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Abstract 
 

Determination and inference of packet failure features 

are exigent due to the moderately unusual occurrence 

and typically short duration of packet failure episodes. 

The intention of our study is to understand how to 

determine packet failure episodes accurately with end-

to-end probes. We start by taxing the ability of 

standard Poisson-modulated end-to-end determinations 

of failure in a prohibited laboratory environment using 

IP routers and service end hosts. Our tests show that 

failure characteristics reported from such Poisson-

modulated probe tools can be pretty erroneous over a 

series of traffic conditions. Aggravated by these 

annotations Specifically, our method entails probe tests 

that follow a statistical allocation to 1) permit a precise 

trade-off between accuracy and force on the network, 

and 2) permit more accurate determinations than 

normal Poisson probing at the same rate. We appraise 

the capabilities of our slant testually by mounting and 

implementing a prototype tool, called VOILA. The tests 

express the trade-offs between force on the network and 

determination accuracy. We show that VOILA hearsay 

failure characteristics far more accurately than 

conventional failure determination tools. 

 
Key Terms--- Dynamic Determination, VOILA, network 

congestion, network probes, packet failure. 

 

 

I. INTRODUCTION 

 

 

 DETERMINING and analyzing network traffic 

dynamics between end hosts has provided the 

establishment for the expansion of several special 

network protocols and systems. Of fussy 

consequence understands packet failure behavior 

since failure can have a significant impact on the 

concert of both TCP- and UDP-based 

applications. Regardless of hard work of network 

engineers and operators to bound failure, it will 

almost certainly never be eliminated due to the 

essential dynamics and scaling properties of 

transfer in packet switched network [1]. Network 

operators have the knack to reflexively observe 

nodes within their network for packet failure on 

routers using SNMP. End-to-end dynamic 

determinations using probes provide a uniformly 

precious outlook since they signify the 

circumstances that application transfer is 

experiencing on those paths. 

The most frequently used tools for probing end-

to end paths to determine packet failure resemble 

the omnipresent PING function. PING-like tools 

drive probe packets (e.g., ICMP echo packets) to 

an end host at rigid intervals. Failure is indirect by 

the dispatcher if the response packets anticipated 

from the target host are not established within a 

particular time period. Generally speaking, a 

dynamic determination approach is tricky because 

of the distinct sampling environment of the probe 

method. Thus, the accuracy of the resulting 
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determinations depends both on the 

characteristics and interpretation of the sampling 

process as well as the characteristics of the 

underlying failure process. 

Although their extensive use, there is almost no 

reveal in the journalism of how to refrain and 

regulate [2] dynamic determinations of packet 

failure to recover accuracy or how to best infer the 

ensuing determinations. One loom is 

recommended by the well-known PASTA principle 

[3] which, in a networking situation, tells us that 

Poisson-modulated probes will grant fair time 

middling determinations of a router queue’s status. 

This proposal has been recommended as a base 

for dynamic determination of end-to-end 

interruption and failure [4]. However, the 

asymptotic nature of PASTA means that when it is 

applied in practice, the higher moments of 

determinations must be considered to determine 

the validity of the reported results. A closely 

related issue is the fact that failure is typically a 

rare event in the Internet [5]. This reality imply 

moreover that determinations must be taken over 

a protracted moment period, or that common rates 

of Poisson-modulated probes may have to be 

somewhat high in order to report accurate 

estimates in a timely fashion        However, 

escalating the mean probe rate may lead to the 

situation that the probes themselves twist the 

results. Thus, there are trade-offs in packet failure 

determinations between probe rate, determination 

accuracy, impact on the path and timeliness of 

results. 

The aim of our study is to recognize how to 

accurately determine failure characteristics on 

end-to-end paths with probes. We are engrossed 

in two specific features of packet failure: failure 

episode frequency, and failure episode duration [5]. 

Our study consists of three parts:     (i) pragmatic 

valuation of the presently existing approach, (ii) 

expansion of assessment techniques that are 

based on original testual design, original probing 

techniques, and simple rationale tests, and (iii) 

pragmatic assessment of this new methodology. 

We begin by testing standard Poisson-

modulated probing in a prohibited and 

suspiciously instrumented laboratory environment 

consisting of commodity workstations separated 

by a series of IP routers. Background traffic is sent 

between end hosts at different levels of intensity to 

generate failure episodes thereby enabling 

repeatable tests over a range of conditions. We 

consider this setting to be ideal for testing failure 

determination tools since it combines the 

advantages of traditional simulation environments 

with those of tests in the wide area. Namely, much 

like simulation, it provides for a high level of 

control and an ability to compare results with 

“ground truth.” Furthermore, much like tests in the 

wide area, it provides an ability to consider failure 

processes in actual router buffers and queues, 

and the behavior of implementations of the tools 

on commodity end hosts. Our tests expose two 

imperative deficiencies with simple Poisson 

probing. First, individual probes often erroneously 

report the dearth of a failure episode (i.e., they are 

successfully transferred when a failure episode is 

underway). Second, they are not well matched to 

determine failure episode duration over limited 

determination periods. 

Our annotations about the weaknesses in 

standard Poisson probing inspire the second part 
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of our study: the advance of a new loom for end-

to-end failure determination that includes four key 

elements. First, we intend a probe procedure that 

is statistically dispersed and that assesses the 

possibility of failure practiced by other flows that 

use the identical path, rather than simply reporting 

its personal packet deficiencies. The probe 

progression assumes FIFO queues along the path 

with a drop-tail policy. Second, we design a new 

testual structure with inference techniques that 

openly approximate the mean interval of the 

failure episodes without estimating the interval of 

any character failure episode. Our estimators are 

proved to be regular, under calm assumptions of 

the probing process. Third, we provide simple 

confirmation tests (that require no further trialing 

or data gathering) for some of the arithmetical 

assumptions that underlay our analysis. Finally, 

we confer the variance characteristics of our 

estimators and show that while frequency 

approximate difference depends only on the total 

number of probes emitted, failure duration 

variance depends on the frequency estimate as 

well as the number of probes sent. 

The third part of our study involves the testual 

estimation of our new failure determination 

methodology. To this end, we developed a one-

way dynamic determination tool called VOILA. 

VOILA sends fixed-size probes at specified 

intervals from one determination host to a 

collaborating target host. The end system collects 

the probe packets and reports the failure 

characteristics after a particular interval of time. 

We also compare VOILA with a standard tool for 

failure determination that emits probe packets at 

Poisson intervals. The results show that our tool 

reports failure episode estimates much more 

accurately for the same number of probes. We 

also show that VOILA estimates converge to the 

underlying failure episode frequency and duration 

characteristics. 

The most significant allusion of these 

consequences is that there is now a methodology 

and tool available for wide-area studies of packet 

failure characteristics that enables researchers to 

comprehend and identify the trade-offs between 

accuracy and force. Additionally, the tool is self-

calibrating [2] in the sense that it can report when 

estimates are deprived. Sensible applications 

could comprise its use for trail assortment in peer-

to-peer overlay networks and as a tool for network 

operators to observe exact segments of their 

infrastructures. 

 

II. RELATED WORK 

 

There have been many studies of packet 

failure behavior in the Internet. Bolot [6] and 

Paxson [7] evaluated end-to-end probe 

determinations and reported characteristics of 

packet failure over a selection of paths in the wide 

area. Yajnik et al. evaluated packet failure 

correlations on longer time scales and developed 

Markov models for chronological addiction 

structures [8]. Zhang et al. characterized several 

aspects of packet failure behavior [5]. In particular, 

that work reported determines of reliability of 

failure episode rate, failure episode duration, 

failure free period duration and overall failure 

rates. Papagiannaki et al. [9] used a sophisticated 

passive monitoring infrastructure inside Sprint’s IP 

backbone to congregate packet traces and 
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analyze characteristics of delay and congestion. 

Finally, the limitations in standard end-to-end 

Poisson probing tools by comparing the failure 

rates determined by such tools to failure rates 

determined by passive means in a fully 

instrumented wide area infrastructure [10]. 

The foundation for the notion that Poisson 

Arrivals See Time Averages (PASTA) was 

developed by Brumelle [11], and later formalized 

by Wolff [3]. Variation of those queuing theory 

thoughts into a network probe circumstance to 

determine failure and interruption characteristic 

began with Bolot’s study [6] and was extended by 

Paxson [7]. In recent work, Baccelli et al. evaluate 

the effectiveness of PASTA in the networking 

perspective [12]. Of particular significance to our 

work is Paxson’s reference and use of Poisson-

modulated dynamic probe streams to trim down 

preconception in delay and failure determinations. 

More than a few studies comprise the use of 

failure determinations to approximate network 

properties such as bottleneck buffer size and 

cross traffic intensity [13], [14]. The Internet 

Performance Determination and Analysis efforts 

[15], [16] resulted in a sequence of RFC’s that 

identify how packet failure determinations should 

be identified. However, those RFC’s are devoid of 

facts on how to refrain probe processes and how 

to deduce the consequential determinations. We 

are also guided by Paxson’s up to date work [2] in 

which he advocates meticulous calibration of 

network determination tools. 

ZING is a tool for determining end-to-end packet 

failure in one direction between two participating 

end hosts [17], [18]. ZING sends UDP packets at 

Poisson-modulated intervals with rigid mean rate. 

Savage developed the STING [19] tool to compute 

failure rates in both frontward and turn around 

directions from a single host. STING uses an 

intellectual scheme for manipulating a TCP stream 

to determine failure. Allman et al. confirmed how to 

approximate TCP failure rates from passive 

packet traces of TCP transfers taken close to the 

sender. An allied study examined in dynamic 

packet traces taken in the middle of the network. 

Network tomography based on using both 

multicast and unicast probes has also been 

verified to be helpful for inferring failure rates on 

inner links on end-to-end paths. 

 

III. DEFINITIONS OF FAILURE CHARACTERISTICS 

There are many factors that can contribute to 

packet failure in the Internet. We illustrate some of 

these issues in specify as a basis for accepting 

our dynamic determination objectives. The 

background that we consider is modeled as a set 

of flows that exceed through a router R and 

contend for a single output link with bandwidth Bout 

as shown in Fig. 1(a). The summative input 

bandwidth (Bin) must be larger than the collective 

output link (Bout) in order for failure to take place. 

The mean round trip time for the N flows is M sec. 

Router R is configured with Q bytes of packet 

buffers to put up transfer bursts, with Q naturally 

sized on the order of M B [20], [21]. We presume 

that the queue operates in a FIFO method, that 

the traffic includes a concoction of short- and long-

lived TCP flows as is common in today’s Internet, 

and that the value of will ebb and flow more than 

time.  
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Fig 1. Simple system representation and example of failure 

characteristics under observation. (a) Simple system representation. 

N flows on input links with collective bandwidth Bin compete for a 
single output link on router R with bandwidth Bout where Bin> Bout. 

The output link has Q s of buffer capacity. (b) Example of the growth 

of the length of a queue over time. The queue length grows when 
summative demand exceeds the capacity of the output link. Failure 

episodes begin (points a and c) when the maximum buffer size _ is 

exceeded. Failure episodes end (points b and d) when aggregate 
demand falls below the capacity of the output link and the queue 

drains to zero. 

 

Fig. 1(b) is a design of how the use of the 

buffer in router R may change. When the 

summative sending rate of the N flows exceeds 

the ability of the common output link, the output 

buffer begins to fill. This consequence is seen as a 

positive slope in the queue length graph. The rate 

of raise of the queue length depends both on the 

number N and on sending rate of each source. A 

failure episode begins when the collective sending 

rate has exceeded Bout for a interlude of instance 

sufficient to load Q bytes into the output buffer of 

router R (e.g., at times a and c in Fig. 1(b)). A 

failure episode ends when the collective sending 

rate drops below Bout and the buffer begins a 

steady drain down to zero (e.g., at times b and d 

in Fig. 1(b)). This typically happens when TCP 

sources intellect a packet failure and divide their 

sending rate, or simply when the number of 

challenging flows N drops to a sufficient level. In 

the former case, the duration of a failure episode 

is related to M, depending whether failure is 

sensed by a timeout or fast retransmit signal. We 

define failure episode duration as the difference 

between begin and end times (i.e., b-a and d-c). 

While this definition and model for failure episodes 

is somewhat basic and reliant on well behaved 

TCP flows, it is important for any determinant 

method to be stout to flows that do not react to 

congestion in a TCP-friendly fashion. 

This definition of failure episodes can be 

considered a “router-centric” view since it says 

nothing about when any one end-to-end flow 

(including a probe stream) actually loses a packet 

or wits a lost packet. This contrasts with most of 

the prior work discussed in Section II which 

consider only failures of individual or groups of 

probe packets. In other words, in our 

methodology, a failure episode begins when the 

probability of some packet failure becomes 

positive. During the episode, there might be 

transient periods during which packet failure 

ceases to occur, followed by resumption of some 

packet failure. The episode ends when the 

probability of packet failure stays at 0 for a 

sufficient period of time (longer than a typical 

RTT). Thus, we offer two definitions for packet 

failure rate: 

• Router-centric failure rate: With L the number of 

dropped or failure packets on a given output link 

on router R during a given period of time, and S 

the number of all effectively transmitted packets 

through the same link over the same period of 

time, we define the router-centric failure rate as 

L/(S+L). 

• End-to-end failure rate: We define end-to-end 

failure rate in accurately the same manner as 

router-centric failure-rate, with the warning that we 
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only add up packets that belong to a detailed flow 

of interest. 

It is important to differentiate between these 

two notions of failure rate since packets are 

transmitted at the utmost rate during failure 

episodes. The result is that during a period where 

the router-centric failure rate is non-zero, there 

may be flows that do not fail any packets and 

therefore have end-to-end failure rates of zero. 

This surveillance is central to our study and bears 

directly on the design and implementation of 

active determinant methods for packet failure. 

As a corollary, an important thought of our 

probe process described below is that it must deal 

with instances where entity probes do not 

accurately report failure. We therefore differentiate 

between the true failure episode state and the probe-

determined or observed state. The former refers to 

the router-centric or end-to-end jamming state, 

given cherished knowledge of buffer occupancy, 

queuing delays, and packet drops, e.g., in order 

hidden in the queue length graph in Fig. 1(b). 

Ideally, the probe-determined state reflects the 

true state of the network. 

 

IV. ESTIMATION OF PLAIN POISSON PROBING FOR 

PACKET FAILURE 

 

We begin by using our laboratory to estimate 

the capabilities of simple Poisson-modulated 

failure probe determination using the ZING tool 

[17], [18]. ZING determines packet waiting and 

failure in one direction on an end-to-end path. The 

ZING sender sends UDP probe packets at Poisson-

modulated mean times with timestamps and 

unique serial numbers and the receiver logs the 

probe packets incoming. Users identify the mean 

probe rate, the probe packet size, and the number 

of packets in a “fledge.” 

To estimate simple Poisson probing, we 

configured ZING using the same parameters as in 

[5]. Specifically, we trotted two tests, one with 

=200ms (10 Hz) and 512 byte payloads and 

another with =100ms (20 Hz) and 128 byte 

payloads. To determine the extent of our tests 

below, we preferred an epoch of time that should 

bound the difference of the failure rate estimator 

X  where Var( nX ) ≈p/n for failure rate p and 

number of probes n. 

We conducted three different tests in our 

estimation of simple Poisson probing. In each test 

we determined both the frequency and duration of 

packet failure episodes. Again, we used the 

definition in [5] for failure episode: “a sequence of 

successive packets (perhaps only of same length) 

that were lost.” 

The first test used 40 infinite TCP sources with 

receive windows set to 512 full size (1500 bytes) 

packets. Fig. 2(a) shows the instance sequence of 

the queue possession for a part of the test; the 

predictable management actions of TCP sources 

in jamming evasion is apparent. The test was run 

for a period of 15 min which should have enabled 

ZING to determine failure rate with standard 

deviation within 10% of the mean [10]. 

Results from the test with infinite TCP sources 

are shown in Table I. The table shows that ZING 

performs badly in determining both failure 

frequency and period in this situation. For both 

probe rates, there were no instances of repeated 

failure packets, which clarify the lack of ability to 

evaluate failure episode period. 
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In the second set of tests, we used Viden to 

generate a sequence of (approximately) steady 

period (about 68 ms) failure episodes that were 

spaced arbitrarily at exponential intervals with 

mean of 10s over a 15 minute period. The time 

sequence of the queue length for a portion of the 

test period is shown in Fig. 2(b). 

Results from the test with arbitrarily spaced, 

constant duration failure episodes are shown in 

Table II. The table shows that ZING determines 

failure frequencies and durations that are nearer 

to the true values.  

In the ultimate set of tests, we used Harpoon to 

generate a sequence of failure episodes that 

approximate failure resultant from web-like traffic. 

Harpoon was configured to briefly raise its load in 

order to bring packet failure, on average, every 

20s. The inconsistency of traffic produced by 

Harpoon complicates description of failure 

episodes. To start baseline failure episodes to 

evaluate against, we found trace segments where 

the primary and very last events were packet 

failures, and queuing delays of all packets 

between those failures were above 90 ms (within 

10 ms of the maximum).We trotted this test for 15 

min and a portion of the time series for the queue 

length is shown in Fig. 2(c). 

Results from the test with Harpoon web-like 

traffic are shown in Table III. For determining 

failure frequency, neither probe rate results in a 

near match to the correct frequency. For failure 

episode duration, the results are also deprived. 

For the 10 Hz probe rate, there were no 

successive failures determined, and for the 20 Hz 

probe rate, there were only two instances of 

successive failures, each of closely two lost 

packets. 

 

 
Fig  2. Queue length time series plots for three dissimilar 

background traffic scenarios. (a) Queue length time series for a 

portion of the experiment with 40 infinite TCP sources. (b) 

Queue length time series for a portion of the experiment with 

randomly spaced, constant duration failure episodes. (c) 

Queue length time series for a portion of the experiment with 

Harpoon web-like traffic. Time segments in gray indicate failure 

episodes. 
TABLE I 

RESULTS FROM ZING EXPERIMENTS WITH INFINITE TCP 

SOURCES 

 

  
Frequency 

 

Duration Mean(standard 
deviation)(seconds) 

True Values 0.0268 0.138 (0.0091) 

ZING (10 HZ) 0.0007 0 (0) 

ZING (20 HZ) 0.0003 0 (0) 

 

TABLE II 

RESULTS FROM ZING EXPERIMENTS WITH ARBITRARILY 

SPACED, STABLE DURATION FAILURE EPISODES 
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Frequency 

 

Duration Mean(standard 
deviation)(seconds) 

True Values 0.0072 0.070 (0.000) 

ZING (10 HZ) 0.0039 0.045 (0.0011) 

ZING (20 HZ) 0.0034 0.053 (0.0023) 

 

TABLE III 

RESULTS FROM ZING EXPERIMENTS WITH HARPOON 

WEB-LIKE TRAFFIC 

 

  
Frequency 

 

Duration 
Mean(standard 

deviation)(seconds) 

True Values 0.0096 0.139 (0.0089) 

ZING (10 HZ) 0.0017 0 (0) 

ZING (20 HZ) 0.0015 0.025 (0.0011) 

 

V. PROBE TOOL PERFORMANCE AND ESTIMATION 

 

To estimate the capabilities of our failure probe 

determination process, we built a tool called 

VOILA1 that trapping the basic algorithm. We then 

conducted a sequence of experiments with VOILA 

in our laboratory with the same background traffic 

scenarios described in Section IV. 

The goal of our lab-based tests was to confirm 

our modeling process and to estimate the 

capability of VOILA over a variety of failure 

situations. We report results of experiments 

focused in three areas. At the same time as our 

probe procedure doesn’t guess that we constantly 

get true indications of failure from our probes, the 

accuracy of reported determination will develop if 

probes more constantly point to failure. Among 

this in mind, the first set of tests was considered to 

recognize the capability of an individual probe 

(consisting of 1 to N tightly-spaced packets) to 

accurately report an encounter with a failure 

episode. The second is to check the accuracy of 

VOILA in reporting failure episode frequency and 

period for a range of probe rates and traffic 

scenarios. In our final set of tests, we match up to 

the capabilities of VOILA with simple Poisson-

modulated probing. 

 

A. Exact Reporting of Failure Episodes by Probes 

 

We distinguished in Section III that, preferably, 

a probe should give an exact suggestion of the 

true failure episode state [(1)]. Though, this may 

not be the case. The main matter is that during a 

failure episode, many packets go on to be 

successfully transmitted. Thus, we hypothesized 

that we might be capable to increase the chances 

of probes correctly reporting a failure episode by 

increasing the amount of packets in an individual 

probe. We also hypothesized that, assuming FIFO 

queuing, using one-way holdup information could 

additional develop the accurateness of individual 

probe determination. 

We investigated the first hypothesis in a 

sequence of tests using the infinite TCP source 

background traffic and constant-bit rate traffic 

described in Section IV. Intended of the infinite 

TCP traffic, failure event durations were roughly 

150ms. For the constant-bit rate traffic, failure 

episodes were roughly 68 ms in duration. We 

used a customized edition of VOILA to produce 

probes at permanent intervals of 10 ms so that 

some number of probes would bump into all failure 

episodes. We tested with probes consisting of 

between 1 and 10 packets. Packets in an 

individual probe were sent back to back per the 

capabilities of the determinant hosts (i.e., with 

approximately 30µs between packets). Probe 

packet sizes were set at 600 bytes. 
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Fig. 3. Results from tests of ability of probes containing of N 

packets to report failure when an episode is encountered. 

 

B. Determining Frequency and Duration 

The formulation of our new failure probe 

procedure calls for the user to identify two 

parameters, and, where is the possibility of 

initiating a essential test at a given interval. In the 

next set of experiments, we explore the 

effectiveness of VOILA to report failure episode 

frequency and period for a permanent N and p 

using values of 0.1, 0.3, 0.5, 0.7, and 0.9 (implying 

that probe traffic frenzied between 0.2% and 1.7% 

of the restricted access link). With the time 

discretization set at 5 ms, we set for these 

experiments at 240,000 squashy test duration of 

900s. We also test the failure frequency and 

duration estimates for a fixed p of 0.1 and N of 

960,000 from an hour-long experiment. 

In these tests, we used three dissimilar 

background traffic scenarios. In the first scenario, 

we used Viden to produce accidental failure 

episodes at static duration as described in Section 

IV. For the second, we customized Viden to 

generate failure episodes of three different 

durations (50, 100, and 150 ms), with an average 

of 10s between failure episodes. In the final traffic 

scenario, we used Harpoon to generate self-

similar, web-like workloads as described in 

Section IV. For all traffic scenarios, VOILA was 

configured with probe sizes of 3 packets and with 

packet sizes fixed at 600 bytes. The three packets 

of each probe were sent back-to-back, according 

to the abilities of our end hosts (approximately 30 

µs between packets). For each probe rate, we set 

to the expected time between probes plus one 

standard deviation (viz., = (1-p/p) 

+ 2
(1 / )p p time slots). For α, we used 0.2 for 

probe probability 0.1, 0.1 for probe probabilities of 

0.3 and 0.5, and 0.05 for probe probabilities of 0.7 

and 0.9. 

 

 

TABLE III 

 

COMPARISION OF FAILURE ESTIMATES FOR p=0.1 AND TWO 

DIFFERENT VALUES OF N AND TWO DIFFERENT VALUES FOR 

THE  THRESHOLD PARAMETER 

 
 

 

N  

 

Failure Frequency 

 
 

True VOILA 

 

Failure Duration 

(seconds) 
 

True VOILA 
 

240,000 40 

240,000 80 

 

0.0064 0.0008 

0.0064 0.0021 

 

0.072 0.025 

0.072 0.057 
 

960,000 40 

960,000 80 

 

0.0064 0.0011 

0.0064 0.0027 

 

0.072 0.023 

0.072 0.046 
 

C. Active Features of the Evaluators 

As we have shown, estimates for a small probe 

rate do not considerably pick up even with rather 

large N. A reserved enlarge in the probe rate p, 

however, significantly improves the correctness 

and convergence time of both frequency and 

period estimates. Fig. 4 shows results from an 

experiment using Harpoon to create self-similar, 

web-like TCP traffic for the failure episodes. For 

this test, p is set to 0.5. The peak plot shows both 
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the dynamic features of both true and estimated 

failure episode frequency for the complete 15 min-

long experiment. VOILA estimates are produced 

every 60s for this test. The error bars at each 

VOILA estimate indicate a 95% buoyancy interval 

for the estimates. We see that even after 1 or 2 

min, VOILA estimates have converged close to the 

true values. We also see that VOILA tracks the true 

frequency reasonably well. The bottom plot in Fig. 

4 compares the true and estimated characteristics 

of failure episode duration for the same test. 

Again, we see that after a short period, VOILA 

estimates and poise intervals have converged 

close to the true mean failure episode duration. 

We also see that the active behavior is generally 

well followed. Except for the low probe rate of 0.1, 

results for other experiments exhibit similar 

qualities.

 
 

Fig 4. Comparison of failure frequency and duration estimates 

with true values over 15 min for Harpoon web-like cross traffic 

and a probe rate p = 0.5. VOILA estimates are produced every 

minute, and error bars at each estimate indicate the 95% 

confidence interval. Top plot shows results for failure episode 

frequency and bottom plot shows results for failure episode 

duration. 

VI. USING VOILA IN PRACTICE 

 

There are a number of important realistic 

issues which must be considered when using 

VOILA in the wide area: 

 The tool requires the user to select values 

for p and N. Assume for now that the 

number of failure events is immobile over 

time. Let B0 be the mean number of failure 

events that occur over a unit period of 

time. For example, if a regular of 12 failure 

events occur every minute, and our 

discretization unit is 5 ms, then B0 = 

12/(60×200) = 0.001 (this is, of course, an 

estimate of the true the value of B0). With 

the inactive assumption on B0, we imagine 

the accuracy of our evaluators to depend 

on the product pN B0, but not on the 

individual values of p, N or B0. Indeed, that 

a dependable rough calculation of the 

relative standard deviation in our 

estimation of duration is given by 

 

Standard Deviation (duration) 

0

1

2 pNB
 

 The recent study on packet failure via 

passive determinant [9] indicates that 

failure episodes in backbone links can be 

very short-lived (e.g., on the order of 

several microseconds). The only condition 
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for our tool to effectively detect and 

approximate such short durations is for 

our discretization of time to be finer than 

the order of time period we attempt to 

approximate. Such an obligation may 

imply that commodity workstations cannot 

be used for precise active determinant of 

end-to-end failure characteristics in some 

conditions. A consequence to this is that 

active determinants for failure in high 

bandwidth networks may need high-

performance, specialized systems that 

support small time discretization.  

 Our assessment of duration is seriously 

based on accurate evaluation of the ratio 

B/M. We approximate this ratio by 

counting the occurrence rate of yi=01, as 

well as the occurrence rate of yi=10. The 

number B/M can be expected as the 

average of these two rates. The 

justification is done by determining the 

differentiation between these two rates. 

This variation is directly relative to the 

expected standard deviation of the above 

estimation.  

 Our categorization of whether a probe 

traversed a congested path concerns not 

only whether the probe was failed, but 

how long it was deferred. While a suitable 

 parameter appears to be dictated 

primarily by the value of p, it is not yet 

clear how best to set α for an arbitrary 

path, when characteristics such as the 

level of statistical multiplexing or the 

physical path configuration are unknown. 

Examination of the sensitivity of and α in 

more intricate environment is a subject for 

future work. 

 To accurately calculate end-to-end wait 

time for inferring congest ion requires time 

synchronization of end hosts. While we 

can trivially abolish offset, clock tilt is still a 

unease. New on-line synchronization 

techniques such as reported in [22], or 

even off line methods such as [23] could 

be used effectively to address this matter. 

 

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

The intention of our study was to recognize 

how to determine end-to-end packet failure 

individuality accurately with probes and in a way 

that enables us to specify the impact on the 

bottleneck queue. We began by estimating the 

abilities of simple Poisson-modulated probing in a 

controlled laboratory environment consisting of 

commodity end hosts and IP routers. We think 

about this for failure determination tool evaluation 

since it activates repeatability, concern of ground 

truth, and a range of traffic conditions under which 

to subject the tool. Our primary tests point out that 

simple Poisson probing is relatively ineffective at 

measuring failure episode frequency or 

determining failure episode duration, particularly 

when subjected to TCP (immediate) cross traffic. 

These trial results lead to our improvement of a 

statistically distributed probe procedure that 

provides more exact evaluation of failure 

characteristics than simple Poisson probing. The 

testual design is constructed in such a way that 

the recital of the associated evaluators relies on 
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the total number of probes that are sent, but not 

on their sending rate. Moreover, simple 

techniques that agree to user to authenticate the 

measurement output are introduced. We executed 

this method in a new tool, VOILA, which we tested 

in our laboratory. Our tests exhibits that VOILA, in 

most cases, accurately evaluate loss frequencies 

and durations over a range of cross traffic 

conditions. For the same overall packet rate, our 

results show that VOILA is considerably more exact 

than Poisson probing for determining failure 

episode characteristics. 

While VOILA enables superior accuracy and a 

better accepting of link impact versus timeliness of 

determination, there is still room for improvement. 

First, we intend to examine why p=0.1 does not 

appear to work well even as N increases. Second, 

we plan to examine the issue of suitable 

parameterization of VOILA, as well as packet sizes 

and the α and parameters, over a range of 

reasonable operational settings with more 

multifarious multihop paths. At last, we have 

considered adding adaptively to our probe process 

model in a limited sense. We are also considering 

alternative, parametric methods for inferring failure 

characteristics from our probe process. Another 

task is to approximate the inconsistency of the 

estimates of congestion frequency and time period 

themselves straightly from the determined data, 

under a minimal set of geometrical assumptions 

on the congestion procedure. 
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