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Abstract— Modelling techniques and control strategies 

employed for the coagulation process in the conventional 
drinking water treatment plants in the last two decades are 
reviewed in this paper. The contributions of different models and 
control strategies in the literature to ensure that raw water under 
treatment is not under-dosed or overdosed with coagulation 
chemicals are presented.  In addition, the possible directions in 
the future to comply with the strict drinking water regulations 
are proposed in this paper. 
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I.  INTRODUCTION  
One of main processes involved in water treatment plants 

(WTPs) is coagulation.  The role of coagulation is to remove 
or reduce colour, turbidity and harmful contaminants from 
the raw water to a satisfactory level through the addition of 
coagulant and pH adjustment chemicals in conjunction with 
other unit processes such as flocculation and filtration [21]. 
Coagulation is a complex and non-linear process that is 
characterised by physical and chemical activities [35].  
However, in combination with other key unit processes, 
potable water that is not harmful to the public health is 
guaranteed when the addition of the coagulation chemicals to 
the raw water are controlled by taking into account changes 
in quality and quantity of raw water pumped into the water 
works [24]. The advantages of effective coagulation control 
among others include reduction in the cost of coagulation 
chemicals, filter maintenance, and sludge production [1, 58].  

Research studies have been carried out to develop 
empirical models and software modelling tools to determine 
the optimum amount of coagulant for water coagulation 
process. These empirical models are applied together with 
feedforward control strategies to control the addition of 
coagulation chemicals from the metering pumps into the 
rapid mixing tank and address the problem of underdosing or 
overdosing in WTPs [7, 36].  On the other hand, different 
mechanistic models using the continuous stirred tank reactor 
(CSTR) modelling concept and first order plus dead time 
model (FPODT) had been applied to describe the dynamic 
behaviour of the coagulant dosage system in WTPs.  Based 
on these models, feedback and feedforward–feedback control 
strategies have been proposed to improve coagulation process 
in WTPs [8, 61]  

 

In this review, the contributions and applications of 
different modelling techniques and control strategies 
proposed by previous studies to ensure that raw water under 
treatment are not under-dosed or overdosed with coagulation 
chemicals are presented.  The main objective is to present an 
overview of the merits and limitations of all existing 
approaches and to identify new possible and promising future 
research studies in the field of coagulation process in WTPs. 
The rest of the paper is organised as follows: Section two 
introduces the coagulation process in WTPs. The modelling 
techniques are discussed in Section three. Previous studies on 
control strategies for coagulation process in WTPs are 
described in Section four.  Finally, the concluding remarks 
are given in the last Section. 

II. COAGULATION PROCESS IN WATER 

TREATMENT PLANTS 

Conventional WTPs have a number of unit processes that 
are linked together to produce potable water for human 
consumption [5, 59, 65]. One of them is the coagulation 
process. It involves destabilization and neutralisation of the 
total surface charge of colloids and suspended solids, algae, 
natural organic matters and inorganic substances in raw water 
by addition of optimum amount of coagulation chemicals to 
the raw water. Coagulation is thus a chemical and physical 
process that leads to formation of flocs in a coagulation 
chemical dosing unit [1, 4, 23, 24, 64].  The most commonly 
used coagulants include aluminium sulphate (alum), 
polyaluminium chloride (PAC or PAX), ferric chloride, 
polyaluminium, silicate and sulphate (PASS), Poly organic 
aluminium magnesium sulphate (PSO-M) and 
polyelectrolytes or polymers [24].  When coagulants are 
added to raw water in a rapid mixing tank or pipe at constant 
feed rate by using metering pump, precipitates or molecular 
bridges formed are readily adsorbed to colloid particles and 
neutralize their negative electrical charge leading to 
coagulation or formation of micro flocs [1].  

In WTPs, adjustment of the pH of raw water is an 
essential requirement for sufficient charge neutralisation and 
destabilisation of the colloids to take place [4, 23, 76, 82]. 
Coagulants are acidic salts that consume water alkalinity 
when they are added to raw water during the treatment 
process. For low alkalinity water, coagulants addition may 
consume all the available alkalinity, thereby reducing the pH 
values too low for effective coagulation to occur. It is 
therefore necessary to add hydrated lime or caustic soda to 
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raise the pH level and reduce the effect of the acidic nature of 
the coagulants on the process. Alternatively, high alkalinity 
water may require dosages of primary coagulant and co-
coagulant or acidic solutions to depress the pH values 
favourable for coagulation to take place. The control of both 
coagulant and pH adjustment chemical dosages are therefore 
one of the most critical operational challenges in WTP's 
operations.  

Jar test is a routine laboratory experiment that is 
performed to determine the optimum quantity of coagulants 
and pH adjustment chemicals required to reduce the level of 
contaminants in raw water as part of the treatment process.  It 
is used to determine the set points for the controller of the 
coagulant dosage system.  Due to rapid changes in the raw 
water characteristics especially the surface water, the Jar test 
cannot respond adequately to such variations. Based on this 
disadvantage, it is therefore not suitable for online or 
automatic control of water treatment process. For application 
of automatic control to coagulation process, a good model 
that would give better description of the process is required 
for excellent controller performance [59, 67, 68].   

The test is an example of one-factor-at-a-time (OFAT) 
method.  It involves finding how the dependent variable or 
response is affected by varying each factor when other factors 
are held constant.  In other to overcome the limitations of the 
OFAT method, other approaches such as partial or full 
factorial design, response surface methodology (RSM) and 
the Taguchi approach have been proposed as alternative to it.  
In particular, RSM has been commonly used to determine the 
influence of several independent variables or factors in the 
dependent variables.  RSM is a collection of mathematical 
and statistical techniques that are used to model and analyse 
problems in which response(s) of interest are influenced by 
several factors or variables with an explicit objective of 
optimising this response even in the presence of complex 
interaction [73].  The application of RSM or central 
composite design to jar tests was studied in [84] to optimise 
coagulation condition at the Sri-Gading WTP, Malaysia.  The 
study showed that the RSM jar test produced lower optimum 
alum and polymer dosages than the traditional jar test and 
was able to produce water of comparably quality. However, 
the number of experimental runs involved in the RSM jar 
tests was higher than the conventional jar test. 

III. MODELLING TECHNIQUES FOR COAGULATION 

A. Emperical Modelling  

Empirical or data-based modelling methods involve 
establishing a relationship between the input and output 
dataset from a system under consideration under normal or 
test operating conditions using mathematical representations 
especially where there is poor understanding of the process 
[68].  Statistical and intelligent modelling tools are 
commonly used for modelling the non-linear relationship 
between raw water quality parameters (input variables) and 
coagulant dosages, raw and/or treated water quality indices 
(output variables).  References [7] and [65] have detailed 
discussions on the raw water quality and operational 
parameters that are usually considered for empirical 
modelling of the coagulation process. Researchers have used 
various empirical modelling tools to develop models for 
predicting the optimum coagulant dosage for water treatment 
process at different locations.     

The statistical techniques that are commonly used for 
coagulation process modelling include linear and multiple 
regression models. They are static models for quick 
estimation of an output variable from input variables. For 
instance, in [76], the authors proposed a series of regression 
models to predict alum dosages for both coagulation 
(turbidity and colour removal) and enhanced coagulation 
(natural organic matter) processes. The validity of these 
models were confirmed by [69] when the authors applied 
them to estimate the initial coagulant dosages in a 
coagulation assessment and optimisation study.    

Other studies that developed statistical regression models 
to predict optimum coagulant dosage are reported in [16] and, 
[23]. The study by [72] proposed quadratic regression models 
based on RSM to optimize the coagulation process in WTPs.  
The model had turbidity and total organic carbon has the 
dependent variables while the alum dose and coagulation pH 
were the two factors.  The evaluation of the developed 
models using statistical indices showed that the model was 
adequate and its predicted response was very close to the 
experimental data.   However, these statistical models do not 
describe the dynamic response of the system and may not be 
the best option for automatic coagulation control in WTPs.   

Artificial neural networks (ANNs) have also been 
extensively applied to model the coagulant dosage prediction 
system and to facilitate the application of process control and 
automation in WTPs [6, 19].  A detailed description of the 
operational principles, architecture and algorithms of ANNs 
can be found in [7, 34, 46, 47, 83] and other related 
references.  For instance, in [29], annual and seasonal ANN 
models were developed and implemented in a WTP with 
significant reduction in coagulation chemical usage.    

Further studies carried out in references [7, 26, 30, 31, 41, 
43, 54, 55  63, 68, 80, 81] on applications of ANNs to model 
coagulation process showed that the ANNs were capable of 
identifying usable relationships between the inputs and desired 
output variables in terms of water quality and WTP 
operational parameters. The ANN models could thus 
supplement the bench scale jar test for determining optimal 
operating characteristics of the plant.   

Moreover, studies have been carried to ensure that reliable 
and good data are obtained from WTPs database to train, test 
and validate ANN models in order to have better results. In 
this regards, [74] proposed a single-parameter validation 
scheme and self-organising map (SOM) model to reconstruct 
invalid sensors’ data.  This study was extended in [75] by 
proposing a hybrid system made of SOM to reconstruct 
missing data and multilayer perceptron (MLP) to model the 
coagulation process in a WTP. The study indicated that the 
prediction capability of the hybrid system was better than a 
linear regression model.  Reference [50] investigated the 
application of unsupervised learning approach based on the 
SOM algorithm to detect invalid raw water quality data, 
rebuild and validate them in order to provide reliable inputs to 
the automatic coagulation control system.   

Other variants of ANN have been applied to the 
coagulation process due to its ability to represent complex and 
nonlinear processes that are difficult to model mathematically. 
A study by [49] focused on a neural soft sensor to model the 
coagulant dosage prediction system using factorial analysis on 
a set of raw water quality and operational parameters. 
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Similarly, [38] proposed a neural software sensor for online 
prediction of optimum amount of aluminium sulphate dosage. 
The performances of these soft sensors with real data were 
satisfactory. The generalized regression neural network 
(GRNN) and the radial-basis function neural network 
(RBFNN) techniques were studied in [35] to predict optimum 
coagulant dosage for WTPs. The simulation results showed 
that the trained GRNN model outperformed the corresponding 
RBFNN model.  

The ANN models were combined together with other 
intelligent methods to model the coagulation process in WTPs. 
In one of the previous studies, a combination of fuzzy model 
for normal condition and ANN model for abnormal condition 
was developed in [33] to predict the optimum coagulant 
dosage for a WTP in South Korea. The results showed that 
their proposed model (prediction error of 0.8) performed 
better than the regression method (prediction error of 5.2).  
Other intelligent models such as expert system in conjunction 
with ANNs (ESNN) was proposed by [86] to determine the 
optimum chemical dosage rate for a drinking WTP in China.  
The results showed reduction in the chemical coagulant 
dosage by 21% compared to previous years when 
conventional jar test was in use. The concept of data mining 
was applied to estimate three different coagulant dosage in a 
study by [5]. The decision tree and ANN are combined to 
develop the selection and prediction model.  Their proposed 
models showed reasonable results to estimate the coagulant 
volume.   

Apart from ANNs, adaptive neuro-fuzzy inference systems 
(ANFIS) have been studied and used also to model the 
coagulant dosage prediction system.  Comprehensive 
discussions on the ANFIS can be found in [40, 87] and other 
references in these papers. An instance of applying ANFIS to 
model a coagulant prediction system was discussed in [18]. 
The study proposed ANFIS based on Conditional Fuzzy c-
means (CFCM) and Fuzzy Equalization (FE) method to 
estimate the coagulant dosage for WTPs. The results of the 
proposed model was compared with the ANN, linear 
regression, zero-order and first-order ANFIS models. The 
training and validation root mean squared error (RMSE) of the 
proposed method (1.12 and 1.85 respectively) were found 
lower than the RMSE of others models (above 1.9). In [79], 
the coagulant dosage prediction system was modelled using 
both ANN and ANFIS tools. The results of the comparative 
study showed that the ANN model was better than the ANFIS 
model when the raw water had high turbidity due to storm 
water. On the other hand, the optimal self-prediction model 
developed using ANFIS tool made a better prediction of the 
coagulant dosage than the ANN model when there were no 
information on raw water quality indices.   

In another related study, [36] used ANFIS to develop a 
coagulant dosage model for a WTP. The authors proposed 
fuzzy inference systems based on grid partition (ANFIS-
GRID) and subtractive clustering (ANFIS-SUB) for the 
process modelling. The outcome of the study indicated that 
the ANFIS-SUB outperformed the ANFIS-GRID due to its 
simplicity in parameter selection.  In [48], the ANFIS and 
ANN models were developed for estimation of the optimum 
coagulant dosage. Simulation results performed on a 
laboratory based WTP indicated that ANFIS model (training 
and validation RMSE values were 0.11 and 0.0781 
respectively) had better prediction ability than ANN model 

(training and validation RMSE values were 0.3215 and 0.1706 
respectively).  Reference [37] applied dynamic evolving 
neuro-fuzzy inference system on-line (DENFIS-ON) and off 
line (DEFIS-OFF) schemes to model the coagulant dosage for 
a water treatment plant.  The results of the simulation studies 
between the two schemes showed that DENFIS-ON gave 
better prediction accuracy than DENFIS-OFF.  

Different intelligent data-based modelling tools such as 
linguistic equation (LE) and rough set decision rules had been 
used also to model coagulant dosage prediction systems from 
a set of historical water quality data [44, 70]. Simulation 
results showed that the proposed models were promising but 
further improvement was recommended. The support vector 
machine regression techniques using two different kernel 
functions (radial basis function (RBF) and polynomial 
function), and K-Nearest Neighbours (KNN) were 
investigated in [85] to predict coagulant dosage in WTPs. The 
results indicated that KNN has better predictive capabilities 
than the support vector machine regression techniques.  

Furthermore, the application of evolutionary 
computational techniques to coagulation process modelling 
had been proposed though few studies had been reported.  For 
instance, genetic programming (GP) was proposed by [57] to 
develop a model for the coagulant dosage prediction system as 
part of a decision support system for a full scale WTP. Results 
of the validation tests showed that the proposed method would 
be helpful for the economic operation of WTPs.  In a related 
study, [77] proposed minimum cluster volume fuzzy 
algorithm (MCV) based on genetic algorithm to develop a 
coagulant dosage prediction model. The proposed model 
showed better results when compared to a linear regression 
model.    

From all the studies reviewed, it is obvious that empirical 
modelling techniques have been proposed and studied 
extensively for coagulation control in WTPs. However, the 
limitation of these empirical models is that these models are 
only effective when the available online data from the process 
are accurate and reliable [42]. In addition, these empirical 
models only show the input and output relationship between 
the water quality parameters with little or limited information 
about the dynamic behaviour of the system. They depend 
solely on past operational or historical data from the plant's 
database for training and validation. When these data are not 
available or inadequate, the prediction models will provide 
unsatisfactory results. Another drawback to these techniques 
is the huge amount of data involved and complexity of the 
knowledge governing the process which may be difficult for 
the plants' operators to assimilate especially considering that 
the models need to be trained periodically to produce reliable 
results. 

B. Software Modelling  
Some relevant software packages for modelling water 

treatment processes including coagulation are identified in 
[22, 60, 78]. Each of these software packages has its own 
merits and demerits especially in that they are specific to a 
limited number of applications. For instance, Stimela 
modelling software and its key features are discussed in [61]. 
It was developed to improve the operation of drinking water 
treatment processes. The author applied the software to 
model different aspects of WTPs in Netherlands and made 
useful contributions towards the improvement of these 
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operations.  In [78], the authors observed that EPAnet 
software library lacked elements to describe the hydraulic 
properties of drinking WTP units. Consequently, they 
innovatively used the EPAnet software to build hydraulic 
models for a WTP at Harderbroek, Netherlands. Their results 
emphasized that the model could be used to support plant 
personnel in their daily operations when calibrated and 
validated with historical data.   

Further study carried out by [22] on software modelling 
techniques showed that most of the existing water treatment 
simulators had issues that should be addressed for effective 
utilisations in WTPs. The major limitation of the modelling 
software is the amount of data and effort required to re-
calibrate the software models to produce satisfactory results 
when applied outside the domain of their initial calibrations. 
Based on this, [22] proposed integration of the essential 
features of OTTER and Stimela to develop a simulator that 
would address the deficiencies of the existing modelling 
environments. The details of the proposed modelling platform 
for water treatment process are fully discussed in [60]. 

C. Physical/Mechanistic modelling 
The mechanistic models are derived from the underlying 

principles and theories governing the process under 
consideration. They could be generalised for different 
domains but may not be adequate to represent the system 
accurately [3]. Majority of the models for the coagulation 
process are based on empirical techniques as earlier 
presented.  This may be associated with the complex 
physicochemical processes involved in coagulation, limited 
understanding and poor quantification of the relationship 
between the inputs and outputs of the process [2, 7, 36, 68]. 
Therefore, few studies and limited progress have been 
reported on the application of mechanistic techniques to 
address the problem of coagulation control in drinking WTPs.  

In a study by [2], the authors developed a mechanistic 
model for the coagulant dosage system based on experiments 
from a twin pilot WTP.  The proposed model was a 
simplified model without any mathematical derivation. The 
simulation model showed unstable results when tested in the 
presence of disturbances. Therefore, the model required 
modification and improvement. In [53], the authors carried 
out residence time distribution (RTD) experiments to develop 
the hydrodynamic models for surface water treatment pilot 
plant equipment in Romania based on tracer concentration 
measurements. A comparison of results between the 
simulation model using Cholette-Cloutier (CC) models and 
the RTD experiment indicated that the pilot plant could be 
well approximated by a combination of the simple CC 
models used in their research work.   

Furthermore, a study reported by [56] used the second-
order, discrete-time transfer function to represent a coagulant 
dosage system to facilitate the application of feedback control 
to the system.  In another attempt to model the coagulation 
process in a WTP, a nonlinear mathematical model was 
proposed in [32] that described the relationship between the 
inlet and outlet concentration of the coagulant and colloidal 
particles in a mixing tank using the concept of continuous 
stirred tank reactor (CSTR) model. The outcomes of the 
model simulation showed promising results. However, the 
authors suggested further investigations to improve the 
overall model of the system.    

Having identified the need to develop a model that 
describes the physicochemical and dynamic nature of a 
coagulant dosage system, [8, 9] proposed a mechanistic 
model for a hypothetical system from the first principles. In 
[10, 11], a dynamic model of coagulant dosage system or 
coagulation chemical dosing unit (CCDU) for Rietvlei WTP, 
South Africa was proposed.  Validation results from the real 
data collected from the plant showed that the proposed model 
was a good representation of the dosing unit.   

All of these previous works on mechanistic models 
showed that there are limited number of studies in this regard.  
There is thus a need to improve the existing models or 
develop novel dynamic model to achieve adequate control 
and optimisation of the coagulation process in WTPs taking 
into considerations the effects of input variations and 
disturbances on the system.  

IV. CONTROL STRATEGIES FOR COAGULATION 

An effective control strategies is needed to obtain the 
desired response from the operations of a plant [66].  Most 
modern and new WTPs are built to be fully automated. This 
is possible due to the application of computer algorithms to 
facilitate control functions in the plant's operations. A 
detailed description and application of modern control 
systems to WTPs and coagulation process in particular can be 
found in [28]. A good number of dosing control strategies 
have been proposed in the literature. They could be broadly 
classified as feedforward, feedback and feedforward-
feedback (two-degree of freedom) control strategies [1, 43].   
Feedforward control measures one or more process input 
parameters and computes the appropriate actuator setting 
based on these values. However, a feedback controller adjusts 
the actuators continuously to decrease the size of the error 
between the desired reference signal or set point and the 
output variable.   

A.  Feedforward control 
Feedforward or predictive control involves adjusting the 

levels of coagulation chemicals added to a process stream as 
a result of sensory information from the raw water 
variable(s). Basically, this is achieved by changing the feed 
rate of the metering pumps according to the measured flow 
rate of the raw water [1, 51, 58]. This approach however 
becomes inappropriate, when the flow rates vary rapidly and 
there are large changes in other water quality variables. The 
coagulant dosage controller therefore exhibit low 
performance and instability.   

To address these problems in feedforward control strategy 
shown in Fig. 1a, several models such as multilinear 
regression equation, artificial neural networks and fuzzy 
inference system algorithms have been proposed to predict 
the required amount of coagulant under varied conditions to 
replace the flowmeter response. The models have capabilities 
to handle either a few or several water variables provided 
there is availability of accurate data relating to them. In a 
previous study, a feedforward control based on a fuzzy and 
ANN models, and PID control was proposed by [33] for a 
coagulant dosage system with satisfactory results after field 
tests were carried out.   

Another study on feedforward controller based on 
adaptive neuro-fuzzy network was proposed by [25] for a 
WTP. The new controller demonstrated better results over the 
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process controller used in the plant. In [7], the integration of 
ANN models with the supervisory control and data 
acquisition (SCADA) system to optimise the chemical costs 
and doses online in real-time was presented. Reference [27] 
proposed a feedforward control was developed using models 
based on nonlinear transformation of variables, multilayer 
perceptron (MLP) and radial basis function (RBF) to improve 
the system in conjunction with a proportional controller. A 
feedforward control strategy based on the pulse width 
modulation (PWM) controller and ANFIS prediction model 
was proposed by [48] to control the flow rate of the alum 
dosing pump for a laboratory based WTP. The result of the 
real time implementation of the intelligent steady state 
controller was satisfactory.  The findings of these research 
works on feedforward control were positive however they 
rely on the availability of an accurate empirical or data-based 
model for effective performance. 

B.  Feedback control 
The previous studies on the applications of feedback 

control strategies include the use of sensors such as a 
streaming current detector, zeta meter, dispersion analysers 
(PDA) and pH meter to measure the controlled variables 

  Y s  after the coagulation process, comparing the measured 

values with the set point   R s  and adjusting the metering 

pumps accordingly   U s  to correct any deviation  from the 

expected results   E s  as shown in Fig. 1b.   
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Figure 1. Control strategies for coagulation process 

Detailed descriptions of a streaming current detector can 
be found in [20], pH sensor in [17], zeta meter in [59], PDA in 
[58] and other related references in these literature.  Other 
parameters which are seldom measured are aluminium 
residuals, floc size, floc image, UV-absorbance 254 and total 
organic carbon (TOC) using appropriate online sensors.  Due 
to cost of online sensors, the use of software sensors is being 
proposed to replace these expensive online sensors [58].  

Conventional Proportional-Integral-Derivative (PID) 
control algorithms are the most commonly used and well 
established class of controllers in water treatment processes. 
However, the use of PID control and a streaming current 
detector for coagulation had been found to have a number of 
limitations such as an inaccurate dynamic system model to 
describe the behaviour of the system, slow response of the 
PID controller to longer system delay or dead time, daily and 
seasonal variations in water quality parameters and loop 
interaction effects within the system [68].  

For instance, in a study performed by [2], the authors 
investigated the application of feedback Proportional-Integral 
(PI) control on the coagulation process in a twin pilot plant to 
improve the existing manually flow-proportioned control 
system. A new decoupling control scheme was proposed that 
reduced the loop interaction between the pH and coagulant 
dosage loops. The new control strategy was found to be less 
susceptible to disturbances when compared with the separate 
feedback control loops. Moreover, in a study on a feedback 
control strategy by [56], the author compared the 
performances of PID and linear model predictive control 
(MPC) scheme for a coagulant dosage system in WTPs. 
Simulation results showed that the linear MPC had a better 
response to disturbances than the PID controller.  However, 
the study did not consider the effect of pH variations on the 
coagulation control. Thus, further studies were required to 
overcome these challenges.   

In view of the above, further investigations into the 
application of multivariable control strategies to coagulation 
process were performed in [12]. A nonlinear model predictive 
control (NMPC) was proposed to control the surface charge 
and pH values of the chemically dosed water from the 
coagulation chemical dosing unit (CCDU) at the Rietvlei 
WTP by regulating the three flow rates of the coagulation 
chemicals in order to satisfy the control objectives of the 
plant.  Subsequently, a fuzzy model predictive control 
(FMPC) scheme was proposed for the dosing unit. The 
proposed control scheme demonstrated superior ability when 
compared with the NMPC scheme (Bello et al., 2014e).   The 
study by [14, 15] further investigated the implication of a 
CCDU operating at different operating regions. To solve the 
control problem associated with it, a switching multiple model 
predictive control (SMMPC) for the CCDU was proposed. 
Satisfactory results were obtained from the simulation tests. 
This work was extended by proposing a fuzzy weighting 
model predictive control (FWMMPC) scheme for the CCDU.  
The computer simulation tests of FWMMPC scheme showed 
better performance when compared with the switching and 
weighting MMPC schemes. 

C.  Feedforward-feedback control 
Fig. 1c shows the combination of feedforward and 

feedback control strategies to correct the predicted effect of 
changes due to input variables on the system, and errors 
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  E s  between the set points   R s  and measured variables 
  Y s  through the control variable,   U s . In a study to 

illustrate the application of feedforward-feedback control 
strategy to the coagulation process, [23] discussed a 
combination of feedforward control algorithm integrated in a 
programmable logic control (PLC) to compute the optimal 
doses of coagulant and pH adjustment chemical based on the 
UV absorbance-254 and turbidity of the raw water and a 
feedback control for the pH loop. However, the proposed 
technique did not have provision for any feedback 
mechanism to measure the surface charge or determine if the 
charge neutralization of colloids was adequate for optimum 
coagulation to take place. 

In another study, [a practical feedforward control system 
with fuzzy feedback trim to control the coagulant dosage 
system at a WTP was discussed in [16].  Reference [39] 
discussed the feasibility of applying a feedforward fuzzy 
logic controller and feedback controller to determine the 
optimum chemical dosage and control the performance of a 
coagulant dosage system. A series of tests performed on the 
system at a WTP over a period of one month showed the 
practical viability of the control algorithm programmed in a 
small-scale PLC unit.  However, in spite of the attractive 
nature of fuzzy logic control, some difficulties such as 
knowledge acquisition from experienced operators, and a 
large set of rules involved in developing the rule base, were 
identified as limitations of the approach in these studies.  
Generally, the number of studies performed on the control 
strategies for coagulation process is still very limited in spite 
of wide range of emerging and available advanced control 
algorithms.  Therefore, there are future studies that could be 
carried out to address and improve the challenging problem 
of coagulation control in WTPs. 

V. FUTURE DIRECTION AND CONCLUSIONS 

In this paper, a general overview of modelling and control 
strategies for coagulation process in WTPs in the literature in 
the last two decades has been discussed and examined. Due 
to the global importance attached to the provision of safe and 
potable water, there is a need for continuous investigation on 
coagulation process modelling and control in order to meet 
the industry regulators' standards, optimise coagulation 
chemical usage and reduce operational cost. Future studies 
that should be considered based on the review in this paper 
are summarised in this section.   

Firstly, it is proposed that more studies should be carried 
out to use intelligent data-based modelling techniques to 
estimate the coagulation chemical dosages from the water 
quality parameters. In this regards, a combination of 
evolutionary computational techniques such ant colony 
optimisation, evolutionary algorithm, genetic algorithm, 
particle swarm optimisation, simulated annealing and swarm 
intelligence with fuzzy systems and artificial neural networks 
should be considered to develop more effective and reliable 
coagulant dosage prediction models.  

Based on these models, the development of intelligent and 
adaptive feedforward controllers that would respond 
adequately to changes in raw water quality parameters and 
adapt to changes in the system operational conditions should 
be studied and implemented accordingly. More research 
studies should also be directed toward the development of 

mechanistic models based on distributed parameter system 
and plug flow reactor to achieve the objective of removing 
colloidal particles and harmful contaminants from raw water.  
In addition, the use of hybrid models developed using both 
the mechanistic and empirical methods to estimate the 
parameters of the process from the measured data of the 
system should be investigated and explored by researchers.    

The advanced and emerging control algorithms in the 
areas of nonlinear, adaptive, robust, intelligent and model 
predictive control schemes should be proposed for the 
process and evaluated in terms of their servo and regulatory 
response performances. This should facilitate further studies 
on the application of feedforward-feedback control strategies 
using the existing or newly developed models to ensure that 
adequate and high quality drinking water is available for the 
public consumption. 
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