

2007 2009

2011

2014

A Storage, Retrieval, and Application Platform

for Ultra-Large-Scale Linked Data

Yongju Lee
School of Computer Science and Engineering

Kyungpook National University,

Daegu, Korea

Jeonghong Kim
School of Computer Science and Engineering

Kyungpook National University,

 Daegu, Korea

Changsu Kim
School of Business

Yeungnam University, Gyeongsan,

Gyeongbuk, Korea

Abstract—Recently, a very pragmatic approach towards

achieving the Semantic Web has gained some traction with

Linked Data. While many standards, methods, and technologies

are applicable for Linked Data, there are still a number of open

problems in the area of Linked Data. Particularly, there have

been tremendous amounts of efforts of Semantic Web

community to develop the Linked Data platform but there is still

lack of a systematic approach on architectures, technologies,

and applications. Therefore we propose a novel storage,

retrieval, and application platform and investigate in detail the

storage and indexing, query processing, and application

approaches for the platform. We also present a semantic

Mashup application as an example of the proposed approaches.

Keywords—Linked Data; platform; RDF store; SPARQL;

Mashup applications

I. INTRODUCTION

Linked Data refers to a set of best practices for publishing

and interlinking structured data on the Web [1]. These

practices were introduced by Tim Berners-Lee in his Web

architecture note Linked Data: the Linked Data principles [2].

The basic idea of Linked Data is to apply the general

architecture of the Web to the task of sharing structured data

on global scale. Technically, Linked Data is employing URIs

(Uniform Resource Identifications), RDF (Resource

Description Framework), and HTTP (Hypertext Transfer

Protocol) to publish structured data and to connect related

data that is distributed across multiple data resources. Over

the past eight years, a large number of data provides have

begun to adopt the Linked Data principles. Fig. 1 depicts the

growth of Linked Data originating from the W3C

LOD(Linked Open Data) project [3].

RDF is the data model for Linked Data, and SPARQL is

the standard query language for this data model. All data

items in RDF are represented in triples of the form (subject,

predicate, object). Since RDF triples are modeled as graphs,

we cannot directly adopt existing solutions from relational

databases and XML technologies [4]. Thus, we need to

discuss how Linked Data should be stored, indexed, and

retrieved. Spurred by efforts like LOD project, a large

amount of semantic data are available in the RDF formant in

many fields such as science, business, bioinformatics, social

networks, etc. These large volumes of RDF data motivate the

need for scalable native RDF data management solutions

capable of efficiently storing, indexing, and querying RDF

data. In this paper, therefore, we propose a storage, retrieval,

and application platform for large scale Linked Data. We

present an overview the Linked Data lifecycle workflow

architecture, and discuss individual components with regard

to storage and indexing, query processing, and application

approaches of Linked Data.

Fig. 1. Growth of the Linking Open Data Cloud

II. LINKED DATA PLATFORM

The platform has a data workflow architecture (see Fig. 2)

that has been implemented using a graph-based RDF store

and open source semantic components from the Semantic

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

1

Web community. Our platform’s workflow consists of four

steps: Data acquisition, Building ontology, Storage &

Indexing, and Retrieval & Analysis. These steps do not exist

in isolation but mutually fertilize themselves.

Fig. 2. Data workflow architecture for Linked Data

A. Data Acquisition

Information represented in unstructured form or

structured representation formalism must be mapped to the

RDF data model in order to be used within the workflow-

based platform. The proposed system crawls Web sites and

extracts unstructured data. We used a semi-automatic

scraping procedure for each website to extract key properties.

This procedure is based on a crawler such as Scrapy [5], the

open source scraping framework. The extracted properties are

then transformed into RDF triples. Structure data, e.g.

relational databases, are transformed into RDF triples using

D2R Server [6]. D2R Server is an open source tool for

publishing relational databases on the Linked Data.

B. Building Ontology

RDFS(RDF Schema) and OWL(Web Ontology

Language) are key Semantic Web technologies that give you

a way to write down rich descriptions of your RDF data.

Protege [7] is an open source ontology editor and a

knowledge acquisition system. It is the leading ontological

engineering tool. To ensure the successful employment of

Linked Data, it is essential that they rely on the use of high

quality ontologies. In spite of using the ontological

engineering tool, building such ontologies is difficult and

costly, thus hampering Linked Data deployment. We

investigate a new ontology learning method to generate

ontologies automatically.

C. Storage and Indexing

Once there is a critical mass of RDF data, mechanisms

have to be in place to store and index this data efficiently.

Our platform uses the graph-based RDF store. With this

store, the platform provides a SPARQL endpoint that allows

any user to access the stored RDF triples via more expressive

graph queries. Our system indexes the triples stored in the

RDF store. These triples are mapped into multidimensional

histograms stored in an MDH* index structure.

D. Retrieval and Analysis

Our platform provides search capabilities such as

SPARQL and NoSQL over the RDF triples. In addition to

search, we can advance to build various applications based on

Linked Data, For instance, we can implement an aggregation

of dashboards that presents various business analytics

computed on the Linked Data.

III. TECHNOLOGIES ENABLING LINKED DATA

PLATFORM

This chapter aims to explain the individual components

with regard to storage and indexing, query processing, and

application approaches for the platform. Due to space

limitations, we omit a detail discussion of the data acquisition

as well as building ontology of the platform.

A. Storage and Indexing

There are two approaches to store Linked Data [8, 9].

First, we can maintain independent data copies in a local

storage, benefiting from convenient conditions for efficient

query processing, which we call “local approach,” The

second approach is based on accessing distributed data on-

the-fly using link traversal, which we call “distributed

approach.”

Local approaches are copying data into a centralized

registry in a manner similar to search engines for the Web of

documents. By using such a registry, it is possible to provide

excellent query response times. However, there are a number

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

2

of drawbacks. First, query results may not reflect the most

recent data. Second, storing all data may be expensive and the

performance penalty can be high as the volume of dataset

increases. There is a large amount of unnecessary data

gathering, processing, and storing. Third, users can only use

the portion of the Web of data that has been copied into the

registry.

Distributed approaches are not much different from work

on relational federation systems. Such approaches offer

several advantages: There is no need to synchronize copied

data. Queries are more dynamic with up-to-date data. New

resources can be added easily without a time lag for indexing

and integrating the data, and these systems require less

storage. However, the potential drawback is that we cannot

assume that all publishers provide reliable SPARQL

endpoints for their Linked Data.

We investigate a compromise method between the local

approach and the distributed approach. The local approach

obviously offers better performance, but the queried data

might not be up-to-date because Linked Data change a lot.

The maintenance of local auxiliary index structures may

solve this problem instead of storing data triples entirely

locally. Using indexes we can retrieve distributed data

resources participating on a query result, rapidly reducing the

amount of data that are really needed to be accessed on-

demand.

We adapt multidimensional histograms(MDH) techniques

[9] for Linked Data storage and indexing. The goal of our

index structure called MDH* is to support efficient join query

processing without significant storage demand. In order to

scale the query processor, we should design a compact

storage structure and minimize the number of indexes used in

the query evaluation.

The first step of building the MDH* is to transform the

RDF triples into the numerical space. We apply a hash

function to the RDF triples for numerical numbers. In this

case, these numbers are points in the n-dimensional data

space whose coordinates correspond to 3-dimensional cubes

for (s, p, o), where s denotes the subject, p the predicate, and

o the object. The coordinates are inserted one after another

and aggregated into regions. Each region maintains a list of

resources. Each resource in the triple table is extended with

two additional occurrences in order to speed up join queries

rather than single RDF triple. The occurrences specify s# and

o#, where s# indicates the number of subjects in which o

occurs as subjects in the RDF dataset and similarly o#

indicates the number of objects in which s occurs as objects.

Definition 1: A pair (t, v) is an RDF tuple with count

values v, where t is a triple of points (x, y, z) and v is

occurrences s# and o#. Note that the RDF tuple ((x, y, z), (s#,

o#)) is equivalent to the 5-column tuple (x, y, z, s#, o#)

We decided to use the equi-width histograms for the

MDH*, because they can be built efficiently even if the exact

distribution is not known in advance. In the histograms, each

partition defines the boundaries of a region in the dimension.

Since counting and storing the occurrences may be costly,

adding the counts can be performed as a batch operation once

the MDH has been constructed. When a query is given, the

first step is to determine relevant numerical triples that

answer the query. By looking up these triples in the MDH*,

we obtain a set of resources potentially providing relevant

data.

B. Query Processing

There are two types SPARQL queries: single triple

pattern query and join triple pattern query. Processing

queries with single triple pattern is straightforward. When a

query consists of multiple triple patterns that share at least

one variable, we call the join triple pattern query. In

SPARQL queries, there are eight triple patterns [10]. Among

them (?s, ?p, ?o) is required a full scan, and the number of

triples matching (s, p, o) is 0 or 1. Hence, we need to estimate

the selectivity of six triple patterns: (s, p, ?o), (?s, p, o), (s, ?p,
o), (s, ?p, ?o), (?s, ?p, o), (?s, p, ?o).

Due to the page length limit, we describe here the steps

for evaluating (s, p, ?o). We process this pattern in three

steps: (1) Using the MDH*, we locate all regions that

possibly provide the result. (2) We need to find the set of

relevant resources in the regions. (3) We examine each

relevant resource to find objects matching the given values of

s and p. First of all, (s, p, ?o) is converted into a set of

coordinates in the data space by applying the same hash

function that we used for the index creation. However, in

contrast to building hash values for RDF triples, triple

patterns for queries might contain variables. Because of these

variables, we have to work with regions instead of points.

Using a query line in the space, we can determine all regions

contained in the MDH* that overlap with the line. After

having identified all relevant regions, we can determine the

set of relevant resources.

Since the join query is expressed by conjunction of

multiple triple patterns, a prerequisite is to identify relevant

resources that possibly provide the result for a basic triple

pattern. With the help of our MDH*, we can choose the data

regions that contain all possible triples matching the patterns.

Then, we can find sets of relevant resources. A join algorithm

can be implemented by using many various techniques (e. g.,

merge join, hash join, nested-loop join, etc.) known from

relational databases. A straightforward implementation of a

region join is the nested-loop join. Considering an example of
(s, p, ?o) (?s, p, ?o) pattern, if s# is not 0, then perform the

join operation. This operation checks whether the two tuples

satisfy the join condition. If the join condition is satisfied,

then the values of these two tuples are added to the result and

s# is decremented by one. This process repeats until s#

becomes 0. Thus our algorithm can quickly prune

unnecessary scanning that is guaranteed not to match the

query. Similar process applies to o# if (?s, p, o) (?s, p, ?o)

pattern is given.

C. Application Approaches

With large scale Linked Data being published on the Web,

a number of efforts are under way to develop applications in

regard to the Semantic Web. The followings are software

components that can be used implement applications on top

of the platform.

 Browser: Semantic browsers enable users to navigate

between data sources along RDF links. They discover

new data sources by automatically following

owl:sameAs links and allow the user to move through

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

3

Linked

Data

Service 1

Linked

Data

Service 2

input output input output

country

state

area

country

countryID countryCode

state

stateName

area

areaCode

zip

code

city

city

cityName nameOfCity

Semantic Agent
 - Mashup Editor

 - Data Mediation

 - Ontologies

Cluster

Ontology

Property
Property

Cluster

a potentially endless Web of data sources connected

by RDF links. Examples of such browsers include

Tabulator, Marbles, CBS(Context Search Browser),

Magpie, and Piggy Bank.

 Search Engine: Semantic search engines use robots to

crawl RDF data by following data-level links from the

Web of Linked Data. They provide expressive query

capabilities over the complete data space, similar to

those provided by conventional relational databases.

Examples of such search engines include FalconS,

SWSE(Semantic Web Search Engine), Sindice,

Sig.ma, Swoogle, and Watson.

 Application: Linked Data applications that target

specific topical domains include “Active Hiring” (a

search based application providing analytics on on-

line job posts [11]), “DBpedia Mobile” (a location-

centric DBpedia client application for mobile devices

[12]), and “LinkedGeoData” (an efforts to add spatial

dimension to the Web of Linked Data [13]).

A key challenge now is to build applications based on the

Linked Data. One of main trends in Semantic Web

community is publishing big datasets to the Web in the

format of Linked Data. The emergence of Linked Data has

been making an excellent revolution of Semantic Web

applications. For example, Mashup is a Web application that

combines content from two or more services to create a new

service. Although Mashup has emerged as a very popular

method of integrating Web services, it is still suffer the data

heterogeneity coming from various sources having different

formats. To solve this problem, we adopt the Linked Data

based on RDF data as a unified data model. Unlike existing

Mashup applications against a fixed set of data sources,

Linked Data applications can discover new data sources at

runtime and deliver more complete answers as new data

sources appear.

Fig. 3 shows our semantic Mashup approach that uses two

Linked Data services1: a hotel search service and a mapping

service. Their interfaces could be semantically similar, i.e.,

the first service returns a location as an output and the second

service receives a location. But the vocabulary used by the

two services could be very different. For example, what one

service interface may encode as countryID, stateName, and

cityName may be referred to by another service interface as

countryCode, areaCode, and nameOfCity. Today, in IT

integration projects, a substantial amount of developer time is

spent in identifying these kinds of semantic ambiguities and

resolving them. The semantic technology can be used to

automatically match and map parameters represented as RDF

data interfaces. Here, although countryID and countryCode

are different forms, they have the same semantics since they

are properties of the same object (i.e., country) (Similarly,

cityName and nameOfCity can be considered as the same

semantics). Also stateName and areaCode have the same

semantics since they are referred to the same concept.

Fig. 3. Semantic Mashup Approach

1 The W3C Linked Data Platform (LDP) defines a read/write Linked Data

architecture based on the RESTful protocol. This concept is similar to the
Linked Data service.

IV. CONCLUSION

The evolution of Linked Data on the Web has made a

strong wave of research approaches in Semantic Web

community. In this paper we proposed a Linked Data

platform that is the storage, retrieval, and application

platform for ultra-large-scale Linked Data. We also

investigate the storage and indexing, query processing, and

application approaches for the platform. Our platform is an

integrated workflow-based architecture which supports the

whole life cycle of Linked Data from data acquisition,

building ontology via storage and indexing to retrieval and

analysis. The main components of the platform are open

source in order to facilitate wide usage and ease the

scalability. This proposal is a first step of our research aiming

at increasing tool coverage and building real Linked Data

applications.

REFERENCES

[1] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989. S. Auer, J. Lehmann, A. N. Ngomo, and A.
Zaveri, “Introduction to Linked Data and its lifecycle on the Web,” in

Proc. 9th Int. Summer School 2013, Mannheim, Germany, pp. 1-90,

2013.
[2] T. Berners-Lee, “Linked Data-Design Issues,” 2006,

http://www.w3.org/ DesignIssues/LinkedData.html.

[3] SWEO Community Project. (January 2007). Linking open data
[Online]. Available:

http://www.w3.org/wiki/SweoIG/TaskForces/Community-

Projects/LinkingOpenData
[4] M. Svoboda, “Efficient querying of distributed Linked Data,” in Proc.

2011 Joint EDBT/ICDT PhD Workshop, 2011, pp. 45-50.

[5] Scrapy: An open source web scraping framework for pthon,
http://scrapy.org/

[6] http://d2rq.org/d2r-server.

[7] http://protege.stanford.edu.
[8] O. Hartig, “An overview on execution strategies for Linked Data

queries,” Datenbank Spektrum, vol. 13, no. 2, pp. 89-99, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

4

[9] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. U. Satler, and J.

Umbrich, “Data summaries for on-demand queries over Linked Data,”
in Proc. 19th Int. Conf. on World Wide Web (WWW), pp. 411-420,

2010.

[10] A. Harth and S. Decker, “Optimized index structures for querying RDF
from the Web,” in Proc. 3rd Latin American Web Congress (LA-Web),

pp. 71-81, 2005.

[11] A. D. Mezaour, J. Law-To, R. Isele, T. Schandl, and G. Zechmeister,
“Revealing Trends and Insights in Online Hiring Market Using Linking

Open Data Cloud: Active Hiring a Use Case Study,” Semantic Web

Challenge, 2012.
[12] C. Becker and C. Bizer, DBpedia Mobile: A Location-Enabled Linked

Data Browser, 1st Workshop about Linked Data on the Web (LDOW

2008), Beijing, China, April 2008.
[13] C. Stadler, J. Lehmann, K. Hoffner, and S. Auer, LinkedGeoData: A

Core for a Web of Spatial Open Data, Semantic Web Journal, Vol. 3,

No. 4, pp. 333-354, 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

5

