
A Scalable System for Sneaking P2P Botnet 

Detection 
 

                                 Shruthi S. H                                                                                      Anitha B 
          M.Tech, CNE student                                                                        Assistant Professor, Dept. of CSE 

                     T.John Institute Of Technology                                                                    T. John Institute of Technology 

                               Banglore, India                                                                                            Bangalore, India 

  
Abstract - Peer-to-peer (P2P) botnets  have  recently  been 

adopted by botmasters for their resiliency against take-down   

efforts. Besides being harder to take down, modern botnets tend 

to be stealthier in the way they perform malicious activities, 

making current detection approaches ineffective. In addition, 

the rapidly growing volume of network traffic calls for high 

scalability of detection systems. In this paper, a novel scalable  

botnet  detection  system is proposed which is  capable  of  

detecting sneaking P2P botnets. The system first identifies all 

hosts that are likely engaged in P2P communications. It then 

derives  statistical  fingerprints to profile P2P traffic and further 

distinguish between P2P botnet traffic and legitimate P2P 

traffic. The parallelized computation with bounded complexity 

makes scalability a built-in feature of our system. Extensive 

evaluation has demonstrated  both  high  detection accuracy and 

great scalability of the proposed system 

Keywords :  Botnet, P2P, intrusion detection, network security 

1. INTRODUCTION 

 

A BOTNET is a collection of compromised hosts (a.k.a bots) 

that are remotely controlled by an attacker (the botmaster) 

through a command and control (C&C) channels. Botnets 

serve as the infrastructures responsible for a variety of cyber 

crimes , such as spamming, distributed denial-of-service 

(DDoS) attacks, identity theft, click fraud, etc. The C&C 

channel is an essential component of botnet because 

botmasters rely on C&C channel to issue commands to their 

bots and receive information from the compromised 

machines. Botnets may structure their C&C channels in 

different ways. In a centralized architecture, all bots in a 

botnet contact one (or a few) C&C server(s) owned by the 

botmaster. However, a fundamental disadvantage of 

centralized C&C servers is that they represent a single point 

of failure. In order to overcome this problem, botmasters 

have recently started to build botnets with a more resilient 

C&C architectures, using a peer-to-peer (P2P) structure or 

hybrid P2P/ centralized C&C structures. Bots belonging to a 

P2P botnet form an overlay network in which any of the 

nodes can be used by botmaster to distribute commands to the 

other peers or collect information from them. P2P botnets 

offer higher resiliency against take down efforts   ( Ex By law 

enforcement ) , since even if a significant portion of bots in 

P2P botnet are disrupted , the remaining bots may still be able 

to communicate with each other and with the botmaster.  A 

novel scalable botnet detection system capable of detecting 

stealthy P2P botnets. We refer to a stealthy P2P botnet as a 

P2P botnet whose malicious activities may not be observable 

in the network traffic. Particularly , our system aims to detect 

stealthy P2P botnet even  if P2P botnet traffic is over lapped 

with traffic generated by legitimate P2P applications (skype) 

running on the same compromised host and achieve high 

scablility Our system identifies P2P bots within a monitored 

network by detecting the C&C communication patterns that 

characterize P2P botnets, regardless of how they perform 

malicious activities in response to botmaster’s commands. 

Specifically, it derives statistical fingerprints of the P2P 

communications generated by P2P hosts and leverages them  

to  distinguish between hosts that are part of legitimate P2P 

networks and P2P bots.  

2. PROBLEM DEFINITION 

 

A few approaches capable of detecting P2P botnets have been 

proposed [7]–[9], [12]–[14]. Compared with the existing 

methods [7]–[9], the design goals of our approach are 

different 

in that: 1) our approach does not assume that malicious 

activities are observable, unlike [7]; 2) our approach does not 

require any botnet-specific information to make the detection, 

unlike [9]; 3) our approach needs to detect the compromised 

hosts that run both P2P bot and other legitimate P2P 

applications at the same time, unlike [8]; and 4) different 

from [7]–[9], our approach has high scalability as a built-in 

feature. Other methods [12]–[14] use machine learning for 

detection, which require labeled P2P botnet data to train a 

statistical classifier. Unfortunately, acquiring such 

information is a challenging task, thereby drastically limiting 

the practical use of these methods. To achieve the 

aforementioned design goals, our system includes multiple 

components. The first one is a flowclustering- based analysis 

approach to identify hosts that are mostly likely running P2P 

applications. In contrast to existing approaches of identifying 

hosts running P2P applications [15]–[19], our approach 

differs in the following ways: 

1)unlike [16], our approach does not need any content 

signature because encryption will make content signature 

useless; 

2) our approach does not rely on any transport layer heuristics 

(e.g., fixed source port) used by [15], [17], which can be 

easily violated by P2P applications;  

3) we do not need training data set to build a machine 

learning based model as used in [18], because it is very 

challenging to get traffic of P2P botnets before they are 

detected;                  4) in contrast to [19], our approach can 

detect and profile various P2P applications rather than 

identifying a specific P2P application (e.g., Bittorrent); and   

5) our analysis approach can estimate the active time of a P2P 

application, which is critical for botnet detection. 
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3. SYSTEM DESIGN 

 

System Overview : A P2P botnet relies on a P2P protocol to 

establish a C&C channel and communicate with the 

botmaster. Therefore P2P bots exhibit some network traffic 

patterns that are common to other P2P client applications 

(either legitimate or malicious). Thus, the system into two 

phases. In the first phase, the aim is to detect all hosts within 

the monitored network that engage in P2P communications. 

As shown in Figure 1,  raw  traffic  collected  is  analyzed  at 

the edge of the monitored network and apply a pre-filtering 

step to discard  

Table .1 

Notations and Descriptions 

 
 

Notation Description 

Tp2p The acive time of P2P application 

No-DNS Peers The percentage of flows associated with no 

domain names 

Nclust The number of clusters left by enforcing Өbgp 

and  Өp2p 

Nbgp The largest number of unique bgp prefixes in 

one cluster 

T^p2p The estimated active time of p2p application 

 

 

discard network flows that are unlikely to be generated by 

P2P applications. Then the remaining traffic is analyzed to 

extract a number of  statistical  features  to identify flows 

generated by P2P clients. In the  second  phase,  the  system  

analyzes the  traffic generated by the P2P clients and 

classifies them into either  legitimate  P2P clients or P2P bots. 

Specifically, the active time of a P2P client is  invesigated 

and  it is identified as a  candidate  P2P  bot if it is  

persistently active on the underlying host.  Further  the 

overlap of peers contacted by two candidate   P2P  bots  is  

analyzed  to  finalize detection.  

 

 
Fig 1: System Overview 

A.Identifying P2P Clients 

Traffic Filter: The Traffic Filter component aims at filtering 

out network traffic that is unlikely to be related to P2P 

communications. This is accomplished by passively 

analyzing DNS traffic, and identifying network flows whose 

destination IP addresses were previously resolved in DNS 

responses. Specifically, the following feature is leveraged: 

P2P clients usually contact their peers directly by looking up 

IPs from a routing table for the overlay network, rather than 

resolving a domain name. This feature is supported by Table2  

(No-DNS Peers),  which illustrates that the vast majority of 

flows generated by P2P applications do not have destination 

IP resolved from domain names. The remaining small 

fraction of flows are corresponding to a possible exception 

that a peer bootstraps into a P2P network by looking up 

domain names that resolve to stable super-nodes. Since most 

non-P2P applications (e.g., browsers, email clients, etc.) often 

connect to a destination address resulting from domain name  

resolution, this simple filter can eliminate a very large 

percentage  of  non- P2P traffic,  while  retaining  the  vast  

majority  of P2P communications. 

 

Fine-Grained Detection of P2P Clients: This component is 

responsible for detecting P2P clients by analyzing the 

remaining network flows after the Traffic Filter component. 

For each host h within the monitored network we identify 

two. flow sets, denoted as Stcp(h) and Sudp(h), which contain 

the flows related to successful outgoing TCP and UDP 

connection, respectively 

 

Table 2 

Measurement of features 

 
Trace Tp2p No-DNS 

Peers 

Nclust Nbgp T^p2p 

T-Bittorent 24hr 96.85% 7 12857 24hr 

T-Emule 24hr 99.99% 8 1133 24hr 

T-Limwire 24hr 99.97% 36 5661 24hr 

T-Skype 24hr 99.93% 12 12806 24hr 

T-Ares 24hr 99.99% 16 1596 24hr 

 

The successful TCP connections are with a completed SYN, 

SYN/ACK, ACK handshake, and those UDP (virtual) 

connections for which there was at least one “request” packet 

and a consequent response packet. In order to detect P2P 

clients,  the fact that each P2P client frequently exchanges 

control messages (e.g., ping/pong messages) with other peers 

is considered. Besides, characteristics of these messages, such 

as the size and frequency of the exchanged packets, are 

similar for nodes in the same P2P network, and vary 

depending on the P2P protocol and network in use. As a 

consequence, if two network flows are generated by the same 

P2P application and they carry the same type of P2P control 

messages, they tend to share similar flow size. In addition, a 

P2P client will exchange control messages with a large 

number of peers distributed in many different networks. To 

identify flows corresponding to P2P control messages,  first a 

flow clustering process is applied intended to group together 

similar flows for each candidate P2P node h. Given sets of 

flows Stcp(h)  and Sudp(h), each flow s characterised using a 

vector of statistical features   v(h) = [Pkts , Pktr , Bytes , Byter 

], in which Pkts and Pktr represent the number of packets sent 

and received, and Bytes and Byter represent the number of 

bytes sent and received, respectively. The distance between 

two flows is subsequently defined as the euclidean distance 

of their two corresponding vectors. Then a clustering  

algorithm is applied to partition the set of flows into a 

number of clusters. Each of the obtainedclusters  of  flows, Cj 
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(h),  represents a group of flows with   similar size. For each 

Cj (h), the set of destination IP addresses related to the flows 

in the clustersis considered, and for each of these IP’s  its 

BGP prefix is considered (using BGP prefix announcements). 

Finally, the number of distinct BGP prefixes related to 

destination IPs in a cluster bgpj = BGP (Cj(h)), and discard 

those clusters of flows for which bgpj < Өbgp. The remaining 

cluster of flows are called as fingerprint clusters. Therefore, 

each host h can now be described by a set of fingerprint 

clusters FC(h) = {FC1, . . . . .FCk }.  ‘h’ is labeled  as P2P 

node  if  FC(h) ≠ , namely if h generated at least one 

fingerprint cluster 

 

B. Detecting P2P Bots 

Coarse-Grained Detection of P2P Bots: Since bots are 

malicious programs used to perform profitable malicious 

activities, they represent valuable assets for the botmaster, 

who will intuitively try to maximize utilization of bots. This 

is particularly true for P2P bots because in order to have a 

functional overlay network (the botnet), a sufficient number 

of peers needs to be always online. In other words, the active 

time of a bot should be comparable with the active time of the 

underlying compromised system. If this was not the case, the 

botnet overlay network would risk degenerating into a 

number of disconnected subnetworks due to the short life 

time of each single node. In contrast, the active time of 

legitimate P2P applications is determined by users, which is 

likely to be transient. For example, some users tend to use 

their file-sharing P2P clients only to download a limited 

number of files before shutting down the P2P application. In 

this case, the active time of the legitimate P2P application 

may be much shorter compared to the active time of the 

underlying system. It is worth noting that some users may run 

certain legitimate P2P applications for as long as their 

machine is on. For example, Skype is a popular P2P 

application for instant messaging and voice-over-IP (VoIP) 

that is often setup to start after system boot, and that keeps 

running until the system is turned off. Therefore, such Skype 

clients (or other “persistent” P2P clients) will not be filtered 

out at this stage. Hence, the first component in the “Phase II” 

of our system (“Coarse-Grained Detection of P2P Bots”) 

aims at identifying P2P clients that are active for a time TP2P 

close to the active time Tsys of the underlying system they 

are running on. While this behavior is not unique to P2P bots 

and may be representative of other P2P applications(e.g., 

Skype clients that run for as long as a machine is on), 

identifying persistent P2P clients takes us one step closer to 

identifying P2P bots. To estimate Tsys proceed as follows. 

For each host h ∈  H that we identified as P2P clients 

according to we consider the timestamp tstart (h) of the first  

network flow we observed from h and the timestamp tend (h) 

related to the last flow we have seen from h. Afterwards,  

divide the  time  tend (h)− tstart (h) into w epochs (e.g., of one 

hr each), denoted as T = [t1, ... ti . , tw]. We further compute a 

vector A(h, T ) = [a1, ... ai, . ., aw] where ai is equal to 1 if h 

generated any network traffic between ti−1 and ti . Then  the 

active time of h is estimated as Tsys = i . In order to 

estimate the active time of a P2P application, obtained 

fingerprint clusters can be leveraged. It is because that a P2P 

application periodically exchanges network control (e.g., 

ping/pong)  messages  with   other peers as  long as the P2P 

application is active. For each host h (again, only the hosts in 

H  is considered, which were previously  identified as P2P 

clients),  the  set  of its fingerprint clusters FC(h)={FC1,..., 

FCj..., FCk } is examined. Based on the flows belonging to a 

fingerprint cluster FCj , we use the same approach of 

computing Tsys to calculate its active time, denoted as T (FCj 

). Then, the active time (TP2P) of a P2P application is 

estimated  as TˆP2P = max(T (FC1),..T (FCj ), ... T (FCk )).  If  

the  ratio  r (h) = TˆP2P / Tsys > ӨP2P, we say that h is running 

a persistent P2P application, and add it to a set P of candidate 

P2P bots. Host h will then be input to next step, where h will 

be represented by a set of persistent fingerprint clusters for 

h,denoted as FCp(h) ={FC1,. . FCi , .FC j. . . FC k }  where  T 

(FCi ) /Tsys > ӨP2P  for  any  FCi  ∈   FCp(h).  

 

Fine-Grained Detection of P2P Bots: The objective of this 

component is to identify P2P bots from all persistent P2P 

clients (i.e., set P). A feature is leveraged: the overlap of 

peers contacted by two P2P bots belonging to the same P2P 

botnet is much larger than that contacted by two clients in the 

same legitimate P2P network. Assume that two hosts in the 

monitored network, say hA and hB, are running the same 

legitimate P2P file-sharing application (e.g., Emule). Users of 

these two P2P clients will most likely have uncorrelated 

usage patterns. It is reasonable to assume that in the general 

case the two users will search for and download different 

content (e.g., different media files or documents) from the 

P2P network. This translates into a divergence between the 

set of IP addresses contacted by hosts hA and hB.  The  reason  

is  that  the  two  P2P  clients  will  tend   to exchange   P2P  

control messages (e.g., ping/pong and search requests) with 

different sets of peers which “own” the content requested by 

their users, or peers that are along the path towards the 

content.  On   the contrary, if  hA and hB are compromised 

with  P2P bots,  one  common  characteristic  of bots is  that  

they  need to  periodically  search  for  commands  published  

by  the  botmaster. This typically translates into a 

convergence between the set of IPs contacted by hA and hB. In 

order to leverage this feature, each host h ∈  P is represented 

using its persistent fingerprint clusters) is the average  

number of bytes sent (received) per flow in FCi . ∏i  is a  set  

that  contains  the  destination  IP  addresses  (peers) of  the 

flows  in FCi .Further two distance functions are defined 

below, where FCi
(a) and FCj

(b) represent fingerprint clusters 

from two  persistent  P2P  clients, ha and hb , respectively.   

 dI Ps  (FCi
(a) , FCj

(b) ) = 1-  

If two P2P clients (say ha and hb) belong to the same P2P 

network, regardless of a legitimate P2P network or a P2P 

botnet network, these two clients will follow the same 

implementation of the identical P2P protocol. Hence, the 

network flows corresponding to the same type of P2P control 

messages (e.g., ping/pong messages) will exhibit similar flow 

sizes across P2P clients running the same P2P application. 

Since a fingerprint cluster summarizes network flows for the 

same type of control messages in one client, two fingerprint 

clusters corresponding to the same P2P control messages 

belonging to the same P2P application will have similar flow 
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size. In other words, two P2P clients from the same P2P 

network will share at least one pair of fingerprint clusters 

FCi
(a) and FCj

(b) which have a small value of   dbytes (FCi
(a) , 

FCj
(b) since they are corresponding to the same P2P control 

message. Otherwise, if two P2P clients belong to different 

P2P networks, dbytes tends to be large. Given two P2P bots 

(say ha and hb) belonging to the same botnet, the sets of peers 

contacted by these two bots, denoted as , will share a large 

overlap, thereby generating a small value of d IPs FCi
(a) and  

FCj
(b) Otherwise, if two P2P clients belong to  i) the same 

legitimate P2P network or ii) different   P2P  networks,  they   

will  share a small overlap and produce a large value of dIPs 

FCi
(a) and FCj

(b) A distance function dist (ha, hb) is defined to 

quantify the similarity of two P2P clients by integrating dbytes 

and dI Ps. dist (ha, hb) tends to yield a small value if ha and hb 

are infected with bots from the same P2P botnet. Especially, 

even if ha  and hb are infected with P2P bots from the same 

botnet and they run legitimate P2P applications 

simultaneously, the distance quantified by dist (ha, hb) will be 

small. It is because that at least one pair  of  fingerprint 

clusters that are generated by P2P bots will yield small values 

for  both dbytes and d I Ps. 

 

 dist (ha  , hb)=  mini,j   (λ   

                            + (1- λ)  d IPs  (FCi
(a) , FCj

(b) ) 

 

Where, 

 

FCk (X)   is the k-th fingerprint cluster of host hx 

min B  = min i, , j d bytes (FCi
(a)  and  FCj

(b) ) 

max B = max i , j dbytes  (FCi
(a) and  FCj

(b) ) 

λ is a predefined constants, which we set to λ = 0.5. 

 

After computing the distance between each pair of hosts (i.e., 

hosts in set P), a hierarchical clustering is applied, and hosts 

are grouped together according to the distance defined above. 

In practice the hierarchical clustering algorithm will produce 

a dendrogram (a tree-like data structure). The dendrogram 

expresses the “relationship” between hosts. The closer two 

hosts are, the lower they are connected at in the dendrogram. 

Two P2P bots in the same botnet should have small distance 

and thus are connected at lower level (forming a dense 

cluster). In contrast, legitimate P2P applications tend to have 

large distances and consequently are connected at the upper 

level. Then hosts in dense clusters are classified as P2P bots, 

and discard all other clusters and the related hosts, which we 

classify as legitimate P2P clients. In practice, we cut the 

dendrogram at Өbot (Өbot ∈  [0, 1]) of the maximum 

dendrogram height (Өbot € heightmax). To set Өbot , its 

assumed that: a) there is no labeled data set of botnet traffic; 

b) the distance between two legitimate P2P applications is 

much larger than that between two bots belonging to the same 

botnet Therefore, we conservatively set bot = 0.95. 

 

 

4. SYSTEM IMPLEMENTATION 

 

The implementation objective is to integrate high scalability 

as a built-in feature into our system. To this end, we first 

identify the performance bottleneck of our system and then 

mitigate it using complexity reduction and parallelization. 

 

A. Performance Bottleneck 

Out of four components in our system, “Traffic Filter” and 

“Coarse-Grained Detection of P2P Bots” have linear 

complexity since they need to scan flows only once to 

identify flows with destination addresses resolved from DNS 

queries or calculate the active time. Other two components, 

“Fine-Grained Detection of P2P Clients” and “Fine-Grained 

P2P Detection of P2P Bots”, require pairwise comparison for 

distance calculation. Specifically, if we denote the number of 

flows generated by a host as n and the number of hosts as S, 

the time complexity of Fine-Grained Detection of P2P Clients 

approximates O( Sn2). Comparably, if we denote the number 

of persistent P2P clients as l, the time complexity of Fine- 

Grained P2P Bot Detection approximates O(l2). Since the 

number of flows generated by network applications (i.e., n) 

could be enormous (e.g., more than hundreds of thousands of 

flows are generated by a single P2P client in our 

experiments), the computation overhead of Fine-Grained 

Detection of P2P Clients may become prohibitive. On 

contrary, the percentage of P2P clients in the ISP network is 

relatively small (e.g., 3%-13% as reported in). Consequently, 

Fine- Grained P2P Bot Detection is unlikely to introduce 

huge performance overhead. For instance, given a typical ISP 

network or a large enterprise network that has 65,536 hosts 

(/16 subnet), if we assume that 8% hosts run P2P applications 

and conservatively assume that half of them are persistent, 

the number of persistent P2P clients (i.e., l) subject to 

analysis by Fine-Grained P2P Bot Detection is 2,221, 

incurring negligible overhead. To summarize, “Fine-Grained 

P2P Client Detection” is the performance bottleneck. 

 

B. Two-Step Flow Clustering 

We use a two-step clustering approach to reduce the time 

complexity of “Fine-Grained P2P Client Detection”. For the 

first-step clustering, we use an efficient clustering algorithm 

to aggregate network flows into K sub-clusters, and each 

subcluster contains flows that are very similar to each other. 

For the second-step clustering, we investigate the global 

distribution of sub-clusters and further group similar sub-

clusters into clusters. The distance of two flows is defined as 

the Euclidean distance of their corresponding vectors, where 

each vector [Pkts , Pktr , Bytes , Byter ] represents the number 

of packets/bytes that are sent/received in a flow. In our 

original design , we have adopted , a streaming clustering 

algorithm. The number of clusters generated by BIRCH is 

mainly decided by a predefined parameter R, which 

quantifies the radius of a cluster. A greater value of R implies 

less clusters. Although BIRCH can perform approximate 

clustering of an arbitrarily large dataset given constrained 

memory space by scanning the dataset only once, estimating 

K from R remains a challenging task. To partially address 

this challenge in our original design, we adopted an empirical 

way: we start from a small R value (e.g., R = 0) and gradually 
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increase it by δ until K clusters are generated. Since the 

number of clusters generated by BIRCH is sensitive to R, δ 

has to be very small to assure that R is not overlarge. As a 

result, a huge number of iterations have to be explored until 

we find appropriate R 

that yields K sub-clusters. This procedure results in a large 

amount of computation time. In the current design, we 

employ K-means as the first step clustering. The main reason 

is that K-Means can achieve bounded time complexity O(Nk 

I ), where K explicitly indicates the number of expected 

clusters, n is the number of flows for each host, and I is the 

maximum number of iterations. For the second-step 

clustering, we use hierarchical clustering to group sub-

clusters into clusters. Each sub-cluster is represented using a 

vector ([Pkts , Pktr , Bytes , Byter ]), which is essentially the 

average for all flow vectors in this sub-cluster. 

 

C. System Parallelization 

Since the two-step clustering analyzes network flows for each 

single host, we can parallelize the computation for all hosts. 

We formulate the problem as follows: given S hosts denoted 

as H = {h1, h2, . . . hS} and M computation nodes denoted as C 

= {c1, c2, . . . cM}, we partition H into M exclusive subsets 

HT1, HT2..HTM and assign HTi to ci for analysis, whose 

processing time is denoted as exc(ci ,HTi ). Our target is to 

design a partition algorithm so that the overall processing 

time, denoted as T = max(exc(ci, HTi )), is minimized. If we 

assume each computation node has the same capacity, T will 

be minimized when the analysis workload is evenly 

distributed across all computation nodes. 

5. CONCLUSION 

In this paper, we presented a novel botnet detection system 

that is able to identify stealthy P2P botnets, whose malicious 

activities may not be observable. To accomplish this task, we 

derive statistical fingerprints of the P2P communications to 

first detect P2P clients and further distinguish between those 

that are part of legitimate P2P networks (e.g., filesharing 

networks) and P2P bots. We also identify the performance 

bottleneck of our system and optimize its scalability. The 

evaluation results demonstrated that the proposed system 

accomplishes high accuracy on detecting stealthy P2P bots 

and great scalability. 
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