

 A SQL Injection : Internal Investigation of Injection, Detection and Prevention

of SQL Injection Attacks

Abhay K. Kolhe
Faculty, Dept. Of Computer Engineering

MPSTME, NMIMS

Mumbai, India

Pratik Adhikari
Student, Dept. Of Computer Engineering

MPSTME, NMIMS

Mumbai, India

Abstract

SQL Injection has been always as the top threat in any

web site and web application. In this paper we are

making a dummy web site and injecting some SQL

queries, detecting the SQL injection using the IP

tracking method, preventing SQL injection using

different types of defense mechanism. We have made

the dummy website to inject, detect and prevent the

SQL injection attacks. We are also giving the internal

view where it is required to explain these attacks, the

detection and defense mechanism through the

explanation of the source codes.
Keywords: SQL injection, SQL injection vulnerability,

web security.

1. Introduction
The SQL injection is the code injection technique, in

which malicious SQL statements are inserted into an

entry field for execution and used to attack the database

and performs different types of the database interaction,

operations and functions without sanitizing the inputs

in the entry field [1]. SQL injection is always a top

priority for security of any web applications as

injection can be done in any website or web application

made in any language like PHP, JSP, ASP with the

database like Mysql, Oracle, Microsoft SQL server [2]

[3].

2. SQL injection for Authentication, Insert,

drop, Update and delete.
We have made the simple website where the user

can register, login and get authenticated. We make the

web vulnerable as we didn‟t use any protection

mechanism in any form. In the below codes in 2.1 we

are explaining the simple mechanism for extraction of

login information for the registered user through the

MySql database.

2.1. Extracting login information
//adding values

mySQL_select_db("pratik", $con);

$name1 = mySQL_query("select * from user where

username='$username' and password = '$password'");

$row1 = mySQL_fetch_array($name1);

if($row1['username'] == '')

{

echo 'Wrong username/password!';

echo '</br>Retry';

}

else

{

 $_SESSION['logedinuser']=$row1['username'];

 echo 'Login successful';

 echo'</br></br>Hello,

'.$row1['username'].' &nbs

p; Logout';

 echo '</br>';

 echo '<h1>Welcome to our site!!</h1>';

Steps:

1) Select the database.

2) Select Username and password and store in variable

name1.

3) From the variable name1 fetch the values to variable

row1.

4) If variable row1 is empty or doesn‟t match return

“wrong username and password”.

5) Else make login successful when values match with

the database.

3290

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

6) Return “user name” and “welcome to our site

message

2.2 SQL injection for authentication

We are able to get a login into our website successfully

by giving username: anything' OR 'x'='x and password:

anything' OR 'x'='x as the following shown in the

Figure 2.1.1(a).This type of SQL injections is for

incorrectly filtered escape character. Later in the

prevention phase we will discuss how it can be

prevented. We have made the table name as the “user”

where the values of all registered user are stored.

Injection query can be explained as:

"SELECT * FROM user WHERE name = '" +

userName + "';"

If the "userName" is replaced by SQL string, like

anything' or 'x'='x during authentication, the database

responds to the code in same manner as the first code

and displays the records. This is because evaluation of

'x'='x' is always true. So we get authenticated without

any proper valid user name and password in the

database. Here in this case single quote always allows

the inside quote to get executed [4].

Figure 2.1.1(a).SQL injection 1

st
 row user

We can see in the Figure 2.1.1(b) that we are able to

login to the website without any username and

password. In this case the row for the first user is

always getting selected for the login on the website.

This form of the SQL injection is easy to check on any

website .Most of the coders and developers forget to

filter the escape character and this attack is always

vulnerable in PHP as well as asp.net for both MySQL

and MS SQL server 2005, 2008.

Figure 2.1.1(b).Results for injection 1

st
 row user

2.1.2 Injection for particular user such as admin

For the case, such as admin here we use username as

“admin” we can login as x' OR username LIKE

'%admin%. We supply both query to our login details

such as username: x' OR username LIKE '%admin%

and Password: x' OR username LIKE '%admin%.

When user enters a “LIKE” clause with the username

then the database will return the matching criteria to the

user immediately. SELECT username, password,

email, full_name FROM user WHERE

username=„x„OR full_name LIKE ‗%admin%„; Here,

the database will return information of any user where

the name starts with “admin”. Figure 2.1.2(a) shows

the injection for the particular user such as “admin” and

Figure 2.1.2(b) shows the login results.“%” is the wild

character used to select particular user from the

database.

Figure 2.1.2(a).SQL injection for particular user

Figure 2.1.2(b) Results of injection

3291

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

For the case, such as admin here we use the username

as “admin” we can login as x' OR username LIKE

'%admin%. We supply both query to our login details

such as username: x' OR username LIKE '%admin%

and Password: x' OR username LIKE '%admin%.

When a user enters a “LIKE” clause with the username

then the database will return the matching criteria to the

user immediately. SELECT username, password,

email, full_name FROM user WHERE

username=„x„OR full_name LIKE ‗%admin%„; Here,

the database will return information of any user where

the name starts with “admin”. Figure 2.1.2(a) shows

the injection for the particular user such as “admin” and

Figure 2.1.2(b) shows the login results.“%” is the wild

character used to select a particular user from the

database.

2.1.3 Injection for insert operation.

Here we are injecting the insert query to the database as

username, password, email, and the name for the

particular user. Figure 2.1.3(a) shows the injection for

insert query.

Figure 2.1.3(a) SQL Injection for Insert Query

Table 2.1.3(b) shows the insert operation results. We

can see the email, password, username and name is

added in the table name user.

Table 2.1.3(b) Insert operation

Inserted new row

2.1.4 Injection for update

Here we are injecting the update query to the database

we are updating the username for the particular email

address. Figure 2.1.4(a) shows the injection for the

update query.

Figure 2.1.4(a) SQL Injection for Update Query

Table 2.1.4(b) shows the update results we can see

results clearly that the username for the id 38 have been

updated from “bob” to “ted”.

Table 2.1.4(b) update operation

 Update operation done

2.4 Injection for delete

Here we are injecting the delete query to the database

we are deleting the particular row in the database based

on the username. Figure 2.1.5(a) shows injection for

the delete query.

Figure 2.1.5(a) SQL Injection for Delete Query

Table 2.1.5(b) shows the delete results .we can see

clearly that the username “naresh” with id “37” has

been deleted successfully.

Table 2.1.5(b) Delete operation

Delete operations done for user id 37 “naresh”

2.5 Injection for Drop

To show the Drop operation in our website we are

making additional table for the drop operation.

CREATE TABLE IF NOT EXISTS `student` (

 `fname` varchar(100) NOT NULL,

 `lname` varchar(100) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `student`

--

INSERT INTO `student` (`fname`, `lname`) VALUES

('Pratik', 'Adhikari'),

('Nikhil', 'Kamath'),

3292

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

('cc', 'dd'),

('Pratik', 'www.Hackingweb.com');

To inject the drop query we have made extra table

named “student” for the first name and last name so our

main table “user” doesn‟t get altered. Table 2.1.6(a)

shows the table name “student”.

Table 2.1.6(a) Student Table

Here we are injecting the drop query. We are dropping

the table name “student”. Figure 2.1.6(b) show the

injection for the drop query.

Figure 2.1.6(b) SQL Injection for Drop Query

Figure 2.1.6(c) shows the results after dropping

the table.

Figure 2.1.6(c) Results for dropped table.

3. Detection based on the IP Tracking

mechanism

We are taking the array which takes the injection by the

keywords and we match the same keyword using

preg_match function. After that we track the

clients/users IP address and insert the injection type as

well as IP address in the database table called

iptracker[5].

//Logic for finding out injecion

$injection['inject']=array("LIKE","--

","insert","update","delete","drop","'='");

$querytofire=$query;

$regex=implode("|",$injection['inject']);

if(preg_match("/(\b{$regex}\b)/i",$querytofire,$matche

s)){

$ip=$_SERVER['REMOTE_ADDR'];

$injection_type=$matches[0];

$ipupdate="insert into iptracker

(ip_addr,injection_type) values

('$ip','$injection_type')";

$ipinsert=mysql_query($ipupdate);

}

3.1 Database for IP detection

Here we have created the table name “iptracker”.

CREATE TABLE IF NOT EXISTS `iptracker` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `ip_addr` varchar(20) NOT NULL,

 `injection_type` varchar(20) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

AUTO_INCREMENT=19 ;

--

-- Dumping data for table `iptracker`

--

INSERT INTO `iptracker` (`id`, `ip_addr`,

`injection_type`) VALUES

(1, '127.0.0.1', ''),(2, '127.0.0.1', ''),(3, '127.0.0.1', ''),(4,

'127.0.0.1', ''),(5, '127.0.0.1', ''),(6, '127.0.0.1', ''),(7,

'127.0.0.1', ''),(8, '127.0.0.1', 'INSERT'),(9, '127.0.0.1',

'UPDATE'),(10, '127.0.0.1', 'delete'),

(11, '127.0.0.1', 'drop'),(12, '127.0.0.1', 'or'),(13,

'127.0.0.1', 'or'),(14, '127.0.0.1', '1=1'),(15, '127.0.0.1',

'or'),(16,'127.0.0.1', 'or'),(17, '127.0.0.1', 'INSERT'),(18,

'127.0.0.1', 'drop');

In PHP we extract the IP address using

$_SERVER[„REMOTE_ADDRS‟] which is the server

variable and added to the database.

4. Prevention technique for SQL injection

4.1 mySQL_real_escape_string()

Escapes special characters in the unescaped_string,

taking into account the current character set of the

connection so that it is safe to place it in

a mySQL_query()[6].

mySQL_real_escape_string() calls MySQL's library

function mySQL_real_escape_string, which adds

backslashes to the following characters: \x00, \n, \r, \, ',

" and \x1a.We are filtering out the query before it is

3293

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

passed to the database we can see the that we are

unable to inject the query after using this

mechanism[6].

if(isset($_POST['submit'])&&

$_POST['prevention_param_escape']==1){

$query=mysql_real_escape_string($_POST['query']);

mysql_connect("localhost", "root", "") or

die(mysql_error());

mysql_select_db("pratik") or die(mysql_error());

$result=mysql_query($query);

if (!$result) {

 echo 'Access Unauthorised';

}

$message='Access Unauthorised';

header("Location:sqlinjection.php?message=$message"

);

}

Here in the code we are using

mySQL_real_escape_string() for the prevention

mechanism , in the above code first we are checking

prevention method is set or not by using isset function

and prevention_param_escape parameter. Then by

using the function “mysql_real_escape_string” we

check is it injected or not. If it‟s injected the message

access unauthorized is generated.

Figure 4.1.1(a) mySQL_real_escape_string()

4.1.2 MySQLi

MySQLi optionally allows having multiple statements

in one statement string [7].

Multiple statements or multi queries must be executed

with mySQLi_multi_query(). The individual statements

of the statement string are separated by semicolon.

Then; all result sets returned by the executed statements

must be fetched. The MySQL server allows having

statements that do return result sets and statements that

do not return result sets in one multiple statements [7].

An extra API call is used for multiple statements to

reduce the likeliness of SQL injection attacks [7].

if(isset($_POST['submit'])&&$_POST['prevention_par

am']==0&&

$_POST['prevention_param_escape']==0){

$query=$_POST['query'];

$mysqli = new mysqli("localhost", "root", "", "pratik");

if (!$mysqli->multi_query($query)) {

echo "Query failed: (" . $mysqli->errno . ") " . $mysqli-

>error;

}

Here in the code we are first checking the prevention

method is set or not using isset function and

„prevention_param‟ parameter. Then by using the

function “mysqli” we check is it injected or not and if it

is injected then we will generate message access

unauthorized.

Figure 4.1.2(a) MYSQLI

Results after mySQL_real_escape_string() and

MYSQLI

Table 4.1.1(b) Using MYSQLI and

mySQL_real_escape_string()

5. Conclusion and further work:

In this paper we have shown different types of injection

of SQL attacks like authentication, insert, delete, drop

and update operations. We also have show the detection

of these attacks by using IP-tracking method, where we

store the IP address of the user for the particular type of

attacks that they are injecting.

3294

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

We also have shown the internal coding for the

injection, detection as well as prevention for these types

of attacks.

In future we would like to explore more on SQL

injection attacks and analyse these attacks based on the

various parameters.

6. References

[1] http://technet.microsoft.com/enus/library/ms16195

3(v=SQL.105).aspx 25
th

 Nov 2013.

[2] https://www.owasp.org/index.php/Top_10_2013-

Top_10 25th Nov 2013.

[3] Zeinab Raveshi, Sonali R.Idate "Investigation and

Analysis of SQL Injection Attacks on Web

Applications: Survey" International Journal of

Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-3 February

2013.

[4] Ramakanth Dorai,Vinod Kannan "SQL Injection-

Database Attack Revolution and Prevention"

Journal of International Commercial Law and

Technology Vol. 6, Issue 4 (2011).

[5] Perumalsamy Ramasamy, Dr.SunithaAbburu,

"SQL INJECTION ATTACK DETECTION AND

PREVENTION” International Journal of Science

and Technology (IJEST) ISSN: 0975-5462 Vol. 4

No.04 April 2012.

[6] http://php.net/manual/en/function.mySQL-real-

escape-string.php 26 Nov 2013.

[7] http://www.php.net/manual/en/mySQLi.quickstart.

multiple-statement.php 26 Nov 2013.

[8] Sid Ansari,Edward R. Sykes ,"SQL Injection in

Oracle: An exploration of vulnerabilities”,

International Journal on Computer Science and

Engineering (IJCSE) ISSN :0975-3397 Vol. 4 No.

04 April 2012 522.

3295

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11133

