
A Study Of Distributed Source Separation Detection And Energy Efficient

Cut Detection Algorithms Based On An Electrical Analogy

Y. Mamatha
1
, N. Krishna Vardhan

2

1
M.Tech(CSE), Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair, India.

2
Asso.Professor, Sri Kottam Tulasi Reddy Memorial College of Engineering, Kondair, India.

Abstract

 Wireless Sensor Networks can be used to

monitor and collect various physical attributes

within a specific area of interest. In most of the

cases, sensor nodes may fail and the network split

into two or more disconnected partitions. This may

lead to an issue of effectiveness of the network.

Therefore, repairing partitions is a priority. By

reasoning upon the degree of connectivity with

neighbors, a mobile node finds the proper position

where to stop in order to re-establish connectivity.

In this paper we present a method to repair

network partitions by using mobile nodes.

 In this paper, we study how to monitor the

sensor network itself, and how to detect when the

network has suffered a significant “cut”? We also

study a distributed algorithm to detect “cuts” in

sensor networks.

1. Introduction

Wireless sensor networks (WSNs) are a

promising technology for monitoring large regions

at high spatial and temporal resolution. However,

the small size and low cost of the nodes that makes

them attractive for widespread deployment also

causes the disadvantage of low operational

reliability. A node may fail due to various factors

such as mechanical/electrical problems,

environmental degradation, battery depletion, or

hostile tampering. In fact, node failure is expected

to be quite common due to the typically limited

energy budget of the nodes that are powered by

small batteries. Failure of a set of nodes will reduce

the number of multi-hop paths in the network. Such

failures can cause a subset of nodes – that have not

failed – to become disconnected from the rest,

resulting in a “cut”. Two nodes are said to be

disconnected if there is no path between them.

Wireless Sensor Networks (WSNs) have been

developed and extensively applied in monitoring.

WSNs can be used to monitor and collect various

physical attributes within a specific area or

environment of interest. Therefore, WSNs can be

viewed as a large database whose data readings

from the sensors may be abnormal due to faulty

sensors or unusual phenomenon in the monitored

domain. However, with huge amount data, much

energy is wasted in transmitting all of the measured

data to the base station. Hence, in order to reduce

energy consumption of transmitting all data should

be preprocessed prior to transmission while still

maintaining the acceptable anomaly detection rate.

A rich variety of scientific, commercial, and

military applications has been proposed for sensor

networks, and many experimental prototypes are

under development in academia and industry.

Realizing the full potential of the sensor networks,

however, requires solving several challenging

research problems. Many of these challenges stem

from two major limitations of the sensor nodes:

low power and low bandwidth. Consequently, a

number of proposals have been made for improving

the data collection and information processing in

sensor networks, including power-aware routing

and scheduling, in network aggregation, query

processing, data storage management, etc.

After all, if sensor networks are to act as our

remote “eyes and ears,” then we need to ensure that

any significant failure (natural or adversarial)

suffered by the network is promptly and efficiently

detected. Tracking the operational health of the

infrastructure is important in any communication

network, but it is especially important in sensor

networks due to their unique characteristics, and

the need to perform this duty with very little

overhead.

In our view, power efficiency, scalability, and

absence of false positives are the three most

important considerations for a scheme to detect

network cuts. Because a sensor network’s lifetime

is largely determined by how well it conserves

power, solutions where all sensors are continuously

monitored are both inefficient and unscalable.

Because sensor networks can vary in size from few

hundred nodes to hundreds of thousands, it is also

desirable to design schemes that are highly

scalable, so that the task of cut detection does not

end up consuming a large part of the network

resources. Finally, because many sensor network

applications envision unmanned and remote

deployment, failure detection schemes that yield

false positive, or false negatives, are highly

undesirable.

We propose a distributed algorithm to detect

“cuts” in sensor networks, i.e., the failure of a set

of nodes that separates the networks into two or

709

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60323

more components. The algorithm consists of a

simple iterative scheme in which every node

updates a scalar state by communicating with its

nearest neighbors. In the absence of cuts, the states

converge to values that are equal to potentials in a

fictitious electrical network. When a set of nodes

gets separated from a special node, that we call a

“source node”, their states converge to 0 because

“current is extracted” from the component but none

is injected. These trends are used by every node to

detect if a cut has occurred that has rendered it

disconnected from the source. Although the

algorithm is iterative and involves only local

communication, its convergence rate is quite fast

and is independent of the size of the network.

 2. Network Failure Detection

In this section we identify various aspects to

detect the network failures by monitoring network

connectivity and detect the failure edges like

monitoring network connectivity, detecting sets for

edge failures and detecting sets for node failures.

Geometric Preliminaries

The network topology and the communication

protocol are not directly relevant to our result. We

simply assume that the sensor network is connected

and that every sensor is able to communicate with a

base station through multi-hop routing, as long as a

valid communication path exists. We also assume

that the location of every sensor is available to the

base station. A set S of n sensors scattered in a

terrain is modeled as a set of n points in the plane

(ignoring the altitude of each sensor). Our problem

of monitoring the integrity of the sensor field is

best studied in a geometric setting.

a. Sentinel sets

b. A Duality Transform

c. Line Arrangements and Levels

d. Minimum Link Separators in

Arrangements

A network of sensors is considered to be

connected only if there is at least one path between

each pair of nodes in the network. Connectivity

depends primarily on the existence of paths. It is

affected by changes in topology due to mobility,

the failure of nodes, attacks and so on. The

consequences of such occurrences include the loss

of links, the isolation of nodes, the partitioning of

the network, the upgrading of paths and re-routing.

Connectivity can be modeled as a graph G (V, E)

where V is the set of vertices (nodes) and E the set

of edges (links). This graph is said to be k-

connected if there are at least k disjoint paths

between every pair of nodes u, v, V. Connectivity is

a measure of fault tolerance or diversity of paths in

the network. The need for 1-connectivity of the

network graph is a fundamental condition of it

being operational. Indeed, the connectivity of a

network can be expressed as follows.

where R is the radius of transmission, A the area

and N the number of nodes in the area A.

Wireless sensor networks are commonly

deployed in hostile environments and are
susceptible to numerous faults in several layers of

the system. Figure 1 depicts the source of these

failures and demonstrates the potential for

propagation to higher layers. The source of failures

in this classification is divided in to four layers:

node, network, sink and the base station. To

address these problems it is useful to implement a

system that allows monitoring of the network. At

any moment such a system must be able to provide

the operational status of different devices and to

establish mechanisms that provide fault tolerance.

By definition fault tolerance is a technique that has

been proven to make systems capable of providing

a good service, even in the presence of accidental

phenomena such as disturbance of the environment

(external faults), failure of hardware components

(internal physical faults), or design faults,

particularly software faults (bugs). Under the terms

of dependability, faults are the causes of errors,

mistakes are part of the abnormal state of the

system and when errors are propagated to the

system interface – i.e. when the service provided

by the system is incorrect – this results in a failure.

When mistakes are accidental and sufficiently rare,

it is possible to tolerate them. This requires

detecting errors before they occur, with error

handling in case they can’t be rectified. We must

also make a diagnosis, in other words identify

the fault, isolate faulty components, replace or

repair and reset the system in case there is no

alternative. In a wireless sensors network, fault

tolerance is the ability to ensure the functionality

of the network in the face of any interruption due

to failures of sensor nodes.

710

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60323

Figure 1: Fault tolerance and Propagation

3. Problem Statement and Solution

Consider a sensor network modelled as an

undirected graph G = (V ,E), whose node set V

represents the sensor nodes and the edge set E

consists of pairs of nodes (u,v) such that nodes u

and v can exchange messages between each other.

Note that we assume inter-node communication is

symmetric. An edge (u,v) is said to be incident on

both the u and v. The nodes that share an edge with

a particular node u are called the neighbours of u.

A cut is the failure of a set of nodes Vcut ⊂ V such

that the removal of the nodes in Vcut and the edges

that is incident on Vcut from G results in G being

divided into multiple connected components.

Recall that an undirected graph is said to be

connected if there is a way to go from every node

to every other node by traversing the edges, and

that a component Gc of a graph G is a maximal

connected sub graph of G (i.e., no other connected

sub graph G′ c of G contains Gc as its sub graph).

We are interested in devising a way to detect if a

subset of the nodes has been disconnected from a

distinguished node, which we call the source node,

due to the occurrence of a cut.

The DSSD algorithm consists of two phases.

One is a state update law, which a simple iterative

procedure to compute the node potentials in the

electrical network (Gelec,1) when s Ampere

current is injected at the source node and extracted

through the nodes Vfict, with all the nodes in Vfict

grounded. The source strength s is a design

parameter. The other phase of the algorithm

consists of monitoring the state of a node, which is

used to detect if a cut has occurred. We now

describe the two phases below. Note that the

separation into two phases is merely for conceptual

clarity, they are carried out simultaneously at every

node.

Figure 2: Connectivity and coverage in Wireless

Sensor Networks

A. State update law

Let G(k) = (V (k),E (k)) denote the sensor

network that consists of all the nodes and edges of

G that are still active at time k, where k = 0,1,2,... is

an iteration counter. For ease of description, we

index the source node as 1. Every node u maintains

a scalar state xu(k) that is iteratively updated. At

every iteration k, nodes broadcast their current

states. Let Nu(k) = {v|(u,v) ∈ E (k)} denote the set

of neighbours of u in the graph G(k). Every node in

V except the source update its state as:

where du(k) := |Nu(k)| is the number of active

neighbours of u at time k. If we count the fictitious

node corresponding to u as one of u’s neighbours

whose state is held fixed at 0, then the above can be

thought of as an average of the neighbours’ states.

The source node updates its state as:

The description above assumes that all updates are

done synchronously, or, in other words, every node

shares the same iteration counter k. In practice,

especially with wireless communication, an

asynchronous update is preferable. To achieve this,

every node keeps in its buffer a copy of the last

received state of each of its neighbours. If in a

particular iteration, a node does not receive

messages from a neighbour during a time-out

period, it updates its state using the last

successfully received state from that neighbour.

When a node fails, its neighbours will cease to

receive messages from it permanently. When a

node does not receive broadcasts from one of its

neighbours for sufficiently long time, it removes

that neighbour from its neighbour set. From then

on, the node carries on the algorithm with the

remaining neighbours.

B. State monitoring for cut detection

Theorem 1 shows how the occurrence of a cut in

the network is manifested in the states of the nodes.

By analyzing their own states, nodes can detect if a

cut has occurred. Suppose a cut occurs at some

time τ > 0 which separates the network into n

components Gsource,G2,...,Gn, the component

Gsource containing the source node. Since there is

no source (and therefore no current injection) in

each of the components G2,...,Gn disconnected

from the source, it follows from Theorem 1 that the

state of every node in each of these components

will converge to zero. When the potential at a

711

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60323

particular node drops below a particular threshold

value, the node can declare itself cut from the

source node. In fact, there may be additional node

failures (and even increase in the number of

components) after the cut appears. Since the state

of a node converges to 0 if there is no path to the

source, additional time variation in the network

will not affect cut detection. If additional failures

do not occur after the cut occurs, it follows from

Theorem 1 that the states of the nodes that are in

the component Gsource (which contains the

source) will converge to new steady state values.

So, if a node detects that its state has converged to

a steady state, then changed, and then again

converged to a new steady state value that is

different from the initially seen steady state, it

concludes that there has been a cut somewhere in

the network. A node detects when steady state is

reached by comparing the derivative of its state

(with respect to time) with a small number ǫ that is

provided a-priori. The parameters s and ǫ are

design variables.

A major strength of the algorithm is that its

convergence rate is independent of the number of

nodes in the graph. This is particularly remarkable

in view of the fact that the algorithm is purely

distributed and employs only nearest neighbour

communication. The convergence rate of

distributed algorithms that use nearest neighbour

communication, such as average consensus,

rendezvous, decentralized formation control, etc.

typically depend on the algebraic connectivity of

the graph. The algebraic connectivity tends to

decrease as the size of the graph increases, slowing

down the convergence rate. In contrast, the DSSD

algorithm’s convergence rate is independent of the

size of the network. The upshot of this property is

that the delay between the occurrence of a cut and

its detection can be bounded by a constant

irrespective of the size of the network.

4. Robust and Energy Efficient Cut

Detection

In this section, we present the theoretical

foundations of cut detection and propose

algorithms to enhance robustness and improve

energy efficiency.

4.1 Preliminaries

We model our network as an undirected,

connected graph G = (V,E), where the set of

vertices V = {v1, v2, ..., vm} is the set of m nodes in

the network and the set of edges E = {(vi, vj)|vi, vj

∈ V } represents radio connectivity among nodes

in the network. We denote by Ni = {vj |(vi, vj) ∈

E} the set of neighbors of a node vi, and by |Ni| the

degree of node vi. Time is denoted as a discrete

counter k = 0, 1, 2, Each node vi maintains a

positive real value xi(k) which is called the state.

The state is initialized to zero, i.e., xi(0) = 0 at time

k = 0. One node in the network is designated as the

source node. Although the source node may be

selected arbitrarily, by convention we select the

sink to be the source in WSN. For simplicity, we

assume that v1 is the source node. At every

iteration k, each node vi updates its state xi(k) and

broadcasts it. All nodes except the source node

update their states using the following equation:

The source node v1 uses a slightly different state

update equation:

where s, called the source strength, is a user

specified scalar. Previously it was proved that the

state of each node converges, after a number of

iterations, to a positive value. We define a “cut” as

a network partition, in which the graph G is

separated into n disjoint connected components

Gsource,G2, ...,Gn, where Gsource = (Vsource,

Esource) is a graph which contains the source

node. When a “cut” occurs, the state of each node v

Vsource converges to 0. The convergence of a

node’s state is illustrated. Around iteration 40, the

scalar state of nodes in the network converges.

Shortly after iteration 60, a cut occurs in the

network when the two nodes in the middle fail.

After the cut, the state of a node on the right side

rapidly decays to 0 while the state of a node on the

left side converges to a new higher state. A critical

observation is that the states of all nodes converge

to new values, hence all nodes have the ability to

detect a cut in the network. One troublesome aspect

of cut detection using this distributed algorithm is

that it is susceptible to attacks. A malicious node

located in the disconnected part of the network can

imitate a source node, and hence affect the state

value that each node computes.

4.2 Robust Cut Detection Algorithm

Temporary variations of a node’s state, often

caused by packet loss, can be tolerated by a system

implementing cut detection as described above.

The states of nodes in the network will eventually

converge. However, this is not true when a non-

source node continuously injects a constant state to

the system. This malicious source node is formally

defined as:

Definition: A node vi ∈ G is a malicious node Mi if

it acts as a source node in the network, i.e., it

712

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60323

updates its state according to equation 2 with an

arbitrary strength s_, as given by

5. Conclusion

A wireless sensor network can get separated

into multiple connected components due to the

failure of some of its nodes, which is called a “cut”.

In this article we consider the problem of detecting

cuts by the remaining nodes of a wireless sensor

network. We propose an algorithm that allows

every node to detect when the connectivity to a

specially designated node has been lost, and one or

more nodes (that are connected to the special node

after the cut) to detect the occurrence of the cut.

The algorithm is distributed and asynchronous:

every node needs to communicate with only those

nodes that are within its communication range.

References

[1]. Prabir Barooah, Harshavardhan Chenji, Radu

Stoleru, and Tam´as Kalm´ar-Nagy – “Cut

Detection in Wireless Sensor Networks”, IEEE

Transaction on Parallel and Distributed

Systems,2012.

[2]. Nisheeth Shrivastava Subhash Suri, Csaba D.

T´oth – “Detecting Cuts in Sensor Networks”.

[3]. Benahmed Khelifa, H. Haffaf , Merabti

Madjid3, and David Llewellyn-Jones –

“Monitoring Connectivity in Wireless Sensor

Networks”, International Journal of Future

Generation Communication and Networking

Vol. 2, No. 2, June, 2009.

[4]. Jon Kleinberg Mark Sandler Aleksandrs

Slivkins – “Network Failure Detection and

Graph Connectivity”, June, 2003 Minor

revision: July 2007.

[5]. Myounggyu Won, Stephen M. George, and

Radu Stoleru – “RE2-CD: Robust and Energy

Efficient Cut Detection in Wireless Sensor

Networks”, B. Liu et al. (Eds.): WASA 2009,

LNCS 5682, pp. 80–93, 2009. Springer-Verlag

Berlin Heidelberg 2009.

[6]. Prabir Barooah – “Distributed Cut Detection

in Sensor Networks”, Proceedings of the 47th

IEEE Conference on Decision and Control

Cancun, Mexico, Dec. 9-11, 2008.

713

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60323

