
A Survey on Efficient Agile Development Methods

M. Vijaya Bharathi
1

1
Asst.professor, CSE Department, GMR

Institute of Technology, A.P, India,

V.Spurthi
2

2
 M.Tech, CSE Department, GMR

Institute of Technology, A.P, India,

Abstract

The crux of Agile Methodologies is that the

changes in the requirement can be managed by

software even during the development cycle of the

software development.Eight Agile Methodologies

had been studied and surveyed in current scenario

of software development. These are Extreme

Programming, Scrum, Crystal Methodologies,

Rational Unified Process, Adaptive Software

Development, Feature Driven Development,

Dynamic Systems Development Method and Lean

Development.In this paper we are going to

systematically review the existing literature on

agile software development methodologies and

review of six agile approaches including Extreme

Programming, DSDM , Crystal , Lean

Development ,Feature-Driven development and

SCRUM.

Index Terms: Agile Methodology, Scrum, Agile

Teams, Extreme programming, DSDM (Dynamic

Systems Development Method), Feature-Driven

Development, Lean Development, Software

Development.

1. Introduction:

Agile methods are a subset of iterative and

evolutionary methods. Agile software development

refers to a group of software development

methodologies based on iterative development,

where requirements and solutions evolve through

collaboration between self-organizing cross-

functional teams. "Plan-driven methods work best

when developers can determine the requirements in

advance and when the requirements remain

relatively stable, with change rates on the order of

one percent per month".Plan-driven methods are

those that begin with the solicitation and

documentation of a set of requirements that is as

complete as possible. Based on these requirements,

one can then formulate a plan of development.

Usually, the more complete the requirements, the

better the plan. The introduction of the extreme

programming method (better known as XP) has

been widely acknowledged as the starting point for

the various agile software development approaches.

There are several other methods like Crystal

Methods, Feature Driven Development and

Adaptive Software Development belongs to the

same family of Agile Methodology. Custom

software development is a Privileged methodology

in which the system development is a linear,

sequential, managed and controlled process. This

approach needs to be feasible, adaptive and flexible

enough for the developers to make late changes in

the specifications. Agile Software Development is

random, opportunistic, simultaneous and

overlapping process. The following factors resulted

in the ―Agile Movement‖ in the software industry.

 Individuals and interactions over

processes and tools.

 Working software over comprehensive

documentation.

 Customer collaboration over contract

negotiation

 Responding to change over flowing a plan

When a software development is incremental, Co-

operative, Straight forward and Adaptive (able to

make last moment changes) then agile

methodology provide a best solution. As such the

agile methods are principle-based, rather than rule-

based. They have predefined rules regarding the

roles, relationships, and activities, the team and

manager are guided by these principles:

1. The highest priority is to satisfy the customer

through early and continuous delivery of valuable

software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for

the customer’s competitive advantage.

3. Deliver working software frequently, from a

couple of weeks to a couple of months, with a

preference to the shorter time scale.

4. Business people and developers must work

together daily through the project.

5. Build projects around motivated individuals.

Give them the environment and support they need,

and trust them to get the job done.

6. The most efficient and effective method of

conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of

1446

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

progress.

8. Agile processes promote sustainable

development.

9. The sponsors, developers, and users should be

able to maintain a constant pace indefinitely.

10. Continuous attention to technical excellence

and good design enhances agility.

11. Simplicity – the art of maximizing the amount

of work not done – is essential.

12. The best architectures, requirements, and

designs emerge from self-organizing teams.

13. At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

2. Agile Methodologies:

Here we provide a brief introduction to six agile

methodologies. The six were chosen to demonstrate

the range of applicability and specification of the

agile methodologies. For each methodology we

provide an overview process.

Agile methodologies include:

 Extreme Programming

 SCRUM

 Crystal

 DSDM

 Lean Development

 Feature-Driven Development

2.1. Extreme Programming(XP):

A particularly popular agile methodology is

extreme Programming (XP). XP was developed

by Beck, Cunningham, and Jeffries and is a

―lightweight discipline of software development

based on principles of simplicity, communication,

feedback, and courage‖. These four key values are

described in further detail below:

Simplicity: Rather than attempting to predict

future requirements of the software system at the

outset, ―extreme programmers do the simplest

thing that could possibly work,‖ and ―leave the

system in the simplest condition possible‖ . This

improves the overall speed of development while

still retaining an emphasis on working software.

 Communication: Poor communication in

software teams is one of the central causes of

failures within projects. In XP, good

communication is stressed between all project

members—customers, team members, and project

managers. A representative from the customer

should be present on site at all times to answer

questions and clarify project requirements. Pair

programming is used, so each programmer can

constantly review the other’s work.

Feedback: There should always be some way of

getting information about the system, to

accurately determine the state of the

development process. Such feedback serves as an

indicator of the project’s progress and informs

project leaders when changes need to be made.

Courage: XP programmers are encouraged to

experiment and rewrite code if they are dissatisfied

with the existing code or design. This helps

maintain morale about the project and supports

further communication with other project members.

Advantages:

1. Lightweight methods suit small-medium size

projects.

2. Produces good team cohesion.

3. Emphasis's final product.

4. Iterative.

5. Test based approach to requirements and quality

assurance.

Disadvantages:

1. Difficult to scale up to large projects where

documentation is essential.

2. Needs experience and skill if not to degenerate

into code-and-fix.

3. Programming pairs is costly.

2.2. SCRUM

The SCRUM development process was introduced

to make development of software systems more

flexible and lightweight than traditional heavier

methods. ―Scrum is an iterative, incremental

process for developing any product or managing

any work‖.[3] The primary characteristic of

SCRUM relative to more traditional development

methods is that it assumes an element of chaos in

the development process. Compared to the

traditional methods such as Waterfall, Spiral, and

Iterative, SCRUM is best prepared to handle

changes in the environment, and can more easily

respond to changes in requirements, schedule, and

other externally or internally defined updates.

―SCRUM acknowledges that the underlying

development processes are incompletely defined

and uses control mechanisms to improve

flexibility‖. SCRUM achieves this flexibility and

adaptability through a well-defined development

process designed to recognize and Respond to

changes in the environment. The key features of the

SCRUM methodology are the Planning phase,

Sprint phase, and Closure phase.

Planning Phase: During the planning phase, a

Product Backlog is created, which a list is

containing the features desired by the customer.

The delivery date for the final product is specified;

prioritization of system components are laid out,

project cost is estimated, and potential risks to the

product development are assessed. All information

regarding what the intended product should be is

1447

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

determined at the outset, before any development

begins.

Sprint Phase: The actual project development

occurs in the Sprint phase. A Sprint is an ―iterative

cycle of development work,‖ and generally lasts

between 1 and 4 weeks. At the outset of a Sprint, a

subset of features from the initial Product Backlog

is assigned to be completed during the Sprint.

During the course of a Sprint, no other features can

be added, but features within the Sprint’s

Backlog can be updated or changed depending

on environment variables

Closure Phase: Once a product has met

expectations of the development team,

management and customer, the product is

prepared for general release as part of the Closure

phase. At this point, the product is final and tasks

such as preparing training materials, adding user

documentation, and preparing marketing material

are completed

Advantages:

 Communication can improve across all the

teams.

 It provides for an open forum, where everyone

knows who is responsible for which item.

 Scrum can increase team efficiency by as

much as 20 percent.

 Problems are more transparent.

Disadvantages:

 Decision-making is entirely in the hands of the

teams.

 There has to be constant, hands-on

management.

2.3. CRYSTAL
Crystal Methods were developed to address the

variability of the environment and the specific

characteristics of the project. All the Crystal

Methods emphasize the importance of people in

developing software.[4] The graph in Figure 1 is

used to aid the choice of a Crystal Method starting

point (for later tailoring). Along the x-axis is the

size of the team. As a team gets larger (moves to

the right along the x-axis), the harder it is to

manage the process via face-to-face

communication and, thus, the greater the need for

coordinating documentation, practices, and tools.

The y-axis addresses the system’s potential for

causing damage. The lowest damage impact is loss

of comfort, then loss of discretionary money, loss

of essential money, and finally loss of life. Based

on the team size and the criticality, the

corresponding Crystal methodology is identified.

Each methodology has a set of recommended

practices, a core set of roles, work products,

techniques, and notations.

Figure 1: Crystal

Crystal focuses on people, interaction, community,

skills, talents, and communication as first order

effects on performance. Process remains important,

but secondary".[4] There are only two absolute

rules of the Crystal family of methodologies. First,

incremental cycles must not exceed four months.

Second, reflection workshops must be held after

every delivery so that the methodology is self-

adapting. Currently, only Crystal Clear and Crystal

Orange have been defined. Summaries of these

two methodologies are provided be

2.3.1. Crystal Clear:

Crystal Clear is an optimization of Crystal that can

be applied when the team consists of three to eight

people sitting in the same room or adjoining

offices. The property of close communication is

strengthened to ―osmotic‖ communication meaning

that people overhear each other discussing project

priorities, status, requirements, and design on a

daily basis. Crystal Clear’s model elements are as

follows:

Documents and artifacts: Release plan, schedule

of reviews, informal/low-ceremony use cases,

design sketches, running code, common object

model, test cases, and user manual.

Roles: project sponsor/customer, senior designer-

programmer, designer programmer, and user.

Process: incremental delivery, releases less than

two to three months, some automated testing, direct

user involvement, two user reviews per release, and

methodology-tuning retrospectives. Progress is

tracked by software delivered or major decisions

reached, not by documents completed.

2.3.2. Crystal Orange:

Crystal Orange is targeted at a D40 project.

Crystal Orange is for 20-40 programmers, working

together in one building on a project in which

defects could cause the loss of discretionary money

(i.e., medium risk). The project duration is

between one and two years and time-to-market is

important. Crystal Clear’s model elements are as

follows:

Documents and artifacts: requirements document,

release plan, schedule, status reports, UI design

1448

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

document, inter-team specs, running code, common

object model, test cases, migration code, and user

manual

Roles: project sponsor, business expert, usage

expert, technical facilitator, business analyst,

project manager, architect, design mentor, lead

designer programmer, designer-programmer, UI

designer, reuse point, writer, and tester

Process: incremental delivery, releases less than

three to four months, some automated testing,

direct user involvement, two user reviews per

release, and methodology-tuning retrospectives.

2.4. Feature - driven development:

Throughout, FDD emphasizes the importance of

having good people and strong domain experts.

FDD is build around eight best practices: Domain

object modeling; developing by feature; individual

class ownership; feature teams; inspections;

regular builds; configuration management;

reporting/visibility of results.UML models are used

extensively in FDD.

Process: The FDD process has five incremental,

iterative processes, as shown in Figure. Guidelines

are given for the amount of time that should be

spent in each of these steps, constraining the

amount of time spent in overall planning and

architecture and emphasizing the amount of time

designing and building features. Processes 1

through 3 are done at the start of a project and then

updated throughout the development cycle.

Processes 4 and 5 are done incrementally on two

week cycles. Each of these processes has specific

entry and exit criteria, whereby the entry criterion

of Process N is the exit criteria of Process N-1.

Figure 2: Overview of Feature Driven

Development

Process 1: Domain and development team

members work together to understand the scope of

the system and its context. High-level object

models/class diagrams are developed for each area

of the problem domain. Model notes record

information about the model’s shape and why some

alternatives were selected and others rejected.

Process 2: Complete list of all the features in the

project; functional decomposition which breaks

down a ―business activity‖ requested by the

customer to the features that need to be

implemented in the software.

Process 3: A planning team consisting of the

project manager, development manager, and chief

programmer plan the order in which features will

be developed. Planning is based on dependencies,

risk, complexity,

workload balancing, client-required milestones,

and checkpoints. Business activities are assigned

month/year completion dates. Every class is

assigned to a specific

developer. Features are bundled according to

technical reasons rather than business reasons.

Process 4: The chief programmer leads the

development of design packages and refines object

models with attributes. The sequence diagrams are

often done as a group activity. The class diagrams

and object models are done by the class

owners.Domain experts interact with the team to

refine the feature requirements. Designs are

inspected.

Process 5: The feature team implements the classes

and methods outlined by the design. This code is

inspected and unit tested. The code is promoted to

the build. [6] Progress is tracked and made visible

during the Design by feature/Build by feature

phases. Each feature has six milestones, three from

the Design by feature phase (domain walkthrough,

design, and design inspection) and three from the

Build by feature phase (code, code inspection,

promote to build). When these milestones are

complete, the date is placed on the Track by

Feature chart which is prominently displayed for

the team. When a feature has completed all six

milestones, this completion is reflected on the

―Burn Up‖ chart. All features are scoped to be

completed within a maximum of two weeks,

including all six mile stones.

1449

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

2.5. Lean-development:

Lean development: is an iterative methodology

which is developed by Mary and Tom

Poppendieck.Lean Software Development owes

much of its principles and practices to the Lean

Enterprise movement; this also focuses the team on

delivering value to the customer, and on the

efficiency of the "Value Stream," the mechanisms

that deliver that Value.

The main principles of Lean include:

1. Amplifying Learning

2. Deciding as Late as Possible

3. Delivering as Fast as Possible

4. Empowering the Team

5. Building Integrity In

6. Seeing the Whole

Lean development eliminates waste through such

practices as selecting only the truly valuable

features for a system, prioritizing those selected,

and delivering them in small batches. It emphasizes

the speed and efficiency of development workflow,

and relies on rapid and reliable feedback between

programmers and customers. Lean uses the idea of

work product being "pulled" via customer request.

It focuses decision-making authority and ability on

individuals and small teams, since research shows

this to be faster and more efficient than hierarchical

flow of control. Lean also concentrates on the

efficiency of the use of team resources, trying to

ensure that everyone is productive as much of the

time as possible. It concentrates on concurrent

work and the fewest possible intra-team workflow

dependencies.

Advantages:

1. The elimination of waste leads to the overall

efficiency of the development process.

2. Delivering the product early

3. Empowerment of the development team helps in

developing the decision making.

Disadvantages:

1. The project is highly dependent on cohesiveness

of the team and the individual commitments of the

team members.

2.6. Dynamic System Development Method:

The DSDM, Dynamic System Development

Method is a blend of, and extension to, rapid

application development and Iterative development

practices. Martin Fowler, one of the writers of

Agile Manifesto, believes, ―DSDM is notable for

having much of the infrastructure of more mature

traditional methodologies, while following the

principles of the agile methods approach‖. The

fundamental idea behind DSDM is to fix time and

resources, and then adjust the amount of

functionality accordingly rather than fixing the

amount of functionality in a product, and then

adjusting time and resources to reach that

functionality. DSDM consists of five phases

Figure: DSDM Process

Feasibility Study: In this phase a decision is made

whether to use DSDM or not. This is determined

by judging the type of project and, organizational

and people issues. In addition, two work products

are produced; a feasibility report and an outline

plan for development.

Business Study: The recommended approach to

this phase is to organize a workshop to help

understand the business domain of the project. The

key outputs of this section are System architecture

definition and an Outline prototype plan.

1450

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

Functional Model Iteration: First iterative phase.

This phase involves analysis, coding and

prototypes. The results gained from these

prototypes are used in improving the analysis

models. The key output is a functional model

which consists of the prototype code and analysis

models.

 Design and Build Iteration: The system is mainly

built in this phase. The design and functional

prototypes are reviewed by the users and further

development is based on the users’ comments.

 Implementation: In this final phase the system is

handed over to the users. Training is provided.

User Manuals and a Project Review Report.

However, the DSDM iterative and incremental

nature means that maintenance can be viewed as

continuing development. Instead of finishing the

project in one cycle, the project can return to any of

the phases, Design and Build phase, Functional

Model Iteration, or even Feasibility phase so that

previous steps can be refined.

Conclusion:

Agile methodology is a sound choice for software

development and web design projects. This paper

explains agile methods, advantages and

disadvantages of each method. These

methodologies exhibit optimum results when there

are a strong communication between the developer

and the customer. While designers and developers

look at the world from different viewpoints, the

Agile philosophy is flexible enough to sustain the

approaches and views of both professions. There

are still ways to fit quality design work into an

agile world.

 References:
[1]http://en.wikipedia.org/wiki/Agile_software_dev

elopment, ―Agile software development‖.

[2] Sheetal Sharma,―Agile Processes and

Methodologies: A Conceptual Study‖, ISSN, 05

May 2012.

[3] Van de Vyer.,Koronois.,&Lane (2003).Agile

methodologies and the emergence of the agile

organization: A software development approach

waiting for its time?.7 th Pacific Asia Conference

on Information Systems,10-13July 2003, Australia,

Page 1344-1358

[4] J. Highsmith, Agile Software Development

Ecosystems. Boston, MA: Addison-Wesley, 2002.

[5] B. Boehm, "Get Ready for Agile Methods, with

Care," IEEE Computer, vol. 35, no. 1, pp. 64-69,

2002

[6] F. P. Brooks, The Mythical Man-Month,

Anniversary Edition: Addison-Wesley Publishing

Company, 1995

[7] K. Schwaber and M. Beedle, Agile Software

Development with SCRUM. Upper Saddle River

1451

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90643

Vol. 2 Issue 9, September - 2013

