 103 (4), 263–274.

[27]Choy, K.L., Lee, W.B., Lo, V., 2003b." Design of a case based intelligent supplier relationship management system – The integration of supplier rating systemand product coding system". Expert Systems with Applications 25 (1), 87–100.

[28]Choy, K.L., Lee, W.B., Lo, V., 2003c. "Design of an intelligent supplier relationship management system: A hybrid case based neural network approach". Expert Systems with Applications 24 (2), 225–237.

[29]Choy, K.L., Lee, W.B., Lo, V., 2004a." An enterprise collaborative management system – A case study of supplier relationship management". The Journal of Enterprise Information Management 17 (3), 191–207.

[30]Choy, K.L., Lee, W.B., Lau, H.C.W., Lu, D., Lo, V., 2004b. "Design of an intelligent supplier relationship management system for new product development". International Journal of Computer Integrated Manufacturing 17 (8), 692–715.

[31]Choy, K.L., Lee, W.B., Lo, V., 2005. "A knowledge-based supplier intelligence retrieval system for outsource manufacturing". Knowledge-Based Systems 18 (1), 1–17.

[32]David Asamoa, Jonathan Annan, Samuel Nyarko, "AHP Approach for Supplier Evaluation and Selection in a Pharmaceutical Manufacturing Firm in Ghana", International Journal of Business and Management Vol. 7, No. 10; May 2012.

[33]De Boer, L., Labro, E., Morlacchi, P., 2001. "A review of methods supporting supplier selection". European Journal of Purchasing and Supply Management 7 (2), 75–89.

[34]Degraeve, Z., Labro, Roodhooft,., 2000. "An evaluation of supplier selection methods from a total cost of ownership perspective". European Journal of Operational Research 125 (1), 34–58.

[35]Demirtas, E.A., Üstün, Ö., 2008. "An integrated multi-objective decision making process for supplier selection and order allocation". OMEGA – International Journal of Management Science 36 (1), 76–90.

[36]Demirtas, E.A., Üstün, Ö., 2009. "Analytic network process and multi-period goal programming integration in purchasing decisions". Computer and Industrial Engineering 56 (2), 677–690.

[31]Ding, H., Benyoucef, L., Xie, X., 2005. "A simulation optimization methodology for supplier selection problem". International Journal Computer Integrated Manufacturing 18 (2–3), 210–224.

[32]Emrah Onder, Sundus Dag, "Combining Analytical Hierarchy Process And Topsis Approaches For Supplier Selection In A Cable Company", Economics & Finance 2013.

[33]Fatih Emre Boran ,Serkan Genç , Mustafa Kurt , Diyar Akay , "A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method", ScienceDirect, 2009.

[34]Florez-Lopez, R., 2007. "Strategic supplier selection in the added-value perspective: A CI approach". Information Sciences 177 (5), 1169–1179.

[34]Forker, L.B., Mendez, D., 2001. "An analytical method for benchmarking best peer suppliers". International Journal of Operations and Production Management 21 (1–2), 195–209.

[35]Garfamy, R.M., 2006. "A data envelopment analysis approach based on total cost of ownership for supplier selection". Journal of Enterprise Information Management 19 (6), 662–678.

[36]Gencer, C., Gürpinar, D., 2007. "Analytic network process in supplier selection: A case study in an electronic firm". Applied Mathematical Modeling 31 (11), 2475–2486. [37]Ghodsypour, S.H., O'Brien, C., 2001. "The total cost of logistics in supplier selection, under conditions of multiple sourcing", multiple criteria and capacity constraint. International Journal of Production Economics 73 (1), 15–27.

[38]Ha, S.H., Krishnan, R., 2008. "A hybrid approach to supplier selection for the maintenance of a competitive supply chain". Expert Systems with Applications 34 (2), 1303–1311.

[39]He-Yau Kang , Meng-Chan Hung , W. L. Pearn , Amy H. I. Lee and Mei-Sung Kang , "An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance", Energies, 2011.

[40]Ho, W., 2008. "Integrated analytic hierarchy process and its applications – A literature review". European Journal of Operational Research 186 (1), 211–228.

[41]Hong, G.H., Park, S.C., Jang, D.S., Rho, H.M., 2005. "An effective supplier selection method for constructing a competitive supply-relationship". Expert Systems with Applications 28 (4), 629–639.

[42]Hou, J., Su, D., 2007. "EJB–MVC oriented supplier selection system for mass customization". Journal of Manufacturing Technology Management 18 (1), 54–71.

[43]Huang, S.H., Keska, H., 2007. "Comprehensive and configurable metrics for supplier selection". International Journal of Production Economics 105 (2), 510–523.

[44]Jain, V., Tiwari, M.K., Chan, F.T.S., 2004. "Evaluation of the supplier performance using an evolutionary fuzzy-based approach". Journal of Manufacturing Technology Management 15 (8), 735– 744.

[45]Kahraman, C., Cebeci, U., Ulukan, Z., 2003. "Multi-criteria supplier selection using fuzzy AHP". Logistics Information Management 16 (6), 382–394.

[46]Karpak, B., Kumcu, E., Kasuganti, R.R., 2001. "Purchasing materials in the supply chain: Managing a multi-objective task". European Journal of Purchasing and Supply Management 7 (3), 209–216.

[47]Katica Simunovic, Tomislav Draganjac and Roberto Lujic, "Supplier Selection Using a Multiple Criteria Decision Making Method", ISSN 2011.

[48]Kull, T.J., Talluri, S., 2008. "A supply-risk reduction model using integrated multicriteria decision making". IEEE Transactions on Engineering Management 55 (3), 409–419.

[49]Kwong, C.K., Ip, W.H., Chan, J.W.K., 2002. "Combining scoring method and fuzzy expert systems approach to supplier assessment: A case study". Integrated Manufacturing Systems 13 (7), 512–519.

[50]Lau, H.C.W., Lee, C.K.M., Ho, G.T.S., Pun, K.F., Choy, K.L., 2006. "A performance benchmarking system to support supplier selection". International Journal of Business Performance Management 8 (2–3), 132–151.

[51]Liao, Z., Rittscher, J., 2007. "A multi-objective supplier selection model under stochastic demand conditions". International Journal of Production Economics 105 (1), 150–159.

[52]Liu, J., Ding, F.Y., Lall, V., 2000. "Using data envelopment analysis to compare suppliers for supplier selection and performance improvement". Supply Chain Management: An International Journal 5 (3), 143–150.

[53]Liu, F.H.F., Hai, H.L., 2005. "The voting analytic hierarchy process method for selecting supplier". International Journal of Production Economics 97 (3), 308–317.

[54]Malihe Dehghani, Majid Esmaeilian, Reza Tavakkoli-Moghaddam, "Employing Fuzzy ANP for Green Supplier Selection and Order Allocations: A Case Study", International Journal of Economy, Management and Social Sciences, 2(8) August 2013, Pages: 565-575.

[55]Massoud Kassaee, "An Integrated Hybrid MCDM Approach for Vendor Selection Problem (Case Study: Iran Khodro), Business and Management Horizons", ISSN 2326-0297, 2013, Vol. 1, No. 1.

[56]Mendoza, A., Santiago, E., Ravindran, A.R., 2008. "A three-phase multicriteria method to the supplier selection problem". International Journal of Industrial Engineering 15 (2), 195–210.

[57]Mendoza, A., Ventura, J.A., 2008. "An effective method to supplier selection and order quantity allocation". International Journal of Business and Systems Research 2 (1), 1–15.

[58]Mohammad Saeed Zaeri, Amir Sadeghi, Amir Naderi, Abolfazl Kalanaki, Reza Fasihy, Seyed Masoud Hosseini Shorshani and Arezou Poyan, "Application of multi criteria decision making technique to evaluation suppliers in supply chain management", African Journal of Mathematics and Computer Science Research Vol. 4 (3), pp. 100-106, March, 2011.

[59]Mohsen Jafari Songhori , Madjid Tavana, Ali Azadeh Mohammad, Hossien Khakbaz, "A supplier selection and order allocation model with multiple transportation alternatives", Springer-Verlag London Limited 2010.

[60]Morteza Parhizkaria, Maghsoud Amirib and Morteza Mousakhanic, "A multiple criteria decision making technique for supplier selection and inventory management strategy: A case of multi-product and multi-supplier problem", GrowingScience, 2013.

[61]Muralidharan, C., Anantharaman, N., Deshmukh, S.G., 2002. "A multi-criteria group decision-making

model for supplier rating". Journal of Supply Chain Management 38 (4), 22–33.

[62]Mustafa Batuhan Ayhan, "A Fuzzy Ahp Approach For Supplier Selection Problem: A Case Study In A Gearmotor Company", International Journal of Managing Value and Supply Chains (IJMVSC), September 2013

[63]Narasimhan, R., Talluri, S., Mendez, D., 2001. "Supplier evaluation and rationalization via data envelopment analysis: An empirical examination". Journal of Supply Chain Management 37 (3), 28–37.

[64]Narasimhan, R., Talluri, S., Mahapatra, S.K., 2006. "Multiproduct, multicriteria model for supplier selection with product life-cycle considerations". Decision Sciences 37 (4), 577–603.

[65]Ng, W.L., 2008. "An efficient and simple model for multiple criteria supplier selection problem". European Journal of Operational Research 186 (3), 1059–1067.

[66]Ozer Uygun, Hasan Kacamak, Gizem Aysim, Fuat simsir, "Supplier Selection for Automotive Industry Using Multi-Criteria Decision Making Techniques", The Online Journal of Science and Technology-October 2013

[67]Pandian Pitchipoo, Ponnusamy Venkumar and Sivaprakasam Rajakarunakaran, "Modeling and development of a decision support system for supplier selection in the process industry", Journal of Industrial Engineering International 2013

[68]Perçin, S., 2006. "An application of the integrated AHP–PGP model in supplier Selection". Measuring Business Excellence 10 (4), 34–49.

[69]Prasad Karande and Shankar Chakraborty, "Using MACBETH method for supplier selection in manufacturing environment", International Journal of Industrial Engineering Computations, 2013.

[70]Ramanathan, R., 2007. "Supplier selection problem: Integrating DEA with the approaches of total cost of ownership and AHP". Supply Chain Management: An International Journal 12 (4), 258– 261.

[71]Ross, A., Buffa, F.P., Dröge, C., Carrington, D., 2006. "Supplier evaluation in a dyadic relationship: An action research approach". Journal of Business Logistics 27 (2), 75–102.

[72]Saen, R.F., 2006. "A decision model for selecting technology suppliers in the presence of nondiscretionary factors". Applied Mathematics and Computation 181 (2), 1609–1615.

[73]Saen, R.F., 2007a. "Suppliers selection in the presence of both cardinal and ordinal data". European Journal of Operational Research 183 (2), 741–747.

[74]Saen, R.F., 2007b. "A new mathematical approach for supplier selection: Accounting for non-homogeneity

is important". Applied Mathematics and Computation 185 (1), 84–95.

[75]Sarkar, A., Mohapatra, P.K.J., 2006. "Evaluation of supplier capability and performance: A method for supply base reduction". Journal of Purchasing and Supply Management 12 (3), 148–163.

[76]Sarkis, J., Talluri, S., 2002. "A model for strategic supplier selection". Journal of Supply Chain Management 38 (1), 18–28.

[77]Sevkli, M., Koh, S.C.L., Zaim, S., Demirbag, M., Tatoglu, E., 2007. "An application of data envelopment analytic hierarchy process for supplier selection: A case study of BEKO in Turkey". International Journal of Production Research 45 (9), 1973–2003.

[78]Seydel, J., 2005. "Supporting the paradigm shift in vendor selection: Multicriteria methods for sole-sourcing". Managerial Finance 31 (3), 49–66.

[79]Seydel, J., 2006. "Data envelopment analysis for decision support. Industrial Management and Data Systems 106 (1), 81–95.

[80]Talluri, S., 2002. "A buyer-seller game model for selection and negotiation of purchasing bids". European Journal of Operational Research 143 (1), 171–180.

[81]Talluri, S., Baker, R.C., 2002. "A multi-phase mathematical programming approach for effective supply chain design". European Journal of Operational Research 141 (3), 544–558.

[82]Talluri, S., Narasimhan, R., 2003. "Vendor evaluation with performance variability: A max-min approach". European Journal of Operational Research 146 (3), 543–552.

[83]Talluri, S., Narasimhan, R., 2004. "A methodology for strategic sourcing". EuropeanJournal of Operational Research 154 (1), 236–250.

[84]Talluri, S., Narasimhan, R., 2005. "A note on a methodology for supply base optimization". IEEE Transactions on Engineering Management 52 (1), 130–139.

[85]Talluri, S., Sarkis, J., 2002. "A model for performance monitoring of suppliers". International Journal of Production Research 40 (16), 4257–4269.

[86]Talluri, S., Vickery, S.K., Narayanan, S., 2008. "Optimization models for buyer– supplier negotiations". International Journal of Physical Distribution and Logistics Management 38 (7), 551– 561.

[87]Talluri, S., Narasimhan, R., Nair, A., 2006. "Vendor performance with supply risk: A chanceconstrained DEA approach". International Journal of Production Economics 100 (2), 212–222. [88]Wadhwa, V., Ravindran, A.R., 2007. "Vendor selection in outsourcing". Computers and Operations Research 34 (12), 3725–3737.

[89]Wang, G., Huang, S.H., Dismukes, J.P., 2004. "Product-driven supply chain selection using integrated multi-criteria decision-making methodology". International Journal of Production Economics 91 (1), 1–15.

[90]Wang, G., Huang, S.H., Dismukes, J.P., 2005. "Manufacturing supply chain design and evaluation". International Journal of Advanced Manufacturing Technology 25 (1-2), 93–100.

[91]Weber, C.A., Current, J.R., Benton, W.C., 1991. "Vendor selection criteria and methods". European Journal of Operational Research 50 (1), 2–18.

[92]Weber, C.A., Current, J.R., Desai, A., 2000." An optimization approach to determining the number of vendors to employ". Supply Chain Management: An International Journal 5 (2), 90–98.

[93]Wu, T., Shunk, D., Blackhurst, J., Appalla, R., 2007. "AIDEA: A methodology for supplier evaluation and selection in a supplier-based manufacturing environment". International Journal of Manufacturing Technology and Management 11 (2), 174–192.

[94]Xia, W., Wu, Z., 2007. "Supplier selection with multiple criteria in volume discount environments". OMEGA – International Journal of Management Science 35 (5), 494–504.

[95]Yang, C.C., Chen, B.S., 2006. "Supplier selection using combined analytical hierarchyprocess and grey relational analysis". Journal of Manufacturing TechnologyManagement 17 (7), 926–941.