
A Scalable System for Sneaking P2P Botnet

Detection

 Shruthi S. H Anitha B
 M.Tech, CNE student Assistant Professor, Dept. of CSE

 T.John Institute Of Technology T. John Institute of Technology

 Banglore, India Bangalore, India

Abstract - Peer-to-peer (P2P) botnets have recently been

adopted by botmasters for their resiliency against take-down

efforts. Besides being harder to take down, modern botnets tend

to be stealthier in the way they perform malicious activities,

making current detection approaches ineffective. In addition,

the rapidly growing volume of network traffic calls for high

scalability of detection systems. In this paper, a novel scalable

botnet detection system is proposed which is capable of

detecting sneaking P2P botnets. The system first identifies all

hosts that are likely engaged in P2P communications. It then

derives statistical fingerprints to profile P2P traffic and further

distinguish between P2P botnet traffic and legitimate P2P

traffic. The parallelized computation with bounded complexity

makes scalability a built-in feature of our system. Extensive

evaluation has demonstrated both high detection accuracy and

great scalability of the proposed system

Keywords : Botnet, P2P, intrusion detection, network security

1. INTRODUCTION

A BOTNET is a collection of compromised hosts (a.k.a bots)

that are remotely controlled by an attacker (the botmaster)

through a command and control (C&C) channels. Botnets

serve as the infrastructures responsible for a variety of cyber

crimes , such as spamming, distributed denial-of-service

(DDoS) attacks, identity theft, click fraud, etc. The C&C

channel is an essential component of botnet because

botmasters rely on C&C channel to issue commands to their

bots and receive information from the compromised

machines. Botnets may structure their C&C channels in

different ways. In a centralized architecture, all bots in a

botnet contact one (or a few) C&C server(s) owned by the

botmaster. However, a fundamental disadvantage of

centralized C&C servers is that they represent a single point

of failure. In order to overcome this problem, botmasters

have recently started to build botnets with a more resilient

C&C architectures, using a peer-to-peer (P2P) structure or

hybrid P2P/ centralized C&C structures. Bots belonging to a

P2P botnet form an overlay network in which any of the

nodes can be used by botmaster to distribute commands to the

other peers or collect information from them. P2P botnets

offer higher resiliency against take down efforts (Ex By law

enforcement) , since even if a significant portion of bots in

P2P botnet are disrupted , the remaining bots may still be able

to communicate with each other and with the botmaster. A

novel scalable botnet detection system capable of detecting

stealthy P2P botnets. We refer to a stealthy P2P botnet as a

P2P botnet whose malicious activities may not be observable

in the network traffic. Particularly , our system aims to detect

stealthy P2P botnet even if P2P botnet traffic is over lapped

with traffic generated by legitimate P2P applications (skype)

running on the same compromised host and achieve high

scablility Our system identifies P2P bots within a monitored

network by detecting the C&C communication patterns that

characterize P2P botnets, regardless of how they perform

malicious activities in response to botmaster’s commands.

Specifically, it derives statistical fingerprints of the P2P

communications generated by P2P hosts and leverages them

to distinguish between hosts that are part of legitimate P2P

networks and P2P bots.

2. PROBLEM DEFINITION

A few approaches capable of detecting P2P botnets have been

proposed [7]–[9], [12]–[14]. Compared with the existing

methods [7]–[9], the design goals of our approach are

different

in that: 1) our approach does not assume that malicious

activities are observable, unlike [7]; 2) our approach does not

require any botnet-specific information to make the detection,

unlike [9]; 3) our approach needs to detect the compromised

hosts that run both P2P bot and other legitimate P2P

applications at the same time, unlike [8]; and 4) different

from [7]–[9], our approach has high scalability as a built-in

feature. Other methods [12]–[14] use machine learning for

detection, which require labeled P2P botnet data to train a

statistical classifier. Unfortunately, acquiring such

information is a challenging task, thereby drastically limiting

the practical use of these methods. To achieve the

aforementioned design goals, our system includes multiple

components. The first one is a flowclustering- based analysis

approach to identify hosts that are mostly likely running P2P

applications. In contrast to existing approaches of identifying

hosts running P2P applications [15]–[19], our approach

differs in the following ways:

1)unlike [16], our approach does not need any content

signature because encryption will make content signature

useless;

2) our approach does not rely on any transport layer heuristics

(e.g., fixed source port) used by [15], [17], which can be

easily violated by P2P applications;

3) we do not need training data set to build a machine

learning based model as used in [18], because it is very

challenging to get traffic of P2P botnets before they are

detected; 4) in contrast to [19], our approach can

detect and profile various P2P applications rather than

identifying a specific P2P application (e.g., Bittorrent); and

5) our analysis approach can estimate the active time of a P2P

application, which is critical for botnet detection.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

3. SYSTEM DESIGN

System Overview : A P2P botnet relies on a P2P protocol to

establish a C&C channel and communicate with the

botmaster. Therefore P2P bots exhibit some network traffic

patterns that are common to other P2P client applications

(either legitimate or malicious). Thus, the system into two

phases. In the first phase, the aim is to detect all hosts within

the monitored network that engage in P2P communications.

As shown in Figure 1, raw traffic collected is analyzed at

the edge of the monitored network and apply a pre-filtering

step to discard

Table .1

Notations and Descriptions

Notation Description

Tp2p The acive time of P2P application

No-DNS Peers The percentage of flows associated with no

domain names

Nclust The number of clusters left by enforcing Өbgp

and Өp2p

Nbgp The largest number of unique bgp prefixes in

one cluster

T^p2p The estimated active time of p2p application

discard network flows that are unlikely to be generated by

P2P applications. Then the remaining traffic is analyzed to

extract a number of statistical features to identify flows

generated by P2P clients. In the second phase, the system

analyzes the traffic generated by the P2P clients and

classifies them into either legitimate P2P clients or P2P bots.

Specifically, the active time of a P2P client is invesigated

and it is identified as a candidate P2P bot if it is

persistently active on the underlying host. Further the

overlap of peers contacted by two candidate P2P bots is

analyzed to finalize detection.

Fig 1: System Overview

A.Identifying P2P Clients

Traffic Filter: The Traffic Filter component aims at filtering

out network traffic that is unlikely to be related to P2P

communications. This is accomplished by passively

analyzing DNS traffic, and identifying network flows whose

destination IP addresses were previously resolved in DNS

responses. Specifically, the following feature is leveraged:

P2P clients usually contact their peers directly by looking up

IPs from a routing table for the overlay network, rather than

resolving a domain name. This feature is supported by Table2

(No-DNS Peers), which illustrates that the vast majority of

flows generated by P2P applications do not have destination

IP resolved from domain names. The remaining small

fraction of flows are corresponding to a possible exception

that a peer bootstraps into a P2P network by looking up

domain names that resolve to stable super-nodes. Since most

non-P2P applications (e.g., browsers, email clients, etc.) often

connect to a destination address resulting from domain name

resolution, this simple filter can eliminate a very large

percentage of non- P2P traffic, while retaining the vast

majority of P2P communications.

Fine-Grained Detection of P2P Clients: This component is

responsible for detecting P2P clients by analyzing the

remaining network flows after the Traffic Filter component.

For each host h within the monitored network we identify

two. flow sets, denoted as Stcp(h) and Sudp(h), which contain

the flows related to successful outgoing TCP and UDP

connection, respectively

Table 2

Measurement of features

Trace Tp2p No-DNS

Peers

Nclust Nbgp T^p2p

T-Bittorent 24hr 96.85% 7 12857 24hr

T-Emule 24hr 99.99% 8 1133 24hr

T-Limwire 24hr 99.97% 36 5661 24hr

T-Skype 24hr 99.93% 12 12806 24hr

T-Ares 24hr 99.99% 16 1596 24hr

The successful TCP connections are with a completed SYN,

SYN/ACK, ACK handshake, and those UDP (virtual)

connections for which there was at least one “request” packet

and a consequent response packet. In order to detect P2P

clients, the fact that each P2P client frequently exchanges

control messages (e.g., ping/pong messages) with other peers

is considered. Besides, characteristics of these messages, such

as the size and frequency of the exchanged packets, are

similar for nodes in the same P2P network, and vary

depending on the P2P protocol and network in use. As a

consequence, if two network flows are generated by the same

P2P application and they carry the same type of P2P control

messages, they tend to share similar flow size. In addition, a

P2P client will exchange control messages with a large

number of peers distributed in many different networks. To

identify flows corresponding to P2P control messages, first a

flow clustering process is applied intended to group together

similar flows for each candidate P2P node h. Given sets of

flows Stcp(h) and Sudp(h), each flow s characterised using a

vector of statistical features v(h) = [Pkts , Pktr , Bytes , Byter

], in which Pkts and Pktr represent the number of packets sent

and received, and Bytes and Byter represent the number of

bytes sent and received, respectively. The distance between

two flows is subsequently defined as the euclidean distance

of their two corresponding vectors. Then a clustering

algorithm is applied to partition the set of flows into a

number of clusters. Each of the obtainedclusters of flows, Cj

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

(h), represents a group of flows with similar size. For each

Cj (h), the set of destination IP addresses related to the flows

in the clustersis considered, and for each of these IP’s its

BGP prefix is considered (using BGP prefix announcements).

Finally, the number of distinct BGP prefixes related to

destination IPs in a cluster bgpj = BGP (Cj(h)), and discard

those clusters of flows for which bgpj < Өbgp. The remaining

cluster of flows are called as fingerprint clusters. Therefore,

each host h can now be described by a set of fingerprint

clusters FC(h) = {FC1,FCk }. ‘h’ is labeled as P2P

node if FC(h) ≠ , namely if h generated at least one

fingerprint cluster

B. Detecting P2P Bots

Coarse-Grained Detection of P2P Bots: Since bots are

malicious programs used to perform profitable malicious

activities, they represent valuable assets for the botmaster,

who will intuitively try to maximize utilization of bots. This

is particularly true for P2P bots because in order to have a

functional overlay network (the botnet), a sufficient number

of peers needs to be always online. In other words, the active

time of a bot should be comparable with the active time of the

underlying compromised system. If this was not the case, the

botnet overlay network would risk degenerating into a

number of disconnected subnetworks due to the short life

time of each single node. In contrast, the active time of

legitimate P2P applications is determined by users, which is

likely to be transient. For example, some users tend to use

their file-sharing P2P clients only to download a limited

number of files before shutting down the P2P application. In

this case, the active time of the legitimate P2P application

may be much shorter compared to the active time of the

underlying system. It is worth noting that some users may run

certain legitimate P2P applications for as long as their

machine is on. For example, Skype is a popular P2P

application for instant messaging and voice-over-IP (VoIP)

that is often setup to start after system boot, and that keeps

running until the system is turned off. Therefore, such Skype

clients (or other “persistent” P2P clients) will not be filtered

out at this stage. Hence, the first component in the “Phase II”

of our system (“Coarse-Grained Detection of P2P Bots”)

aims at identifying P2P clients that are active for a time TP2P

close to the active time Tsys of the underlying system they

are running on. While this behavior is not unique to P2P bots

and may be representative of other P2P applications(e.g.,

Skype clients that run for as long as a machine is on),

identifying persistent P2P clients takes us one step closer to

identifying P2P bots. To estimate Tsys proceed as follows.

For each host h ∈ H that we identified as P2P clients

according to we consider the timestamp tstart (h) of the first

network flow we observed from h and the timestamp tend (h)

related to the last flow we have seen from h. Afterwards,

divide the time tend (h)− tstart (h) into w epochs (e.g., of one

hr each), denoted as T = [t1, ... ti . , tw]. We further compute a

vector A(h, T) = [a1, ... ai, . ., aw] where ai is equal to 1 if h

generated any network traffic between ti−1 and ti . Then the

active time of h is estimated as Tsys = i . In order to

estimate the active time of a P2P application, obtained

fingerprint clusters can be leveraged. It is because that a P2P

application periodically exchanges network control (e.g.,

ping/pong) messages with other peers as long as the P2P

application is active. For each host h (again, only the hosts in

H is considered, which were previously identified as P2P

clients), the set of its fingerprint clusters FC(h)={FC1,...,

FCj..., FCk } is examined. Based on the flows belonging to a

fingerprint cluster FCj , we use the same approach of

computing Tsys to calculate its active time, denoted as T (FCj

). Then, the active time (TP2P) of a P2P application is

estimated as TˆP2P = max(T (FC1),..T (FCj), ... T (FCk)). If

the ratio r (h) = TˆP2P / Tsys > ӨP2P, we say that h is running

a persistent P2P application, and add it to a set P of candidate

P2P bots. Host h will then be input to next step, where h will

be represented by a set of persistent fingerprint clusters for

h,denoted as FCp(h) ={FC1,. . FCi , .FC j. . . FC k } where T

(FCi) /Tsys > ӨP2P for any FCi ∈ FCp(h).

Fine-Grained Detection of P2P Bots: The objective of this

component is to identify P2P bots from all persistent P2P

clients (i.e., set P). A feature is leveraged: the overlap of

peers contacted by two P2P bots belonging to the same P2P

botnet is much larger than that contacted by two clients in the

same legitimate P2P network. Assume that two hosts in the

monitored network, say hA and hB, are running the same

legitimate P2P file-sharing application (e.g., Emule). Users of

these two P2P clients will most likely have uncorrelated

usage patterns. It is reasonable to assume that in the general

case the two users will search for and download different

content (e.g., different media files or documents) from the

P2P network. This translates into a divergence between the

set of IP addresses contacted by hosts hA and hB. The reason

is that the two P2P clients will tend to exchange P2P

control messages (e.g., ping/pong and search requests) with

different sets of peers which “own” the content requested by

their users, or peers that are along the path towards the

content. On the contrary, if hA and hB are compromised

with P2P bots, one common characteristic of bots is that

they need to periodically search for commands published

by the botmaster. This typically translates into a

convergence between the set of IPs contacted by hA and hB. In

order to leverage this feature, each host h ∈ P is represented

using its persistent fingerprint clusters) is the average

number of bytes sent (received) per flow in FCi . ∏i is a set

that contains the destination IP addresses (peers) of the

flows in FCi .Further two distance functions are defined

below, where FCi
(a) and FCj

(b) represent fingerprint clusters

from two persistent P2P clients, ha and hb , respectively.

 dI Ps (FCi
(a) , FCj

(b)) = 1-

If two P2P clients (say ha and hb) belong to the same P2P

network, regardless of a legitimate P2P network or a P2P

botnet network, these two clients will follow the same

implementation of the identical P2P protocol. Hence, the

network flows corresponding to the same type of P2P control

messages (e.g., ping/pong messages) will exhibit similar flow

sizes across P2P clients running the same P2P application.

Since a fingerprint cluster summarizes network flows for the

same type of control messages in one client, two fingerprint

clusters corresponding to the same P2P control messages

belonging to the same P2P application will have similar flow

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

size. In other words, two P2P clients from the same P2P

network will share at least one pair of fingerprint clusters

FCi
(a) and FCj

(b) which have a small value of dbytes (FCi
(a) ,

FCj
(b) since they are corresponding to the same P2P control

message. Otherwise, if two P2P clients belong to different

P2P networks, dbytes tends to be large. Given two P2P bots

(say ha and hb) belonging to the same botnet, the sets of peers

contacted by these two bots, denoted as , will share a large

overlap, thereby generating a small value of d IPs FCi
(a) and

FCj
(b) Otherwise, if two P2P clients belong to i) the same

legitimate P2P network or ii) different P2P networks, they

will share a small overlap and produce a large value of dIPs

FCi
(a) and FCj

(b) A distance function dist (ha, hb) is defined to

quantify the similarity of two P2P clients by integrating dbytes

and dI Ps. dist (ha, hb) tends to yield a small value if ha and hb

are infected with bots from the same P2P botnet. Especially,

even if ha and hb are infected with P2P bots from the same

botnet and they run legitimate P2P applications

simultaneously, the distance quantified by dist (ha, hb) will be

small. It is because that at least one pair of fingerprint

clusters that are generated by P2P bots will yield small values

for both dbytes and d I Ps.

 dist (ha , hb)= mini,j (λ

 + (1- λ) d IPs (FCi
(a) , FCj

(b))

Where,

FCk (X) is the k-th fingerprint cluster of host hx

min B = min i, , j d bytes (FCi
(a) and FCj

(b))

max B = max i , j dbytes (FCi
(a) and FCj

(b))

λ is a predefined constants, which we set to λ = 0.5.

After computing the distance between each pair of hosts (i.e.,

hosts in set P), a hierarchical clustering is applied, and hosts

are grouped together according to the distance defined above.

In practice the hierarchical clustering algorithm will produce

a dendrogram (a tree-like data structure). The dendrogram

expresses the “relationship” between hosts. The closer two

hosts are, the lower they are connected at in the dendrogram.

Two P2P bots in the same botnet should have small distance

and thus are connected at lower level (forming a dense

cluster). In contrast, legitimate P2P applications tend to have

large distances and consequently are connected at the upper

level. Then hosts in dense clusters are classified as P2P bots,

and discard all other clusters and the related hosts, which we

classify as legitimate P2P clients. In practice, we cut the

dendrogram at Өbot (Өbot ∈ [0, 1]) of the maximum

dendrogram height (Өbot € heightmax). To set Өbot , its

assumed that: a) there is no labeled data set of botnet traffic;

b) the distance between two legitimate P2P applications is

much larger than that between two bots belonging to the same

botnet Therefore, we conservatively set bot = 0.95.

4. SYSTEM IMPLEMENTATION

The implementation objective is to integrate high scalability

as a built-in feature into our system. To this end, we first

identify the performance bottleneck of our system and then

mitigate it using complexity reduction and parallelization.

A. Performance Bottleneck

Out of four components in our system, “Traffic Filter” and

“Coarse-Grained Detection of P2P Bots” have linear

complexity since they need to scan flows only once to

identify flows with destination addresses resolved from DNS

queries or calculate the active time. Other two components,

“Fine-Grained Detection of P2P Clients” and “Fine-Grained

P2P Detection of P2P Bots”, require pairwise comparison for

distance calculation. Specifically, if we denote the number of

flows generated by a host as n and the number of hosts as S,

the time complexity of Fine-Grained Detection of P2P Clients

approximates O(Sn2). Comparably, if we denote the number

of persistent P2P clients as l, the time complexity of Fine-

Grained P2P Bot Detection approximates O(l2). Since the

number of flows generated by network applications (i.e., n)

could be enormous (e.g., more than hundreds of thousands of

flows are generated by a single P2P client in our

experiments), the computation overhead of Fine-Grained

Detection of P2P Clients may become prohibitive. On

contrary, the percentage of P2P clients in the ISP network is

relatively small (e.g., 3%-13% as reported in). Consequently,

Fine- Grained P2P Bot Detection is unlikely to introduce

huge performance overhead. For instance, given a typical ISP

network or a large enterprise network that has 65,536 hosts

(/16 subnet), if we assume that 8% hosts run P2P applications

and conservatively assume that half of them are persistent,

the number of persistent P2P clients (i.e., l) subject to

analysis by Fine-Grained P2P Bot Detection is 2,221,

incurring negligible overhead. To summarize, “Fine-Grained

P2P Client Detection” is the performance bottleneck.

B. Two-Step Flow Clustering

We use a two-step clustering approach to reduce the time

complexity of “Fine-Grained P2P Client Detection”. For the

first-step clustering, we use an efficient clustering algorithm

to aggregate network flows into K sub-clusters, and each

subcluster contains flows that are very similar to each other.

For the second-step clustering, we investigate the global

distribution of sub-clusters and further group similar sub-

clusters into clusters. The distance of two flows is defined as

the Euclidean distance of their corresponding vectors, where

each vector [Pkts , Pktr , Bytes , Byter] represents the number

of packets/bytes that are sent/received in a flow. In our

original design , we have adopted , a streaming clustering

algorithm. The number of clusters generated by BIRCH is

mainly decided by a predefined parameter R, which

quantifies the radius of a cluster. A greater value of R implies

less clusters. Although BIRCH can perform approximate

clustering of an arbitrarily large dataset given constrained

memory space by scanning the dataset only once, estimating

K from R remains a challenging task. To partially address

this challenge in our original design, we adopted an empirical

way: we start from a small R value (e.g., R = 0) and gradually

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

increase it by δ until K clusters are generated. Since the

number of clusters generated by BIRCH is sensitive to R, δ

has to be very small to assure that R is not overlarge. As a

result, a huge number of iterations have to be explored until

we find appropriate R

that yields K sub-clusters. This procedure results in a large

amount of computation time. In the current design, we

employ K-means as the first step clustering. The main reason

is that K-Means can achieve bounded time complexity O(Nk

I), where K explicitly indicates the number of expected

clusters, n is the number of flows for each host, and I is the

maximum number of iterations. For the second-step

clustering, we use hierarchical clustering to group sub-

clusters into clusters. Each sub-cluster is represented using a

vector ([Pkts , Pktr , Bytes , Byter]), which is essentially the

average for all flow vectors in this sub-cluster.

C. System Parallelization

Since the two-step clustering analyzes network flows for each

single host, we can parallelize the computation for all hosts.

We formulate the problem as follows: given S hosts denoted

as H = {h1, h2, . . . hS} and M computation nodes denoted as C

= {c1, c2, . . . cM}, we partition H into M exclusive subsets

HT1, HT2..HTM and assign HTi to ci for analysis, whose

processing time is denoted as exc(ci ,HTi). Our target is to

design a partition algorithm so that the overall processing

time, denoted as T = max(exc(ci, HTi)), is minimized. If we

assume each computation node has the same capacity, T will

be minimized when the analysis workload is evenly

distributed across all computation nodes.

5. CONCLUSION

In this paper, we presented a novel botnet detection system

that is able to identify stealthy P2P botnets, whose malicious

activities may not be observable. To accomplish this task, we

derive statistical fingerprints of the P2P communications to

first detect P2P clients and further distinguish between those

that are part of legitimate P2P networks (e.g., filesharing

networks) and P2P bots. We also identify the performance

bottleneck of our system and optimize its scalability. The

evaluation results demonstrated that the proposed system

accomplishes high accuracy on detecting stealthy P2P bots

and great scalability.

REFERENCES

[1] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the

storm and nugache trojans: P2P is here,” in Proc. USENIX, vol. 32.
2007, pp. 18–27.

[2] P. Porras, H. Saidi, and V. Yegneswaran, “A multi perspective analysis of

the storm (peacomm) worm,” Comput. Sci. Lab., SRI Int., Menlo
Park, CA, USA, Tech. Rep., 2007. [3] P. Porras, H. Saidi, and V.

Yegneswaran. (2009). Conficker C Analysis [Online].

Available: http://mtc.sri.com/Conficker/addendumC/index.html
[4] G. Sinclair, C. Nunnery, and B. B. Kang, “The waledac protocol: The

how and why,” in Proc. 4th Int. Conf. Malicious Unwanted Softw.,

Oct. 2009, pp. 69–77.

[5] R. Lemos. (2006). Bot Software Looks to Improve Peerage [Online].

Available: http://www.securityfocus.com/news/11390 [6] Y. Zhao, Y.

Xie, F. Yu, Q. Ke, and Y. Yu, “Botgraph: Large scale spamming
botnet detection,” in Proc. 6th USENIX NSDI, 2009, pp. 1–14.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering analysis

of network traffic for protocol- and structure-independent botnet
detection,” in Proc. USENIX Security, 2008, pp. 139–154.

[8] T.-F. Yen and M. K. Reiter, “Are your hosts trading or plotting? Telling

P2P file-sharing and bots apart,” in Proc. ICDCS, Jun. 2010, pp. 241–
252.

[9] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov,

“BotGrep: Finding P2P bots with structured graph analysis,” in Proc.
USENIX Security, 2010, pp. 1–16.

[10] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feamster,

“Boosting the scalability of botnet detection using adaptive traffic
sampling,” in Proc. 6th ACM Symp. Inf., Comput. Commun. Security,

2011, pp. 124–134.

[11] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy P2P botnets using statistical traffic fingerprints,” in Proc.

IEEE/IFIP 41st Int. Conf. DSN, Jun. 2011, pp. 121–132.

[12] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, et al.,
“Detecting P2P botnets through network behavior analysis and

machine learning,” in Proc. 9th Annu. Int. Conf. PST, Jul. 2011, pp.

174–180.
[13] D. Liu, Y. Li, Y. Hu, and Z. Liang, “A P2P-botnet detection model and

algorithms based on network streams analysis,” in Proc. IEEE

FITME, Oct. 2010, pp. 55–58.
[14] W. Liao and C. Chang, “Peer to peer botnet detection using data mining

scheme,” in Proc. IEEE Int. Conf. ITA, Aug. 2010, pp. 1–4.

[15] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in Proc. ACM SIGCOMM, 2005, pp.

229–240.

[16] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of P2P traffic using application signatures,” in Proc.

13th ACM Int. Conf. WWW, 2004, pp. 512–521.
[17] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport

layer identification of P2P traffic,” in Proc. 4th ACM SIGCOMM

Conf. IMC, 2004, pp. 121–134.
[18] A. W. Moore and D. Zuev, “Internet traffic classification using

Bayesian analysis techniques,” in Proc. ACM SIGMETRICS, 2005,

pp. 50–60.
[19] M. P. Collins and M. K. Reiter, “Finding peer-to-peer file sharing using

coarse network behaviors,” in Proc. 11th ESORICS, 2006, pp. 1–17.

[20] D. Stutzbach and R. Rejaie, “Understanding churn in peer-topeer
networks,” in Proc. 6th ACM SIGCOMM Conf. IMC, 2006, pp. 189–

202.

[21] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling,
“Measurements and mitigation of peer-to-peer-based botnets: A case

study on storm worm,” in Proc. USENIX LEET, 2008, pp. 1–9.

[22] G. Bartlett, J. Heidemann, C. Papadopoulos, and J. Pepin, “Estimating
P2P traffic volume at USC,” USC/Information Sciences Institute, Los

Angeles, CA, USA, Tech. Rep. ISI-TR-2007-645, 2007.

[23] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” in Proc. ACM SIGMOD,

1996, pp. 103–114.

[24] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering
validation techniques,” J. Intell. Inf. Syst., vol. 17, nos. 2–3, pp. 107–

145, 2001.

[25] (2011). Argus: Auditing Network Activity [Online]. Available:

http://www.qosient.com/argus/

[26] Z. Li, A. Goyal, Y. Chen, and A. Kuzmanovic, “Measurement and

diagnosis of address misconfigured P2P traffic,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[27] (2011). Autoit Script [Online]. Available: http://www.autoitscript.

com/autoit3/index.shtml
[28] (2011). Zeus Gets More Sophisticated Using P2P Techniques [Online].

Available: http://www.abuse.ch/?p=3499

[29] A. Binzenhofer, D. Staehle, and R. Henjes, “On the stability of
chordbased P2P systems,” in Proc. IEEE Global Telecommun. Conf.,

vol. 2. Nov./Dec. 2005, pp. 884–888.

[30] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a
DHT,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf., 2004, pp.

127–140.

[31] D. Dagon, G. Gu, C. Lee, and W. Lee, “A taxonomy of botnet
structures,” in Proc. 33rd Annu. Comput. Security Appl. Conf., 2007,

pp. 325–339.

[32] (2010). Resilient Botnet Command and Control with Tor [Online].
Available: http://www.defcon.org/images/defcon-18/dc-18-

presentations/D.Brown/DEFCON-1%8-Brown-TorCnC.pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

