
A Survey For Effective Search And Retrieval Of Components From Software

Repositories

 Amandeep Bakshi Seema Bawa

 Computer Science and Engineering Department Computer Science and Engineering Department

 Thapar University, India Thapar University,India

Abstract

Software Repositories for reusing the components have

been an active research area for more than a decade,

as these software repositories must be designed to meet

the evolving and dynamic needs of software reuse

development. Software repositories are required to

facilitate storing and maintaining reusable software

components efficiently. This paper presents a survey

about the main research on effective search and

retrieval of components and on various software

repositories. In the literature, there are several works

that explore software reuse repositories. This survey

will be the base for an efficiently searchable, user

friendly and effective retrieval of components from

well-organized repositories

1. Introduction
As libraries of reusable software components continue

to grow, the issue of retrieving components from

software components repositories has captured the

attention of the software reuse community [1]. The

storage and retrieval of reusable assets in a software

repository has been the subject of active research in the

past. Reusable assets includes program specifications,

source code, object codes, documentations and the

UML specifications that are produced in a project and

can be later reused.

However, finding a components and reusing the

appropriate software components is often very

challenging, particularly when faced with a large

collection of components and little documentation is

there about how they can be reused. This is a particular

issue for end users of component-based systems who

want to tailor and extend their environment, but have

limited understanding of component functionality and

implementation [5]. Many software components

repositories have been developed, often extending the

approaches used for software repositories.

Hence, it is becoming difficult to retrieve relevant

components. This motivates researchers to look for

retrieval techniques that give efficient guidance for

locating and identifying appropriate software

components that satisfies user queries [11]. Various

retrieval techniques are enumerated classification,

facets, frame-based classification; free-text indexing

and relational databases have been employed to address

the problem of finding relevant components [1]. But

issues involving how effective repositories are built,

populated and evolved to meet the changing needs of

software developers have received considerably a less

attention. Thus, this paper describes a research on

effective search and retrieval of software components

from software repositories.

This paper aims to provide an overview of the state of

research in the area of software reuse repositories with

the intention of providing future research area by

looking at the research gaps and untouched areas. This

paper is organized as follows. Section 2 describes the

existing repositories. Section 3 describes the various

search and retrieval methods and techniques. Section 4

describes the various approaches used for effective

search and retrieval of components and Section 5

concludes the work and suggests future research

directions.

This review aims at summarizing the current state of

the art in software reuse repositories research by

proposing answers to the following questions:

(i)What are the requirements of a software reuse

repository?

(ii) How the software repository must be designed?

(iii)What are the various approaches followed for

constructing effective repository?

(iv)What are the main challenges faced while searching

the components?

1935

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

(v) What are the main challenges faced while retrieving

the components?

2. Existing Repositories for the Effective

Retrieval of components

2.1 The CodeFinder-PEEL Repository

Scott Henninger outlines an Evolutionary approach [1]

in 1996 for constructing effective software libraries

which is demonstrated through CodeFinder-PEEL

repository (Parse and Extract Emacs Lisp) which

extracts components from text files and indexes these

components through a combination of automatic

extraction. The CodeFinder system is a prototype

retrieval tool that uses a combination of retrieval

techniques to help users for finding reusable software

components. This repository was designed to

investigate the cost/benefit tradeoffs. Components are

extracted through PEEL and translate these components

into a CodeFinder representation. Once, components

are translated, seeding a repository is necessary for

creating the component representations by indexing

them with phrases and key terms. PEEL is a

reengineering tool that translates Emacs Lisp files into

the individuals reusable components representing into

the frame based language named kandor which is used

by CodeFinder for indexing the components and create

a frame based hierarchy of retrieval concepts. PEEL

extracts source code definitions of functions, constants,

variables and macros from a source code file. Then this

information is extracted and translated into kandor

objects. Kandor representation can be viewed as a set

of attributes which contain information about the

component. This approach basically shows how

repositories can be constructed with minimal up-front

effort.

2.2 CodeBroker

Yunwen Ye discusses an active and adaptive reuse

repository system in 2001 [4] to address the various

challenges and demonstrates the feasibility of

implementation through a prototype „Code Broker‟

system to assist the java developers in reusing various

classes and methods. The Code Broker automatically

locates the relevant software reusable components and

delivers these right components into the development

environment. The architecture of Code Broker consist

of different software agents i.e. listener, fetcher and

presenter. Listener and Presenter are the interface

agents which connect the software developers to the

backend information agent i.e. fetcher. Listener

captures the software developers needs for reusing the

components and formulates these queries

autonomously. Fetcher retrieves these relevant reusable

components based on the concept similarity and

constraints. Fetcher is a backend information agent

which retrieves the components from the repository.

Presenter uses a user profile for each software

developers to adapt the components retrieved by the

Fetcher to the developer‟s knowledge level.

CodeBroker is currently designed to promote reuse in

the phase of coding.

2.3 Aspect-based component repository

John Grundy describes a software component

repository [5] in 2001 which uses the concept of

„aspects‟ to index and query the various software

reusable components used for automatically generate a

high level indexing based on the systemic

characteristics. A key aim of this approach is to make it

easier for developers and for the end users to formulate

the high level queries for components and have access

to high level information about the retrieved

components. Thus every component is added into the

repository with its aspect details so that component is

easily indexed and queried by using the aspect details

for efficiently retrieval.

This technique is primarily a facet-based approach

where users query for components based on the

particular systemic aspects i.e. attributes of

components.

2.4 CRECOR Component Repository

Jihyun Lee, Jinsam Kim and Gyu-Sang Shin describes

the component repository [6] in 2003 which supports

for facilitating EJB as a reusable software component

in component based software development CRECOR(

Component Repository for facilitating EJB Component

Reuse) is developed to store components and support

reuse activities which also provides the capability to

reuse the pre built EJB software components with GUI.

Various Reuse facilitating activities are component

analysis, component adaption, component deployment,

and component test and assembly are described in this

approach so that components can be efficiently reused.

3. Search and Retrieval Methods, Schemes

and Techniques

Many software classification and retrieval techniques

are available for the effective retrieval of the

components from software repository.

3.1 Classification Schemes

Daniel Lucredio presents a survey about the main

research on component search and retrieval [7] in 2004

and discusses how efficiently components can be

1936

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

search in order to support future component markets.

They specially focus on the classification schemes used

to store the software components. The author proposes

the utilization of a facet based scheme to classify the

software components and the limited numbers of

characteristics i.e. facets are retrieved with a set of

possible keywords are associated with each facet but

problem arises when 2 different people may choose

different keywords to describe the components. So, to

overcome the problem, maarek [8] purposes the use of

automatic indexing and extraction of terms or phrases

that describe a best component.

3.2 Component Storage and Retrieval method

A.Mili , R.Mili and R.T.Mittermeir presents a survey

on methods of storage and retrieval of software assets

in software component libraries in 1998 [3]. They

classify storage and retrieval methods on the basis of

which software libraries can be characterized. They

define the assessment criteria which includes technical,

managerial and human factors (precision, recall and

coverage ratio factors) for the effective retrieval of

components. On the basis of these assessment criteria,

they classify the software libraries which include

informational retrieval method, descriptive method,

operational semantic methods, devotional semantic

method, topological method and structure method.

3.3 SOM and GSOM Techniques

Ronaldo C.Veras and Silvio R.L.Meira both discussed

and compared the two clustering techniques [9] in 2007

namely Self-Organizing maps (SOM) and Growing

Hierarquical SOM (GHSOM) for clustering a

repository of classes from a java API for building

mobile system to provide a more visualization of the

software components and to refine more search by

grouping together similar components.

3.4 Structural and behavioral Techniques

Hanen Ben Khalifa and Qualid Khayati purpose

structural and behavioural techniques [11] in 2008 for

making the more efficient retrieval process by

combining formal and semi formal specification for the

heterogeneity of the software repositories. They

purpose another classification for the retrieval of

components that classifies the components into three

different dimensional spaces. The first axis describes

the interaction by using query or browsing between the

user and the retrieval system. The second axis focus on

the description model for the software components. The

last axis distinguishes between the structural and

behavioral method. The behavioural based retrieval

approaches are based on the notion of exploiting the

executability of software components to classify them.

Testing the components with different arguments

calling their functions yields dynamic responses, which

are collected. This collection is called the component

behaviour. An ordering on behaviours is then used to

classify components and to search through the library

of components. The programs used to produce the

components behaviour tries to call a subset or all the

functions of the component and recover the results. If

the program calls functions that do not exist in the

component, the components will ignore the call. The

person calling some specific function will enter a

specific query and this query will be plugged to all

components of the library to test the components

behaviour. The components that respond to the

searched behavior will be selected and presented to the

user [17, 18].

3.5 Hypertext Technique

A hypertext consists of a set of interconnected units of

textual information. Such a unit of information is called

a node. The connections between the nodes are called

links. The starting point of a link is called the anchor or

the parent node. The ending point is called the

destination or the child node. Usually links are one

directional but it is also possible to define two

dimensional links. Nodes can be anchors and

destinations of more than one link. By means of this set

of nodes and links, a structure is imposed on the

collection of data. A browsing feature which has been

classified as a retrieval technique earlier permits the

user to wander through the data, thus providing a

natural way of accessing the collection of data.

3.6 Browsing Technique

Browsing is an example of a retrieval technique [16]

that requires a well structured document collection.

Documents must be represented in the system as a

network of inter connected nodes and a hypertext is a

good way of defining such a structure. With the aid of

the system, the user can now browse through this

network to find the information he is looking for. The

user does not have to formulate a query at first, to

represent his information need and there is no such

thing as a formal matching process. This can be a major

advantage, especially when the user does not exactly

know what he is looking for. In fact, the actual

matching takes place in the uses mind while wandering

through the network of nodes and links, he decides

whether or not he finds the current node interesting. If

so, he might want to retrieve the document belonging to

the node and we could speak about a match. There are

no formal rules for this kind of matching. The user may

be changing his mind and decide otherwise or maybe

he never really made up his mind about what he is

1937

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

looking for and is not able at all to find any matches

[16].

4. Existing Approaches for Effective Search

and Retrieval of Components.

4.1 Four Layered Architecture Approach

Wang Haitao and Chen Xing purposes a component

library model based on the four-layered architecture in

2011 [12] for organizing and managing the software

component library more efficiently so that user can

easily retrieve, understand and reuse the component.

The four layered architecture include framework layer,

component layer, leaf class layer and leaf function

layer. This architecture is particular suitably for the

flexibility and reusability of the component library

system.

4.2 Knowledge Based Approach

The text automatic classification method is based on

the content analysis automatically to allocate the text

into pre-determined catalogue. The methods of text

automatic classification mainly use information

retrieval techniques. Traditional information retrieval

mainly retrieves relevant documents by using keyword-

based or statistic-based techniques [15]. Knowledge-

based software retrieval systems make some kind of

lexical, syntactic and semantics analysis of natural

language specifications of software components

without pretending to completely understand the

document. They are based on a knowledge base which

stores semantics information about the application

domain and about natural language itself. These

systems are usually more powerful than traditional

keyword retrieval systems. However, they usually

require enormous human resources: Knowledge bases

are created for each application domain and are usually

populated manually.

4.3 Automatic Indexing Based Approach

Automatic indexing is the process of analyzing an item

to extract the information to be permanently kept in an

index. The system extracts lexical, syntactic and

semantic information from the natural language

description. These approaches automatically extract

words or phrases (usually pairs of terms) from

documents and from queries in natural language to

build their internal representation. Automatic indexing

is required for the effective retrieval of information.

Indexing is essential to information retrieval because it

provides entry points to a collection, without the user

having to examine the whole collection. It tells the user

where the information can be physically found and

allows them to search a collection using keywords or

phrases. Indexing has existed for as long as humans

have been keeping written records. There are two ways

that information can be indexed; manually or

automatically. In manual indexing a human indexer

compiles the index, while automatic is when the task is

done by computer. Systems that provide automatic

indexing of software components can be classified in

two basic groups: systems that work only at the lexical

level and systems that include Syntactic and Semantic

analysis of software descriptions [19].

4.4 Automatic Tags Extraction (ATE) Based

Approach

Lei Zhang, LichaonChen, Lihu Pan, Yingjun Zhang

proposed the novel approach Automatic Tags

Extraction (ATE) algorithm in 2012 [14] designed for

the component retrieval for improving the performance

and effectiveness of large scale repositories. In this

approach, component tags are extracted automatically

and indexed by ATE algorithm then they use the vector

space mode (VSM) similarity algorithm to match the

component tags.

5. Conclusion and Future Work
This review paper explores the different repositories,

schemes, methods and techniques available for

effective search and retrieval of the components from a

software repository. The result of the study has been

analyzed and classified into several categories. The

paper has shown the areas of research that have been

done by answering the questions that were defined

initially.

More work is needed to improve the similarity

matching algorithm to further increase the precision

and recall ratio. There is also need to implement

semantic based search for the precise search and for the

effective and exact retrieval of the components from

the software repositories.

6. References

[1] Scott Henninger, “Supporting the Construction and

Evolution of Component Repsitories”, IEEE, 1996, pp-

280-286.

[2] Jiang Guo and Luqi, “ A Survey of Software Reuse

Repositories”, IEEE, 1999.

[3] A.Mili, R.Mili and R.T.mittermeir, “A Survey of

Software Reuse Libraries”, Annals of Software

Engineering 5, 1998, pp-349-414.

1938

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[4] Yumen Ye , “ An Active and Adaptive Reuse

Repository System”, 34
th

 Hawaii International

Conference on System Sciences, IEEE, 2001.

[5] John Grundy, “Storage and Retrieval of Software

Components using Aspects”, IEEE, 2001.

[6] Jihyun Lee, Jinsam Kim and Gyu-Sang Shin,

“Facilitating Reuse of Software Components using

Repository Technology, 10
th

 Asia-Pacific Software

Engineering Conference, IEEE, 2003.

[7] Daniel Lucredio, “A survey on Software

Components Search and Retrieval”, 30
th

 EUROMICRO

conference, IEEE, 2004

[8] Y.S.Maarek, D.M.Berry and G.E. Kaiser. An

information retrieval approach for automatically

constructing software libraries, IEEE transactions on

software engineering, 1991.

[9] Ronaldo C.Veras and Silvi.R.L.meira,

“Comparative Study of Clustering Techniques for the

Organisation of Software Repositories”, IEEE, 2007.

[10] Vanilson Arruda Buregio, Eduardo Santana

Almeida,Daniel Lucredio and Silvio Lemos Meira, “

Specification, Design and implementation of a Reuse

repository”, IEEE, 2007.

[11] Hanen Ben Khalifa, Oualid Khayati, Henda

Hajjami Ben Ghezala, “A Behavioral and Structural

Components Retrieval Technique for Software Reuse”,

IEEE Computer Society, 2008, pp-134.

[12] Wang Haitao and Chen Xing, “Study on a

Component Library Model Based on the Four-Layer

Architecture”, IEEE, 2011.

[13] GE Junwei ,TAO Cong, FANG Yiqiu,

“Architecture for Component Library Retrieval on the

Cloud”,IEEE, 2011, pp 536-539

[14] Lei Zhang, LichaonChen, Lihu Pan, Yingjun

Zhang, “A Novel Approach of Component Retrieval in

Large-Scale Component Repositories”, IEEE, 2012.

[15] Zhu Jingbo, Yao Tianshun,“A Knowledge-Based

Approach To Text Classification”, IEEE, 2001.

[16] Panos Constantopoulus and Martin Dorr,

“Component Classification in the software

Informationa Base”, Prentice Hall, 1995, pp-177-200.

[17] Oualid Khayati, Jean-Pierre Giraudin,

“Components Retrieval Systems”, 2001, pp-56.

[18] M.R. Girardi and B.Ibrahim, “Automatic Indexing

of Software Artifacts”, 1994.

[19] Chao-Tsun Chang, William C. Chu, Chung-Shyan

Liu, Hongji Yang: “ A formal approach to software

components classification and retrieval,” 264-269

Electronic Edition (IEEE Computer Society DL) Colin

J. Hardy, Hlen M. Edwards, J. Barrie Thompson

(1997).

[20] P. Chen, R. Hennicker, and M. Jarke," On the

retrieval of reusable software components" (August 11-

15, 1997).

 [21] Pietro Abate, Roberto Di Cosmo, “Learning from

the future of Component Repositories”, ACM,

2012, pp-51.

1939

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

