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Abstract 

The task of extracting knowledge from databases is 

quite often performed by machine learning 

algorithms. Many algorithms can only process 

discrete attributes. Real-world databases often 

involve continuous features. Those features have to 

be discretized before using such algorithms. 

Discretization methods can transform continuous 

features into a finite number of intervals, where each 

interval is associated with a numerical discrete 

value. This paper analyzed existing data 

discretization techniques for data preprocessing. 

Firstly, the importance and process of discretization 

is studied.  Furthermore, we conduct an experimental 

study of discretization methods involving the most 

representative and newest discretizers. It's essential 

to select proper methods depending on learning 

environment. At last, the thought of choosing the best 

discretization methods in association analysis is 

proposed as future research. 

 

Keywords – Discretization, Continuous data, 

Data Mining, Classification. 

 

1.  Introduction. 
 
Data mining can be defined as the non trivial process 

of identifying valid, novel, potentially useful, 

ultimately understandable patterns in data. Even 

though the modeling phase is the core of the process, 

the quality of the results relies heavily on data 

preparation which usually takes around 80% of the 

total time. An interesting method for data preparation 

is to discretize the input variables. Discretization of 

continuous attributes plays an important role in 

knowledge discovery. Many algorithms related to 

data mining require the training examples that 

contain only discrete values, and the rules generated 

by classification algorithms with discrete values are 

normally shorter and more understandable. Suitable 

discretization is useful to increase the generalization 

and accuracy of discovered knowledge. 

Discretization is the process of dividing the range of 

the continuous attribute into intervals. Every interval 

is labeled a discrete value, and then the original data 

will be mapped to the discrete values.  

Discretization of the continuous attributes is an 

important preprocessing approach for data mining 

and machine learning algorithm. An effective 

discretization method not only can reduce the 

demand of system memory and improve the 

efficiency of data mining and machine learning 

algorithm, but also make the knowledge extracted 

from the discretized dataset more compact, easy to be 

understand and used. Research shows that picking the 

best split points is a NP-complete problem. The result 

of discrimination is related not only with the 

discretization algorithm itself but also with the data 

distribution and the number of split points. When the 

same discretization algorithm is applied to different 

dataset, we may get different result. We can only 

know the effectiveness of the discretization method 

by the result of post processing. So whether the 

discretization method is good or not is also related 

with the induction algorithm adopted later. 

There are many advantages of using discrete values 

over continuous ones: (1) Discretization will reduce 

the number of continuous features' values, which 

brings smaller demands on system's storage. (2) 

Discrete features are closer to a knowledge-level 

representation than continuous ones. (3) Data can 

also be reduced and simplified through discretization. 

For both users and experts, discrete features are 

easier to understand, use, and explain. (4) 
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Discretization makes learning more accurate and 

faster. (5) In addition to the many advantages of 

having discrete data over continuous one, a suite of 

classification learning algorithms can only deal with 

discrete data. Successful discretization can 

significantly extend the application range of many 

learning algorithms. 

 

2. Categorization of Discretization 

Approaches. 

 
Discretization algorithms can be categorized into 

supervised and unsupervised based on whether the 

class label information is used. Supervised 

discretization uses class information to guide the 

discretization process, while the unsupervised 

discretization does not. Equal Width and Equal 

Frequency are two representative unsupervised 

discretization algorithms. Many supervised 

discretization techniques have been proposed to date, 

of which the Entropy-MDLP discretization has been 

accepted as by far the most effective in the context of 

both decision tree learning and rule induction 

algorithms. Compared to supervised discretization, 

previous research has indicated that unsupervised 

discretization algorithms have less computational 

complexity, but may result in much worse 

classification performance. When classification 

performance is the main concern, supervised 

discretization should be adopted. 

 

The usage of Discretization methods can be dynamic 

or static. A dynamic method would discretize 

continuous values when a classifier is being built, 

such as in C4.5 while static discretization is done 

prior to classification task. 

Another dimension of discretization methods is local 

vs. global. A local method would discretize in a 

localized region of instance space (i.e., a subset of 

instances) while a global discretization method uses 

the entire instance space to discretize. 

Discretization methods can also be grouped in terms 

of top-down or bottom-up. Top-down methods start 

with an empty list of cut-points (or split-points) and 

keep on adding new ones to the list by „splitting‟ 

intervals as the discretization progresses. Bottom-up 

methods start with the complete list of all the 

continuous values of the feature as cut-points and 

gradually remove some of them by „merging‟ 

intervals as the discretization progresses. 

Another dichotomy is direct vs. incremental. Direct 

methods divide the range of k intervals 

simultaneously (i.e., equal-width, equal-frequency, or 

K-means), needing an additional input from the user 

to determine the number of intervals. Incremental 

methods begin with simple discretization and are 

followed by an improvement or refinement process, 

which requires a stopping criterion to halt further 

discretization.  

Discretization can be univariate or multivariate. 

Univariate discretization quantifies one feature at a 

time while multivariate discretization considers 

simultaneously multiple features. 

 

3. A Typical Discretization Process. 

 
A typical (univariate) discretization process broadly 

consists of four steps. (1) Sort the continuous values 

of the feature to be discretized, (2) Evaluate a cut-

point for splitting or adjacent intervals for merging, 

(3) According to some criterion, split or merge the 

intervals of continuous value, and (4) finally stop 

discretization. 

 

3.1. Sorting 
 

The continuous values for a feature are sorted in either 

ascending or descending order. If sorting is done once 

and for all at the beginning of discretization, it is 

global treatment and can be applied when the entire 

instance space is used for discretization. If sorting is 

done at each iteration of a process, it is a local 

treatment in which only a region of entire instance 

space is considered for discretization. 

 

3.2. Choosing a cut-point   

 
After sorting, the next step in the discretization 

process is to find the best cut-point to split a range of 

continuous values or the best pair of adjacent intervals 

to merge. There are numerous evaluation functions 

such as entropy measures and statistical measures. 

 

3.3. Splitting / Merging 
 

In the top-down approach, intervals are split while for 

a bottom-up approach intervals are merged. For 

splitting, it is required to evaluate cut-points and to 

choose the best one and split the range of continuous 

values into two partitions. Discretization continuous 

with each part (increased by one) until a stopping 

criteria is satisfied. For merging, adjacent intervals are 

evaluated to find the best pair of intervals to merge in 

each iteration. Discretization continuous with the 

reduced number (decreased by one) of intervals until 

the stopping criterion is satisfied. 

 

1888

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80599



 

 

3.4. Stopping Criteria 
 

A stopping criterion specifies when to halt the 

discretization process. A stopping criterion can be 

very simple such as fixing the number of intervals at 

the beginning or a more complex one like evaluating a 

function.  

  

4. Literature Survey. 
 

The past few decades have seen many researches on 

discretization for mining association rules. In this 

paper we study few unsupervised and supervised 

discretization methods. Equal-Width and Equal-

Frequency are two commonly used unsupervised 

discretization methods. Both Equal-Width and Equal-

Frequency methods require a parameter n, indicating 

the maximum number of intervals in discretizing a 

feature. The Equal-width [2] discretization technique 

determines the interval width according to the user-

specified number of intervals using the relation 

           iw = (max_value – min_value) / n, 

where 

           iw = interval width 

           max_value = maximum value of the attribute 

           min_value = minimum value of the attribute 

It then creates the cut points using the relation  

           cut_point = min_value + j * iw 

where 

               j=1,2,……n-1 

The Equal-frequency [2] discretization technique is 

similar to equal-width with the exception that the 

number of unique values (frequency) within each of 

the user-specified n intervals should be equal. The 

interval frequency is obtained using the following 

relation 

                    if = nb_unique_values / n 

where 

 if = interval frequency 

nb_unique_values = number of unique values for a 

continuous attribute 

The two methods are simple but are sensitive to n. 

For equal-frequency, for instance, many occurrences 

of a continuous value could cause the occurrences to 

be assigned into different bins. This can be handled 

by adjusting boundaries of neighboring bins so that 

duplicate values should belong to one bin only. 

Another problem is the presence of outliers that take 

extreme values. This can be overcome by removing 

the outliers using a threshold. 

 

Fayyad and Irani proposed a supervised discretization 

method, Ent-MDLP [3] which uses entropy measure 

to find a potential cut-point to split a range of 

continuous values into two intervals. An entropy-

based method will use the class information entropy 

of candidate partitions to select boundaries for 

discretization. Class information entropy is a measure 

of purity and it measures the amount of information 

which would be needed to specify to which class an 

instance belongs. The entropy measure in the context 

of classification can be defined as 

 

                           Ee = E1 + E2 

                               

                  Ee = - pleft  𝑝𝑘
𝑖=1 i,left log pi,left 

                                  

                                    - pright  𝑝𝑘
𝑖=1 i,right log pi,right 

where 

                Ee = entropy of the cut-point 

                E1 = entropy to the left of the cut-point 

                E2 = entropy to the right of the cut-point 

                k = total number of classes 

                i = a practical class 

 

pleft = number of instances to the left of cut-point / 

            total number of instances, N 

pright = number of instances to the right of cut-point / 

           total number of instances, N 

pi,left = num of instances of class i to the left of cut-

point / 

           number of instances to the left of cut-point 

pi,right = {num of instances of class i to the right of 

cut-point } / { number of instances to the right of cut-

point} 

 

It considers one big interval containing all known 

values of a feature and then recursively partitions this 

interval into smaller subintervals until the stopping 

criterion satisfies. The stopping criterion was based 

on the MDL (Minimum Description Length) 

principle which is defined as  

         

             log2 (N-1)       log2 (3
k
-2) – k E + k1 E1 + k2 E 

gain >                       +                                                            

                     N                                   N 

where 

                    E = -  𝑝𝑘
𝑖=1 i log pi 

  

                            Number of instances of Class i 

                    pi =  

                                                N 

gain = E – Ee = information gained by splitting at the 

cut-                   point 
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N = total number of instances in the attribute value 

list at each recursion 

k1 = number of classes to the left of the cut-point 

k2 = number of classes to the right of the cut-point. 

 

A supervised, static and global discretization method 

which uses the Gini gain[4] as discretization measure 

was proposed by Xiao-Hang Zhang, Jun Wu, Ting-

Jie Lu and  Yuan Jiang. In this discretization method 

the cut point is chosen based on the criterion, whose 

Gini gain value is the biggest on attribute A. The Gini 

gain ΔG is defined as  

                                     | S1|                  |S2|  

ΔG(A,b;S) = Gini(S) -        Gini(S1) -          Gini(S2)     

                                      |S|                   |S| 

where   

 

S1 and S2 are the subsets of S partitioned by the cut 

point b    

Gini (.) is the Gini measure defined by 

                       G(interval) = 1 -   (𝑝𝑘
𝑗=1  j

(i)
 )

2
     

 pj
(i) 

is the jth class probability in ith  interval and 

satisfies  𝑝𝑘
𝑗=1  j

(i)
 =1. 

|.| denotes the number of instances.        

The training set is split into two subsets by the cut 

point which is chosen using Gini measure. 

Subsequent cut points are selected by recursively 

applying the same binary discretization method to 

one of the generated subsets, which has biggest Gini 

gain value, until the stopping criterion is achieved. 

The stopping criterion of the discretization algorithm 

is defined by  

                     Gn+1 ln(n+1+p) > Gn ln(n+p) 

Where  

n denotes the current number of intervals,  

p is a positive integer determined by the user,  

Gn is the Gini value with n intervals, defined by 

                               

             Gn   =    |S1|𝑛
𝑖=1  Gini(interval i) 

                                  |S| 

 

When compared with Ent-MDLP algorithm, the 

results has shown that in many applications the Gini 

algorithm has better performance than Ent-MDLP 

algorithm and original C4.5 algorithm. So it can be a 

good alternative to the entropy-based discretization 

methods.  

 

 Lukasz A. Kurgan and Krzysztof J. Cios proposed a 

supervised CAIM (class-attribute interdependence 

maximization) discretization algorithm [5] that 

handles continuous and mixed mode attributes. The 

CAIM algorithm‟s goal is to find the minimum 

number of discrete intervals while minimizing the 

loss of class-attribute interdependency. The algorithm 

uses class-attribute interdependency information as 

the criterion for the optimal discretization. The Class-

Attribute Interdependency Maximization (CAIM) 

criterion measures the dependency between the class 

variable C and the discretization variable D for 

attribute F, for a given quanta matrix. The CAIM 

criterion is defined as 

                                          (𝑛
𝑟=1  maxr

2 
/ M+r ) 

          CAIM (C, D|F) =  

                                                                                  n 

where,  

 

n is the number of intervals,  

 

r iterates through all intervals, i.e. r=1,2,...,n,   

 

maxr is the maximum value among all qir values 

(maximum value within the rth column of the quanta 

matrix), i=1,2,...,S, 

 

 M+r is the total number of continuous values of 

attribute F that are within the interval (dr-1, dr]. 

 

The algorithm starts with a single interval that covers 

all possible values of a continuous attribute, and 

divides it iteratively. From all possible division 

points that are tried it chooses the division boundary 

that gives the highest value of the CAIM criterion. 

When the algorithm was tested on several well-

known datasets and compared with six other state-of 

the-art discretization algorithms, the comparison 

showed that the CAIM algorithm generated 

discretization schemes with, on average, the lowest 

number of intervals and the highest dependence 

between class labels and discrete intervals, thus 

outperforming other discretization algorithms. The 

execution time of the CAIM algorithm is also much 

shorter than the execution time of some other 

supervised discretization algorithms. The analysis of 

performance of the CAIM algorithm shows that the 

algorithm that generates small number of intervals 

helps to reduce the size of the data and improves the 

accuracy and the number of subsequently generated 

rules. 

The Khiops discretization method proposed by Marc 

Boulle [6] is a bottom-up method based on the global 

optimization of chi-square(χ
2
). χ

2
 is a statistical 
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measure that conducts a significance test on the 

relationship between the values of a feature and a 

class. χ
2 

statistic determines the similarity of adjacent 

intervals based on some significance level. It tests the 

hypothesis that two adjacent intervals of a feature are 

independent of the class. If they are independent, 

they should be merged, otherwise they should remain 

separate. The formula for computing χ
2
 value is 

 

                   χ
2 
=      (

𝑝
𝑗=1

2
𝑖=1  Aij – Eij)

2 

                                                    Eij 

where: 

 

p = number of classes 

 

Aij = number of distinct values in the ith interval, jth 

class 

 

Ri = number of examples in ith interval =   
𝑝
𝑗=1 𝐴ij 

 

Cj = number of examples in jth class=  𝐴𝑚
𝑖=1 ij 

 

N = total number of examples =   
𝑝
𝑗=1 Cj  and 

 

Eij = expected frequency of Aij = (Ri * Cj) / N  

 

The discretization method starts from the elementary 

single value intervals and then searches for the best 

merge between adjacent intervals. Two different 

types of merges are encountered. First, merges with 

at least one interval that does not meet the constraint 

and second, merges with both intervals fulfilling the 

constraint. The best merge candidate (with the 

highest chi-square value) is chosen in priority among 

the first type of merges (in which case the merge is 

accepted unconditionally), and otherwise, if all 

minimum frequency constraints are respected, among 

the second type of merges (in which case the merge 

is accepted under the condition of improvement of 

the confidence level). The algorithm is reiterated 

until both all minimum frequency constraints are 

respected and no further merge can decrease the 

confidence level. When compared with other chi-

square based methods like ChiMerge and ChiSplit 

methods, this global evaluation carries some intrinsic 

benefits. The Khiops automatic stopping rule brings 

both ease of use and high quality discretizations.  Its 

computational complexity is the same as for the 

fastest other discretization methods. 

 

Quisha Zhu, Lin Lin, Mei-Ling Shyu and Shu-Ching 
Chen [7] proposed a novel and effective supervised 

discretization algorithm based on correlation 

maximization (CM). It is proposed by using multiple 

correspondence analyses (MCA). MCA is an 

effective technique to capture the correlations 

between intervals/items and classes. The one that 

gives the highest correlation with the classes is 

selected as a cut-point. The geometrical 

representation of MCA not only visualizes the 

correlation relationship between intervals/items and 

classes, but also presents an elegant way to decide the 

cut-points. The graphical representation of MCA is 

called symmetric map. It is used to visualize the 

intervals of a feature and the classes as points in a 

two-dimensional map. The correlation between an 

interval and a class can be represented by the cosine 

angle between these 2 vectors in the first 2 

dimensions. The larger the cosine value of the angle 

is the stronger the correlation between them.  

For a numeric feature Fi , all values of this feature are 

sorted to form a set of n+1 distinct values. Candidate 

cut points are the mid points of all adjacent pairs in 

the set. The cut point with the largest cosine is 

selected as the first cut-point T1. Then the same 

strategy can be carried out separately in the left and 

right intervals in a binary recursive way. The 

recursion is terminated if the correlation between 

current intervals and classes is lower than the 

correlation between their predecessor and their 

classes. When compared with other discretization 

algorithms, this algorithm produced relatively small 

number of intervals and also has a low computational 

complexity. The drawback of this method is, it 

cannot discretize the datasets containing more than 2 

classes. 

 

5. Conclusion and Future Scope. 
 

Discretization of continuous features plays an 

important role in data pre-processing. This paper 

briefly introduces that the generation of the problem 

of discretization brings many benefits including 

improving the algorithm‟s efficiency and expanding 

their application scope. From the past few decades 

much work has been done in this area resulting in 

many different discretization methods. Choosing a 

suitable discretization method largely depends on the 

user need for discretization, as well as on the kind of 

data to be discretized. While a lot of work has been 

done, there are still many issues that remained 

unsolved, and new methods are needed to address 

these issues. In future we expect robust discretization 

techniques which can overcome the drawbacks of 

handling huge data and large number of attributes. 
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