
A Study on Steganography Techniques

Deepika Bansal

1
, Rita Chhikara

2

1,2
Department of Computer Science and Engineering,

ITM University, Gurgaon, Haryana, India

Abstract - Steganography is the art and science of hiding the

secret data in the other file formats for ex. image, audio, video,

text, etc.. In this paper we are considering the image

steganography. We present a study carried out to discuss the

various steganography tools. The analysis of cover and stego

images is performed on the basis of two statistical analysis

methods, peak Signal-to-Noise Ratio and histogram analysis.

On performing the analysis we aimed at introducing a robust

and high payload Steganographic algorithm.

1. INTRODUCTION

Steganography is the art and science of hiding the existence

of the communication, i.e., it hides the secret message inside

the other medium like images, audio, video, text, etc.

Steganography word is derived from Greek word steganos,

which means covered writing and graphia means writing[1].

To embed the data in any medium requires two files. The

first one is the cover file and the second one is secret

message. The secret message can be any plain text, cipher

text, or image. After embedding secret message in the cover

file we obtains a stego- file. The existence of secret message

in the stego file cannot be predicted.

Cover Image + Message = Stego Image

There are various steganographic techniques used to hide

the secret message. Throughout the history, various

steganography techniques were being used, for example

wax covered tablets, hidden tattoos, invisible inks,

microfilms, microdots, null ciphers, etc[2]. There are two

most widely used image steganography techniques:(i)

Spatial Domain & (ii) Tranform domain, shown in fig.1.

Fig.1 Image Steganography Techniques

Spatial domain technique embeds secret bits directly in the

cover file. The commonly used spatial domain technique is

Least Significant Bit Insertion (LSB). In LSB, the secret bits

are inserted in the least significant bits of cover image. LSB

is of 2 types [3]: LSB Replacement & LSB Matching. In the

LSB Replacement, the least significant bit of the carrier is

replaced by the message bit directly. But in LSB Matching,

if the least significant bit of the cover pixel is same as the

message bit then it remains unchanged, otherwise it is

randomly incremented or decremented by one.

The algorithm to embed the text message using LSB

technique[4] :

1: Read the cover image and text message which

is to be hidden in the cover image.

2: Convert text message in binary.

3: Calculate LSB of each pixels of cover image.

Step 4: Replace LSB of cover image with each bit of

secret message one by one.

5: Write stego image.

The algorithm to retrieve text message:-

1: Read the stego image.

2: Calculate LSB of each pixels of stego image.

3: Retrieve bits and convert each 8 bit into

character.

Transform domain[5] hides the secret bits in significant

parts of the cover file. The transform domain techniques

include Discrete Cosine Transform (DCT), Discrete

Wavelet Transform (DWT) and Discrete Fourier Transform

(FFT) (iii) Spread spectrum technique[6]. In DCT

technique, for each color component the JPEG image format

uses a discrete cosine transform to transform successive 8 x

8 pixel blocks of the image into 64 DCT coefficients each.

The DCT coefficients F(u,v) of an 8 x 8 block of image

pixels f(x, y) are given by [7]

Where,

DWT technique [8] is to store the secret data in the least

important coefficients of each 4X4 Haar transformed

blocks. The cover image decomposition represented by

approximation and detail coefficients[9] is depicted on

Fig.2 .

1705

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

Fig.2 Image Decomposition by DWT

The DFT [10] transforms time- or space-based data into

frequency-based data. The DFT of a vector x of length n is

another vector y of length n:

where ω is a complex nth root of unity:

In the spread spectrum technique, the message is spread

over a wide frequency bandwidth than the minimum required
bandwidth to send the information.

2. STEGANOGRAPHY TOOLS

A. JPHide and JPSeek

JP Hide & Seek (JPHS)[11] designed by Allan Latham, is a

Windows program to hide a data file in a jpeg file and to

recover a file hidden in the jpeg file. JPHS uses least

significant bit overwriting of the discrete cosine transform

coefficients used by the JPEG algorithm. It uses Blowfish

Crypto algorithm for lsb randomization and encryption to

determine where to store the bits of the hidden file. In [12],

the author has described all the steps for testing the JPHS

program for Windows. It can be detected by X
2
-test &

Stegdetect.

B. S-Tools

S-Tools is a program designed by Andrew Brown. It can

hide the information inside GIF, BMP and WAV files. It

uses least significant bit randomization. For encryption of

the data, Data Encryption Standard (DES), International

data Encryption Algorithm (IDEA), Message Digest Cipher

(MDC) or Triple-DES are used. In [13] author had showed a

signal level comparison between a WAV carrier file before

and after the airport map was hidden. The original WAV

file is 178,544 bytes in length, whereas the steganography

WAV file is 178,298 bytes in length. S-Tools reduce the

number of colors in the image to only 32 colors. [14] shows

the demo for using S-Tools program. The system interface

is easy to use. It supports a drag and drop method to load

images. Once the cover image is dragged in; the system will

advise the user on how much data in bytes the image can

hold. The presence of message can be detected by X
2
-test.

C. Hide & Seek

Hide & Seek designed by Colin Maroney uses the least

significant bit of each pixel to encode characters. It uses the

GIF images for hiding the secret messages. The IDEA

cipher is used for the encryption of the message[15]. The

image of Shakespeare was used in [16] to show the

limitation of Hide & Seek tool of padding the black area

around the stego image if the cover image is less than the

minimum size of 320 x 480 pixels. Stego-images will have

different properties depending on the version of Hide and

Seek used. The DOS command for the Hide and Seek

software is as follows:

 hide <infile.ext> <Cover.gif> [key]

 seek <Stego.gif> <outfile.ext> [key]

D. Stella

Stella word originates from The STeganography ExLoration

Lab[17]. Using Stella it is possible to embed and extract an

additional message with different steganography techniques.

Stella can handle the gif, bmp & jpg images. Its embedding

process exploits the visually low prioritised chrominance

channels; the YUV-colour system is used. It can hide an

arbitrary additional message of limited length. The private

key is used for the privacy of the embedded message. The

embedding algorithm[18] considers only one channel and

works as follows:

1. Consider the chrominance value of a given pixel.

2. Read a bit from secret message.

3. To embed a “0”, decrease the chrominance value of the

pixel by one.

4. To embed a “1”, increase the chrominance value of the

pixel by one.

5. Go to the next pixel.

E. Hide In Picture

Hide In Picture uses bmp image format for hiding the secret

imformation using the password. HIP is designed by Davi

Tassinari de Figueiredo in 2002. The secret message is

hidden in the least significant bits of each byte of the image.

If the file to be hidden is large, then more than a single bit is

modified. The HIP header (containing information for the

hidden file, such as its size and filename) and the file to be

hidden are encrypted with an encryption algorithm, using

the password given, before being written in the picture.

Their bits are not written in a linear fashion; HIP uses a

pseudo-random number generator to choose the place to

write each bit. The values given by the pseudo-random

number generator depend on your password, so it is not

possible for someone trying to read your secret data to get

the hidden file (not even the encrypted version) without

knowing the password. According to the comparative

analysis done in [15], Hide-In-Picture earned a good PSNR

value but the cover image was distorted a bit after the

embedding.

F. Revelation
Revelation was created by Sean Hamlin. It uses the least

significant bit matching. It leaves a gray value not altered if

its LSB matches the bit to be hidden, otherwise a colour

indexed as 2i will be changed to 2i+1 if the embedded bit is

1, or 2i+1 is shifted back to 2i in case of embedding a 0.

Revelation program is coded in java and developed in the

Eclipse IDE. In [15] the author has shown that the

Revelation tool seems to do a good job in hiding any visual

tamper on the cover image, but the histogram of its

generated output reveals some traces.

1706

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

 G.

Steghide

 Steghide is designed by Stefan Hetzl

and available at [19].It

is able to hide data invarious kinds of image & audio files.

The bmp, jpg, wav & au file formats are supported by

Steghide. Steghide uses a graph-theoretic approach to

steganography. The embedding algorithm roughly works as

follows:
 1.

The secret data is compressed and encrypted.

 2.

Then a sequence of positions of pixels in the cover file

is created based on a pseudo-random number generator

initialized with the passphrase.
 3.

Of these positions those that do not need to be changed

(because they already contain the correct value by

chance) are sorted out.
 4.

Then a graph-theoretic matching algorithm finds pairs

of positions such that exchanging their values has the

effect of embedding the corresponding part of the secret

data. If the algorithm cannot find anymore such pairs all

exchanges are actually performed.
 5.

The pixels at the remaining positions (the positions that

are not part of such a pair) are also modified to contain

the embedded data (but this is done by overwriting

them, not by exchanging them with other pixels).
 6.

The fact that (most of) the embedding is done by

exchanging pixel values implies that the first-order

statistics (i.e. the

number of times a color occurs in the

picture) is not changed
 For audio files the algorithm is the same, except that audio

samples are used instead of pixels. The default encryption

algorithm is Rijndael with a key size of 128 bits (which is

AES –

the advanced encryption standard) in the cipher

block chaining mode. The checksum is calculated using the

CRC32 algorithm. Steghide is a windows command line

tool also available for unix/linux platforms. The author in

[20] has showed the usage of Steghide tool. To embed the

mysecret.txt file in our cover image, cover.jpg, producing

stego file stego.jpg, issue the command:
 

steghide embed –pf mysecret.txt –cf cover.jpg –sf

stego.jpg
 To extract our secret, we use the command:

 

steghide extract –sf stego.jpg

 H.

nsF5 (no-shrinkage F5)

 The steganography algorithm nsF5 (no-shrinkage F5) was

introduced in 2007

as an improved

version of F5 [21]. The

F5 algorithm contains two important design principles. The

first one is the character of its embedding modifications

chosen in such a way that the absolute value of the DCT

coefficient is always decreased by one. F5 only embeds into

non-zero AC DCT coefficients. If a coefficient becomes

zero after embedding, which can only happen for

coefficients equal to 1 or -1, so called shrinkage occurs and

the same time bit is reembedded at the next coefficient. The

second important element of F5 is its incorporating matrix

embedding using binary Hamming codes. Matrix

embedding enables embedding more bits per one

embedding change and thus increases embedding efficiency.

Although the embedding efficiency of F5 is low because of

the additional changes introduced by shrinkage. Therefore

to eliminate the shrinkage wet paper codes are applied. Wet

paper codes were designed to allow the sender to use side

information unavailable to the decoder. The negative effect

of shrinkage is alleviated in nsF5 by using wet paper codes

[22]. The theoretical bound on the embedding efficiency of

the nsF5 algorithm is equal to

where alpha is the relative payload with respects to the

number of changeable coefficients and H
-1

stands for the

inverse of the binary entropy function.

I.F5

F5 withstands visual and statistical attacks offering a large

steganographic capacity. F5 implements matrix encoding to

improve the efficiency of embedding. F5 employs

permutative straddling to uniformly spread out the changes

over the whole steganogram. It shuffles all coefficients

using a permutation first. Then, F5 embeds into the

permuted sequence[23]. The algorithm F5 has the following

coarse structure:

1. Start JPEG compression. Stop after the quantisation of

coefficients.

2. Initialise a cryptographically strong random number

generator with the key derived from the password.

3. Instantiate a permutation (two parameters: random

generator and number of coefficients).

4. Determine the parameter k from the capacity of the carrier

medium, and the length of the secret message.

5. Calculate the code word length n = 2k − 1.

6. Embed the secret message with (1, n, k) matrix encoding.

(a) Fill a buffer with n nonzero coefficients.

(b) Hash this buffer (generate a hash value with k bit-

places).

(c) Add the next k bits of the message to the hash value (bit

by bit, xor).

(d) If the sum is 0, the buffer is left unchanged. Otherwise

the sum is the buffer’s index 1 . . .n, the absolute value of its

element has to be decremented.

(e) Test for shrinkage, i. e. whether we produced a zero. If

so, adjust the buffer (eliminate the 0 by reading one more

nonzero coefficient, i. e. repeat step 6a beginning from the

same coefficient). If no shrinkage occurred, advance to new

c coefficients behind the actual buffer. If there is still

message data continue with step 6a.

7. Continue JPEG compression (Huffman coding etc.).

J. Perturbed Quantization

In Perturbed Quantization[24], the sender hides data while

processing the cover object with an information reducing

operation that involves quantization, such as lossy

compression, down sampling, or A/D conversion. The

unquantized values of the processed cover object are

considered as side information to confine the embedding

changes to those unquantized elements whose values are

close to the middle of quantization intervals. This choice of

the selection channel calls for wet paper codes as they

enable communication with non shared selection channel.

1707

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

Perturbed Quantization aims to achieve high efficiency,

with minimal distortion, rather than a large capacity. Each

coefficient in the DCT block is assigned a scalar value that

corresponds to how much impact it would make to the

carrier image, and then a steganographer can set a selection

rule to filter out the “well behaved” coefficients[25].

K. Outguess

Outguess[26] is a universal steganographic tool that allows

the insertion of hidden information into the redundant bits

of data sources. The nature of the data source is irrelevant to

the core of Outguess[27]. The program relies on data

specific handlers that will extract redundant bits and write

them back after modification. It improves the encoding step

by using a pseudo-random number generator to select DCT

coefficients at random. The least-significant bit of a selected

DCT coefficient is replaced with encrypted message data.

The 
2
-test for JSteg does not detect data that is randomly

distributed across the redundant data and, for that reason, it

cannot find steganographic content hidden by OutGuess 0.1.

However, it is possible to extend the 2- test to be more

sensitive to local distortions in an image. Two identical

distributions produce about the same 2 values in any part

of the distribution. Instead of increasing the sample size and

applying the test at a constant position, we use a constant

sample size but slide the position where the samples are

taken over the image’s entire range[28]. The Outguess

algorithm is as follows:

Input: message, shared secret, cover image

Output: stego image

initialize PRNG with shared secret

while data left to embed do

get pseudo-random DCT coefficient from cover

image

if DCT ≠0 and DCT ≠1 then

get next LSB from message

replace DCT LSB with message LSB

end if

insert DCT into stego image

end while

L. JSteg

JSteg[29] is designed by Derek Upham. JSteg[30] was the

first publicly available steganographic system for JPEG

images. Its embedding algorithm sequentially replaces the

least-significant bit of DCT coefficients with the message’s

data. The algorithm does not require a shared secret; as a

result, anyone who knows the steganographic system can

retrieve the message hidden by JSteg. Andreas Westfeld and

Andreas Pfitzmann noticed that steganographic systems that

change least-significant bits sequentially cause distortions

detectable by steganalysis. They observed that for a given

image, the embedding of high-entropy data (often due to

encryption) changed the histogram of color frequencies in a

predictable way. The JSteg algorithm is as follows:

Input: message, cover image

Output: stego image

while data left to embed do

get next DCT coefficient from cover image

if DCT ≠0 and DCT ≠1 then

get next LSB from message

replace DCT LSB with message LSB

end if

insert DCT into stego image

end while

M. Stegodos

StegoDos is also known as Black Wolf's Picture Encoder

version 0.90a [31]. This is Public Domain software written

by Black Wolf (anonymous). This is a series of DOS

programs that require far too much effort for the results. It

will only work with 320x200 images with 256 colors.

To encode a message, one must:

1. Run GETSCR. This starts a TSR which will perform a

screen capture when PRINTSCREEN is pressed.

2. View the image with a third-party image viewing

software (not included with StegoDos) and press

PRINTSCREEN to save the image in MESSAGE.SCR.

3. Save your message to be embedded in the image as

MESSAGE.DAT.

4. Run ENCODE. This will merge MESSAGE.DAT with

MESSAGE.SCR.

5. Use a third party screen capturing program (not included

with StegoDos) to capture the new image from the screen.

6. Run PUTSCR and capture the image displayed on the

screen. Decoding the message is not as involved but still

requires a third party program to view the image.

To decode a message:

1. Run GETSCR. This starts a TSR which will perform a

screen capture when PRINTSCREEN is pressed.

2. View the image containing a message with a third-party

image viewing software (not included with StegoDos) and

press PRINTSCREEN to save the image in

MESSAGE.SCR.

3. Run DECODE. This will extract the stored message from

MESSAGE.SCR.

N. White Noise Storm

White Noise Storm is designed by Ray Arachelian [32].

White Noise Storm is based on spread spectrum technology

and frequency hopping, which scatters the message

throughout the image. Instead of having x channels of

communication that are changed with a fixed formula and

passkey, White Noise Storm spreads eight channels within a

random number generated by the previous window size and

data channel. Each channel represents 1 bit, so each image

window holds 1 byte of information and many unused bits.

These channels rotate, swap, and interlace among

themselves to yield a different bit permutation. For instance,

bit 1 might be swapped with bit 7, or both bits may rotate

one position to the right. The rules for swapping are dictated

by the stego-key and by the previous window’s random data

(similar to DES block encryption). Scattering and

encryption helps protect against hidden message extraction

but not against message destruction through image

processing. A scattered message in the image’s LSBs is still

as vulnerable to destruction from lossy compression and

1708

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

image processing as is a clear-text message inserted in the

LSBs [23].The main disadvantage of applying the WNS

encryption method to steganography is the loss of many bits

that can be used to hold information. Relatively large files

must be used to hold the same amount of information other

methods provide.

O. YASS

YASS is Yet Another Steganographic Scheme)[24], a

method based on embedding data in randomized locations

so as to disable the self calibration process (such as, by

cropping a few pixel rows and/or columns to estimate the

cover image features) popularly used by blind steganalysis

schemes. YASS can successfully resist recent blind

steganalysis methods, in addition to surviving distortion

constrained attacks. The errors induced in the embedded

data due to the fact that the stego signal must be advertised

in a specific format such as JPEG, are dealt with by the use

of erasure and error correcting codes. For the presented

JPEG steganographic scheme, it is shown that the detection

rates of recent blind steganalysis schemes are close to

random guessing, thus confirming the practical applicability

of the proposed technique. We also note that the presented

steganography framework, of hiding in randomized

locations and using a coding framework to deal with errors,

is quite simple yet very generalizable.

The original algorithm can be summarized using the

following five steps[25]:

1. The entire message is encoded using Repeat-Accumulate

(RA) error correction code.

2. The cover image in its spatial-domain representation is

divided into big blocks of B × B pixels, B > 8.

3. In each big block, an 8 × 8 block is pseudo-randomly

selected using a secret key.

4. For every such selected 8 × 8 block, the embedding

follows the algorithm originally described in:

(a) The block is transformed using a two-dimensional DCT.

(b) Every real-valued DCT coefficient is divided by the

corresponding quantization step from a predefined

quantization table (corresponding to the hiding quality

factor QFh). No rounding of coefficients is performed at this

stage.

(c) A fragment of the encoded message is embedded in a

predetermined band of 19 low-frequency AC DCT

coefficients using QIM, while skipping all coefficients that

quantize to zero by the JPEG quantizer.

(d) The block is decompressed back to the spatial domain

and put in its original position within the big

block.

5. Finally, the image is compressed using JPEG with the

advertising quality factor QFa to obtain the stego

image. The extraction algorithm first decompresses the

stego JPEG image to the spatial domain, identifies the same

8 × 8 blocks within the big blocks as during the embedding,

extracts the encoded (noisy) message bits, concatenates

them, and finally applies the RA error-correcting algorithm

to extract the secret message. In [26], the authors introduced

the following two extensddions of YASS whose primary

purpose was to increase the embedding capacity:

1. Mixture-based QFh approach. Here, the hiding quality

factor QFh varies across the 8 × 8 blocks either randomly or

adaptively based on the block variance or the coefficient

count.

2. Attack-aware iterative embedding. The embedding

process is repeated several times with the hope to obtain a

lower error rate, which, in turn, would increase the

embedding capacity.

3. COMPARATIVE ANALYSIS & RESULTS

In this section, all the steganography tools discussed above

are categorized in Table 1, on the basis image format used,

the hiding technique used & the encryption algorithm used.

Tool Image

Format

Hiding

Technique

Encryption

Algorithm

JP Hide &

Seek

JPEG DCT Blowfish

S-Tools GIF,

BMP

LSB DES, IDEA,

MDC, Triple-
DES

Hide & Seek GIF LSB IDEA

Stella BMP,
GIF,

JPEG

Chrominance
Value

Private Key

Hide in Picture BMP LSB Using Password

Revelation BMP LSB -

Steghide BMP,
JPEG

LSB AES

nsF5 JPEG DCT -

F5 JPEG DCT Huffmann Coding

Perturbed
Quantization

PNM,
JPEG

DCT -

Outguess JPG DCT -

JSteg JPEG DCT No Encryption

Stegodos GIF LSB -

White Noise
Storm

PCX LSB DES

YASS JPEG DCT Repeat

Accumulative

Error Correcting
Algorithm

Table 1 Image Steganography Tools

3.1 Statistical Analysis

There are two main types of statistical analysis methods

investigated in this paper for comparative analysis. These

are the peak signal-to-noise ratio and image histograms.

These are discussed below:

(a) Peak Signal-to-noise ratio

Peak Signal-to-noise ratio is the ratio between the maximum

possible power of a signal and the power of

corrupting noise that affects the fidelity of its representation.

As a performance measurement for image distortion, the

well known Peak-Signal-to-Noise Ratio (PSNR) which is

classified under the difference distortion metrics can be

applied on the stego images. It is defined as:

The mean square error (MSE) for an N _ N gray-level

image is defined as follows:

1709

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

Here denotes the original pixel value, and denotes

the decoded pixel value.
The Table 2 shows different PSNR values obtained using

cover and stego images on applying the different 5
steganography tools choosen from the tools discussed in

Section 2. The cover image and stego images obtained using

various steganography algorithms are shown below:

Fig. 3 Cover Image

 Fig. 4 F5 Stego Image Fig. 5 JPHS Stego Image

 Fig. 6 nsF5 Stego Image Fig. 7 Outguess Stego Image

 Fig. 8 PQ Stego Image Fig. 9 S-Tools Stego Image

Tools PSNR (in db)

F5 33.18

JPHS 46.82

nsf5 51.37

Outguess 50.55

S-Tools 52.87

Table 2 PSNR values obtained from different stego tools.

(b) Image Histogram

An image histogram is a type of histogram that acts as

a graphical representation of the tonal distribution in

a digital image.

It plots the number of pixels for each tonal

value. By looking at the histogram for a specific image a

viewer will be able to judge the entire tonal distribution at a

glance. In this study we can trace any abnormalities in the

Stego image’s histogram. The histogram of cover image and

various stego images is shown below:

Fig. 10 Histogram of cover image

 Fig. 11 Histogram of F5 Stego Fig. 12 Histogram of JPHS
 Image Stego Image

Fig. 13 Histogram of nsf5 Fig.14 Histogram of Outguess
Stego Image Stego Image

Fig. 15 Histogram of PQ Stego Fig. 16Histogram of S-Tools
Image Stego Image

3.2 Results

According to the statistical analysis, we can see that S-Tools

algorithm has the highest performance and its software

provides a better graphical interface in the LSB domain.

Among the DCT technique, nsF5 shows a high PSNR value

(high quality of image). On analyzing the histogram of

1710

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

cover image & all the stego images we can find that there

are no visual differences in histogram of nsF5 and Outguess,

very slight differences can be noticed in the histogram of

JPHS & S-Tools, and noticeable differences are present in

the histogram of F5 and PQ.

4. CONCLUSION

Steganography is the art of hiding secret messages in the

other file formats. The Image steganography is discussed in

this paper. The author has discussed various steganography

tools available for embedding the secret data in image. After

analyzing various tools, 6 different tools are used to perform

the analysis of images using 2 statistical analysis methods

i.e., Peak Signal-to-Noise Ratio and Histogram analysis.

From the PSNR values obtained we can conclude that S-

Tools give a high quality stego image after embedding the

text file in the lsb domain and nsF5 gives high quality image

among the dct domain tools. On the basis of histogram

analysis we can conclude that there are no visual differences

in the cover and stego image of nsF5 and Outguess. So, we

can say that S-Tools, Outguess and nsF5 are more robust to

steganalytic attacks.

5. REFERENCES

1. N.F.Johnson,S.Jajodia, Exploring steganography: Seeing the Unseen,

IEEE Computer 31 (2) (1998) 26-34.
2. Kh. Manglem Singh, S.Birendra Sigh and L. Shyam Sundar Singh,

Hiding Encrypted Message in the Features of Images, IJCSNS, Vol.7

No. 4, April 2007, pp 302-307.
3. W.-N. Lie and L.-C. Chang, Data hiding in images with adaptive

numbers of least significant bits based on human visual system, in

Proc.,IEEE Int. Conf. Image Processing, 1999, Page(s): 286–290.
4. K.B.Shiva Kumar, K.B. Raja, R.K.Chhotaray,

Sabyasachi Pattnaik, “Coherent Steganography using Segmentation

and DCT”, IEEE-978-1-4244-5967-4/10/$26.00 ©2010.
5. S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding

Techniques for Steganography and Digital Watermarking. Norwood,

MA: Artech House, 2000.
6. L. M. Marvel, C. G. Boncelet Jr., and C. T. Retter, Spread spectrum

image steganography, IEEE Trans. Image Process., vol. 8, no. 8, Aug.

1999, Page(s): 1075–1083.
7. D.R. Denslin Brabin, Dr.V.Sadasivam, QET Based Steganography

Technique for JPEG Images.

8. Nadiya P v, B Mohammed lmran, Image Steganography in DWT
Domain using Double-stegging with RSA Encryption, 2013

International Conference on Signal Processing, Image Processing and
Pattern Recognition [ICSIPR].

9. Vladimír BÁNOCI, Gabriel BUGÁR, Dušan LEVICKÝ, A Novel

Method of Image Steganography in DWT Domain, 978-1-61284-324-
7/11/$26.00 ©2011 IEEE.

10. http://www.mathworks.in/help/matlab/math/discrete-fourier-

transform-dft.html#brenxmh.
11. JPHS: http://linux01.gwdg.de/~alatham/stego.html

12. JPHS:http://io.acad.athabascau.ca/~grizzlie/Comp607/programs.htm

13. S-Tools: http://www.garykessler.net/library/fsc_
Stego.html

14. S-Tools: http://www.cs.vu.nl/~ast/books

http:/http://www.cs.vu.nl/~ast/books/mos2/zebras.html
15. Abbas Cheddad, Joan Condell, Kevin Curran and Paul McKevitt, A

Comparative Analysis of Steganographic Tools

16. Narinder Kehar, Jaspreet Kaur, A Smart Technique: Stegnography,

IJCST Vol. 2, Issue 1, March 2011.

17. Stella : http://vcg.informatik.unirostock.de/~sanction/stella/

18. René Rosenbaum, Heidrun Schumann, A steganographic framework
for reference colour based encoding and cover image selection.

Steghide : http://steghide.sourceforge.net/index.php

19. Erin Michaud, Current Steganography Tools and Methods, GSEC
Practical, Version 1.4b April, 2003

20. J. Fridrich, T. Pevný, and J. Kodovský, Statistically undetectable
JPEG steganography: Dead ends, challenges, and opportunities. In J.
Dittmann and J. Fridrich, editors, Proceedings of the 9th ACM
Multimedia & Security Workshop, pages 3–14, Dallas, TX,
September 20–21, 2007.

21. J. Fridrich, M. Goljan, and D. Soukal, Wet paper codes with
improved embedding efficiency. IEEE Transactions on Information
Forensics and Security, 1(1):102–110, 2006.

22. A. Westfeld, High capacity despite better steganalysis (F5 – a
steganographic algorithm). In I. S. Moskowitz, editor, Information

Hiding, 4th International Workshop, volume 2137 of Lecture Notes in

Computer Science, pages 289–302, Pittsburgh, PA, April 25–27,
2001. Springer-Verlag, New York.

23. J. Fridrich, M. Goljan, and D. Soukal, Perturbed

quantizationsteganography. ACM Multimedia System Journal,
11(2):98–107,2005.

24. Abbas Cheddad, Joan Condell, kevin Curran, paul Mc Kevitt, Digital

image steganography: Survey and analysis of current methods, Signal
Processing 90 (2010) pp 727-752.

25. Niels provos, www.outguess.org.

26. Provos, N. Defending Against Statistical Steganalysis. Proc. 10th
USENIX Security Symposium. Washington, DC, 2001.

27. N. Provos, P. Honeyman, Hide and seek: an introduction

to steganography, IEEE Security and Privacy 1 (3) (2003)

32–44.

28. JSteg : http://zooid.org/~paul/crypto/jsteg/

29. JSteg: http://csis.bits-pilani.ac.in/faculty/murali/netsec-
09/seminar/refs/anuroopsrep.pdf

30. Stegodos : http://www.jjtc.com/stegdoc/sec310.html

31. WhiteNoise Storm : http://www.jjtc.com/stegdoc/sec315.html
32. N.F.Johnson, S.Jajodia, Exploring steganography: Seeing the Unseen,

IEEE Computer 31 (2) (1998) 26-34.

33. K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another
steganographic scheme that resists blind steganalysis. In T. Furon, F.

Cayre, G. Doërr, and P. Bas, editors, Information Hiding, 9th

International Workshop, volume 4567 of Lecture Notes in Computer
Science, pages 16–31, Saint Malo, France, June 11–13, 2007.

Springer-Verlag, New York.

34. Jan Kodovskýa, Tomáš Pevnýb, Jessica Fridricha,Modern
Steganalysis Can Detect YASS,

35. A. Sarkar, K. Solanki, and B. S. Manjunath. Further study on YASS:

Steganography based on randomized embedding to resist blind
steganalysis. In E. J. Delp and P. W. Wong, editors, Proceedings

SPIE, Electronic Imaging, Security, Forensics, Steganography, and

Watermarking of Multimedia Contents X, volume 6819, pages 16–31,
San Jose, CA, January 27–31, 2008.

1711

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21020

