
“A Survey On Different Large Scale Reliable Distributed Storage Systems” 
               

 Parameshwar Reddy. V              Roopanjali. Daddi 

        M.Tech Student, VTU                   Assistant Professor,  

             Computer Networking, EWIT                             Department Of ISE, EWIT 

             Bangalore.                                                                                Bangalore. 

    
                                       
       
                

                           Abstract

Large scale reliable storage systems are playing a 

major role in the today’s world of managing data 

over disturbed systems. As the data volume increases 

in more and more applications fields of science, 

engineering, information sciences etc., the challenges 

posed by large scale storage systems gain an 

increasing importance. As data in PB(petabytes) 

doubling for every 2 years as the storage systems 

must be able to accommodate from PBs to EBs. In 

this paper we provide the survey on different large 

scale storage systems available in the market 

maintained by different organization. These 

distributed storage system includes Data-intensive 

oriented file systems, parallel file systems, cloud data 

storage services. Initially, we discussed new 

challenges and issues for the large-scale data storage 

along with desired principles. Second it was 

discussed different storage systems along with 

architecture of each distributed storage systems. 

Finally, provided compared these different storage 

systems with issues along with the future 

enhancement. 

 

Key terms– challenges, data-intensive file systems, 

parallel  file systems, cloud data storage.  

 

1.Introduction 

 
         In the today’s world large scale reliable storage 

systems playing a major role over the internet in 

protecting and retrieving the data. Distributed  

systems designed specifically to handle very large-

scale data stream processing applications [1] are in 

their infancy. Distributed stream processing are 

becoming more common, that are more commercially 

available and more in development.  

         At a new approach to Big Data storage must 

also fulfil the following requirements: 

 Ability to scale to billions of objects while 

maintaining performance for all users without 

disruption. Big Data storage means that storage 

systems must be able to accommodate PBs to 

EBs(Exabyte’s) of capacity, and billions of 

objects or files, with satisfactory performance for 

millions of concurrent users. 

 Support for ongoing non disruptive tech refreshes 

Storage systems must be able to handle 

equipment updates online, without downtime or 

manually intensive data migrations. 

 Always available and online five nines (99.999%) 

availability all the time. 

 Competitive TCO(total cost) Storage has become 

the largest line item for IT budgets, while an 

increasing climate of austerity is placing 

increasingly stringent demands to significantly 

reduce storage costs. 

      Executing data-intensive applications [2] at a 

very large scale raises the need to efficiently achieve 

several challenges: 

Scalable architecture: The data storage and 

management infrastructure needs to be able to 

efficiently leverage a large number of storage 

resources which are amassed and continuously added 

in huge data centres or petascale supercomputers. 

Orders of tens of thousands of nodes are common. 

Massive unstructured data: Most of the data in 

circulation is unstructured: pictures, sound, movies, 

documents, experimental measurements. All these 

mix to build the input of applications and grow to 

huge size, systems gain increasing importance as data 

in PB doubling for every 2 years. Such data is 

typically stored as huge objects and continuously 

updated by running applications. 

Many data objects:  A dataobject [3] is a logical 

cluster of all tables that represent an object view of 

related tables. Unstructured data can be made easily 

accessible through the data objects. Each object acts 

as a container for end users' files, and indexes are 

often held in RAM, making them very fast to access.  

Transparency: Large scale distributed 

infrastructures heavily rely on explicit data 

localization and on explicit transfers. Managing huge 

amounts of data in an explicit way at a very large 

1926

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



scale makes the usage of the data management 

system complex and tedious. One issue to be 

addressed in the first place is therefore the 

transparency with respect to data localization and 

data movements. The data storage system should 

automatically handle these aspects and thus 

substantially simplify user’s access to data. 

High throughput under heavy access concurrency: 

Several methods to process huge amounts of data 

have been established. Traditionally, message passing 

has been the choice of designing parallel and 

distributed applications. While this approach enables 

optimal exploitation of parallelism in the application, 

it requires the user to explicitly distribute work, 

perform data transfers and manage synchronization. 

Recent proposals such as MapReduce [4] and Dryad 

[5] try to address this by forcing the user to adhere to 

a special paradigm. While this is not always possible, 

it has the advantage that once the application is cast 

in the framework, the details of scheduling, 

distribution and data transfers can be handled 

automatically. Regardless of the approach, in the 

context of data-intensive applications [2] this 

translates to massively parallel data access that has to 

be handled efficiently by the underlying storage 

service. Since data-intensive applications spend 

considerable time to perform I/O, a high throughput 

in spite of heavy access concurrency is an important 

property that impacts on the total application 

execution time.  

Support for highly parallel data workflows: Many 

data-intensive applications consist of multiple phases 

where data acquisition interleaves with data 

processing, resulting highly parallel data workflows 

[6]. Synchronizing access to the data under these 

circumstances is a difficult problem. Scalable ways 

of addressing this issue at the level of the storage 

service are thus highly desirable.  

      Large scale storage systems in the present market 

should achieve the following issues Centralized meta 

data [7], Versioning support, fine grain writes [8], 

Too many small files. In further we discus about 

different large scale distributed storage systems 

includes Data-intensive oriented file systems[9], 

parallel file systems[10] and cloud data storage 

services[11]. Data-intensive oriented file systems 

which has the General file system(GFS) which was 

maintained by the Google organization, and Hadoop 

distribute file system (HDFS) maintained by the 

yahoo. The parallel file system has General parallel 

file system(GPFS) and Lustre. Cloud data storage 

services includes simple storage service(S3) and  

Azure. Finally we will provide the comparison of 

these distributed storage systems along with new 

issues mentioned and future storage system which 

should come across these issues. 

 

2. Related work 
 

        These large scale reliable distributed systems 

can be divided into three categories. They are  

   1. Data intensive oriented file systems 

   2. Parallel file systems 

   3. Cloud data storage services 

In the below it was discussed with each file systems 

along with the examples. 

 

2.1. Data intensive oriented file systems 

 
         Data-intensive distributed file systems [9] are 

emerging as a key component of large scale Internet 

services. They are designed from the ground up and 

are tuned for specific application workloads. In data-

intensive oriented file systems the huge data can be 

divided into the small blocks to make efficient use of 

memory available. It has structured storage which 

can be built on top which allows fine grain 

concurrent reads [12] but not fine grain concurrent 

writes [12]. In this system locking is not mandatory 

and it has data location aware.  Leading examples, 

such as the Google File System (GFS) [13], Hadoop 

distributed file system (HDFS). 

 Google file system (GFS): GFS which is maintained 

by the Google organization. GFS is optimized for 

Google's core data storage and usage needs (primarily 

the search engine), which can generate enormous 

amounts of data that needs to be retained. Files are 

divided into fixed-size chunks of 64megabytes.  

 

                                Masters 

 

 

 
 

 

 

                 

… 

         …   …….. 
                                                                                   

       Chunk server 1            Chunk server 2              Chunk server N 

 

                                  Figure 1: GFS architecture 
        A GFS cluster consists of multiple nodes. These 

nodes are divided into two types: one Master node 

and a large number of Chunkservers. Each file is 

divided into fixed-size chunks. Chunkservers store 

these chunks. Each chunk is assigned a unique 64-bit 

label by the master node at the time of creation, and 

    
 GFS  master 

GFS  master 

Client

11 

Client

2 

 C0  C4 

 C4  C3 

 C1 

 C6  C5 

 C2  C0 

1927

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



logical mappings of files to constituent chunks are 

maintained. Each chunk is replicated several times 

throughout the network, with the minimum being 

three, but even more for files that have high end-in 

demand or need more redundancy. GFS master 

manages metadata and data transfers between the 

client and chunkservers shown in the figure 1. 

       Each chunk can be saved minimum three times. 

Deciding from benchmarking results,
 
when used with 

relatively small number of server, the file system 

achieves reading performance comparable to that of a 

single disk (80–100 MB/s), but has a reduced write 

performance (30 MB/s), and is relatively slow (5 

MB/s)[13] in appending data to existing files. 

   Hadoop distributed file system (HDFS):  HDFS 

[15] is the part of yahoo is an open source which was 

implemented using the MapReduce [4] and it is java 

based. In this distributed storage system the file is 

divided into large blocks (64MB). These blocks are 

distributed across the clusters which are replicated 

several times to come across hardware failure. Data  

Placement is exposed so that computation can 

migrated to data. HDFS has master/slave 

architecture, where HDFS namenode manages all file 

system metadata in memory,  it will list the files for 

each file name a set of blocks has been fixed and for 

each block , a set of Datanodes.  

 

 

 

   
Metadata ops 

 

 
                                             blockops 
 
             read                                                                    write 
Datanodes 

 

 

 

 

 

 

 

 
                          Rack1                                       Rack2 
 

Figure 2: HDFS architecture 
 

    Name node controls the read/write access to files 

and it also manages the block replication. Datanodes 

is block server which stores the data in local file 

system, stores the metadata of a block, and serves the 

data and meta data to the clients. Block report will 

periodically sends a report of all existing blocks to 

the namenode. Racks are used to store the data blocks 

as shown in the figure 2 two are more Datanodes put 

together for a Rack. Here the replication can be 

performed upon the instruction by Namenode.    

Datanodes send the heartbeat signals to the namenode 

for every period of time and namenode uses these 

heart beats to detect Datanodes failures. Data 

correctness can be validated by using checksums 

(CRC32) [16].  

 

2.2. Parallel file systems 

 
      Parallel file systems the data has been distributed 

across the disks and data striping can be done here. It 

has the advanced caching. In parallel file systems 

[10], a few nodes connected to the storage—known 

as I/O nodes—serve data to the rest of the cluster. 

The main advantages a parallel file system can 

provide include a global name space, scalability, and 

the capability to distribute large files across multiple 

nodes. In a cluster environment [17], large files are 

shared across multiple nodes, making a parallel file 

system well suited for I/O subsystems. Generally, a 

parallel file system includes a metadata server 

(MDS), which contains information about the data on 

the I/O nodes. 

      Metadata is the information about a file—for 

example, its name, location, and owner. Some 

parallel file systems use a dedicated server for the 

MDS, while other parallel file systems distribute the 

functionality of the MDS across the I/O nodes. 

Leading examples are General parallel file systems 

(GPFS) and Lustre. 

General parallel file systems (GPFS): GPFS [10] 

was developed by the IBM which has high 

performance shared disk file systems used by many 

super computers in top500. It uses the technique of 

distributed storage system where the file divided into 

the blocks(less than1MB) and these blocks are 

distributed across the cluster. These blocks are RAID 

[18]- replicated or file system node replicated. It has 

very efficient indexing of directory entries for very 

large directories. In the figure 3 it was shown the 

GPFS architecture which has manager nodes, storage 

nodes attached to shared disks, file system nodes and 

switching fabric. File system nodes run user 

programs, read/write data to/from storage nodes and 

these nodes also cooperate with manager nodes to 

perform metadata operations. 

 
                                                        Manager nodes 

 

 
Shared disks              

 

 

 

         Namenode 

   client    client 

1 

3 

2 1 

2 

4 3 

switchin

g fabric 

1928

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

 

 
                                       

 

                                   Storage nodes                   File system 

nodes 

 
Figure 3: GPFS architecture 

 

    Storage nodes implements block I/O interface and 

they interact with manager nodes for recovery. Data 

and metadata stripped across multiple disks-multiple 

storage nodes. Manager nodes which is responsible 

for file system configuration like recovery and adding 

disks. It acts as a disk space allocation manager, 

quota manager, file metadata manager (maintain file 

data integrity), and global lock manager.     

Lustre:  Lustre [19] is the massively parallel 

distributed file system owned by the Oracle, which is 

used by most super computers (the world’s fastest 

computer-Tianhe-1A [20], jaguar [21]).  

 
                                                        MDT 
 
                                                                       Luster pool 
  

 
                                                                  OST 

                                     

 

 

 

 

 

 

 

 

 
                                                                       OST 

                                         

                                                        

 

 

 

 
MDS- Meta data server                   MDT- Meta data targets 

OSS-  Object storage server    

OST-  Object storage targets 

       

Figure 4: Lustre Architecture 
    Lustre file systems [22] are scalable and can 

support tens of thousands of client systems, tens of 

petabytes (PB) of storage, and more than a terabyte 

per second (TB/s) of aggregate I/O throughput. It is 

open source which is an object based. Meta data 

target is a disk which is in metadata server for storing 

of data. Object storage server store data on object 

storage target which is an distributed locking. Clients 

which are attached to the DSS should posses the 

POSIX[23] semantics. Luster pool which combine 

two or more OST. The figure 4 shows the Lustre 

architecture[19]. 

 

2.3 Cloud data storage services 

 
     Cloud storage system can be considered to be a 

network of distributed data centers which typically 

uses cloud computing technologies like 

Virtualization, and offers some kind of interface for 

storing data. To increase the availability of the data, it 

may be redundantly stored at different locations. In 

general, all of this is not visible to the user. Many 

cloud storage providers are active on the market, 

offer various kinds offering services to their 

customers. Basic cloud storage services [11] are 

generally not designed to be accessed directly by 

users but rather incorporated into custom software 

using ―application programming interfaces" (API) 

[24]. Examples of such basic cloud storage services 

are Amazon S3 and Microsoft Azure. 

Simple storage service (S3): Amazon S3 [25]  is 

an online storage web service offered by Amazon 

Web Services. Amazon S3 provides storage through 

web services interfaces [25] (Examples 

REST, SOAP, and  BitTorrent). S3 storage for 

internet which has pay per use policy(for storage, 

request, data transfers)Amazon claims that S3 uses 

the same scalable storage infrastructure that 

Amazon.com uses to run its own global e-commerce 

network. S3 stores arbitrary objects (computer files) 

up to 5 terabytes in size, each accompanied by up to 

2 kilobytes of metadata.  
                                    Cloud storage 

 

  

 

 

                                

Figure 5: Cloud storage 

 

       Objects are organized into buckets (each owned 

by an Amazon Web Services or AWS account), and 

identified within each bucket by a unique, user-

assigned key. Amazon Machine Images 

(AMIs) which are modified in the Elastic Compute 

Cloud (EC2) can be exported to S3 as bundles 

Buckets and objects can be created, listed and 

retrieved using either a REST style HTTP interface 

or a SOAP interface. Additionally, objects can be 

downloaded using the HTTP GET interface Requests 

are authorized using an access control list associated 

with each bucket and object. 

Client 

client 

Client 

 

MDS 

 

OSS 

 

OSS 

 

OSS 

 

      

 

 

        OST 

            S3              S3 

1929

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



Azure: Azure [27] is a cloud computing  platform 

and infrastructure, created by Microsoft, for building, 

deploying and managing applications and services 

through a global network of Microsoft-

managed datacenters. It provides both platform as a 

service (PaaS) [28] and infrastructure as a 

service(IaaS) [28] services and supports many 

different programming languages, tools and 

frameworks, including both Microsoft-specific and 

third-party software and systems. Here data 

manipulation can be done based on HTTP.  

 

 

 

 

 

 

 

 

 

 

                                
                                          HTTP/HTTPS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Windows Azure 
 

        The data is replicated 3 times to make it fault 

tolerant, availability, and for scalable. Here Azure 

has three components storage, compute and 

management. We will consider here only storage part 

as the storage has Blobs, tables and queues. Blobs 

have up to 1TB of unstructured data which are 

grouped in a container.  Tables are the group of 

entities /records that contain properties which has 

fine grained access to structured data. Queues are the 

asynchronous communication between the cloud 

instances. Azure storage can be independently 

accessible that is it can be used from any platform, 

on-premise or cloud based. It is independently 

scalable as it does not depend on windows Azure 

compute.  

 

 3.Comparison  
 

     The existing large scale reliable distributed 

storage systems in the today’s world are unable to 

come across some issues which are provided in the 

introduction. Lets us compare these storage systems 

with our issues.  

 

Table1: comparison between the different storage 

devices. 

 

 

    Issue 

Data-

intensive 

FS 

Parallel FS Cloud 

storage 

Centralized 

metadata 

 

    No  

 

     Yes  

 

   Yes  

No version 

support 

 

    No  

 

      No  

 

    Yes  

No fine 

grain 

writes 

 

    No  

 

      Yes  

 

    No  

Too many 

small files 

 

    Yes  

 

       No  

 

    No 

 

Yes – addressed issues 
 

Comparison between these existing different large 

storage systems shows that all the issues can’t be 

addressed by any storage system.  

                      

4.Conclusion 
 

         This paper provides the requirements that are 

required for the large scale storage systems along 

with the challenges. We have arise some issues that 

are required for the today’s world. We divide the 

available large scale storage systems into three 

categories according to their storage and accessing of 

data with examples along with architecture. At last 

we compare these storage systems with our issues 

that has been arises initially. At last through 

comparison between these existing different large 

storage systems and we had concluded that issues 

which we had given can’t be addressed by any 

storage system. 

 

 

 

 

 

           

          

           

               

 

 

cloud     

     Storage  

  compute 

 management 

 

Blobs     tables     queues 

1930

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



5. Future enhancements 
 

     In Future the new issues and requirements may 

arise as day by day the technology is growing, upon 

those satisfying those issues a new large scale 

reliable storage systems may be developed.  

 

REFERENCES 

 

[1] ―A large scale data streaming system‖ Vincenzo 

Gulisano, Ricardo Jimenez-Peris, Marta Patino-

Martinez, Patrick Valduriez 2010 International 

Conference on Distributed Computing Systems. 

 

[2] ―Real-life Data Intensive Applications‖ Jacek 

Becla 2010 Salishan Conference on High Speed 

Computing. 

 

[3]http://en.wikipedia.org/wiki/Object_storage_devic

e. 

 

[4] “MapReduce: Simplified Data Processing on 

Large Clusters‖ Jeffrey Dean and Sanjay Ghemawat. 

 

[5] ―Dryad: Distributed Data-Parallel Programs from 

Sequential Building Blocks‖,  Michael Isard, Mihai 

Budiu, Yuan Yu. 

 

[6] ―Conception and design of parallel and distributed 

applications‖ Valentin CRISTEA, University 

Politehnica of Bucharest. 

 

[7] ―Metadata – centralized and distributed in dw2.0‖  

by whinmon. 

 

[8]―Fine-grain concurrency‖, Tony Hoare, 

Communicating Process Architectures 2007. 

 

[9]―Data-intensive File Systems for Internet 

Services:‖ Wittawat Tantisiriroj, Swapnil Patil, Garth 

Gibson, Parallel Data Laboratory 2008. 

 

[10]“Enhancing High-Performance Computing 

Clusters with Parallel File Systems‖ by amina saify; 

garima kochhar; jenwei hsieh, 2005 dell power 

solutions. 

 

[11]  ―Cloud storage for cloud computing‖ open grid 

forum, SNIA. 

 

[12] ―Views:Synthesizing Fine-Grained Concurrency 

Control‖ brian demsky, patrick lam, ACM journal. 

 

[13] ―Google:Designs, Lessons and Advice from 

Building Large Distributed Systems‖, Jeff Dean. 

 

[14] ―On the security of cloud storage services‖ 

fraunhofer institute for secure information technology 

, 2010. 

 

[15] ―The Hadoop Distributed File System: 

Architecture and Design‖, by Dhruba Borthakur. 

 

[16] ―CYCLIC REDUNDANCY CHECK‖ from 

Wikipedia free encyclopedia. 

 

[17]http://www.scfbio-iitd.res.in/doc/clustering.pdf 

 

[18] “RAID Theory: An Overview the Cuddletech 

Veritas Volume Manager Series‖ Ben Rockwood, 

Cuddletech. 

 

[19] ―The Lustre Storage Architecture‖ Peter J. 

Braam, Cluster File Systems 2004. 

 

[20] ―The TianHe-1A Supercomputer: Its Hardware 

and Software‖ Xue-Jun Yang, Xiang-Ke Liao, Jun-

Qiang Song, journal of computer science and 

technology 26(3): 344–351 May 2011. DOI 

10.1007/s11390-011-1137-4. 

 

[21] ―Jaguar: The World’s Most Powerful Computer‖ 

Author S. Bland, Ricky A. Kendall, Douglas B. 

Kothe,  James H. Rogers, Galen M. Shipman,  Oak 

Ridge National Laboratory. 

 

[22] ―LUSTR FILE SYSTEM High-Performance 

Storage Architecture and Scalable Cluster File 

System‖ White Paper December 2007. 

 

[23] ―pNFS, POSIX, and MPI-IO: A Tale of Three 

Semantics‖, Dean Hildebrand, Arifa Nisar, Roger 

Haskin. 

 

[24] ―Application Program Interface (API)  A path to 

seamless software integration ― By Sumanth Bail. 

 

[25] http://aws.amazon.com/s3/. 

 

[26] http://en.wikipedia.org/wiki/Web_service 

 

[27]“Windows Azure platform‖, Dominick Baier, 

Christian Weyer.  

 

[28]‖http://www.apellestech.com/content/pdf/servic‖ 

1931

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T


