
A Survey on Middleware in Pervasive Environments

C. Elangovan
Associate Professor,

Department Of Information Technology, Priyadarshini Engineering College,

 Vaniyambadi, Tamilnadu.

Abstract

The vital challenge of pervasive computing is to develop

technologies that allow smart devices to automatically

adapt to changing environments and contexts, making

the environment largely invisible to the user.

Pervasive middleware can support the developer by

supporting rapid development and deployment of

applications by domain experts with minimal programming

expertise. A survey was made with five different

pervasive middleware Architecture behavior and

concept. This paper contains a classification of these

Pervasive middleware according to pervasive

requirements parameters they are discoverability,

adaptability, context awareness, heterogeneity and

environment. The Pervasive middleware classification

highlights what has been done and what remains to do

in developing new Pervasive middleware.

Keywords: Middleware; Pervasive environment;

Contexts; Discoverability; Heterogeneity

1. Introduction

Middleware are enabling technologies for the

development, execution and interaction of

applications. These software layers are standing

between the operating systems and applications. They

have evolved from simple beginnings - hiding network

details from applications - into sophisticated systems

that handle much important functionality for

distributed applications - providing support for

distribution, heterogeneity and mobility. SOA

middleware [1] is a programming paradigm that uses

``services'' as the unit of computer work. Service-

oriented computing enables the development of

loosely coupled systems that are able to Communicate,

compose and evolve in an open, dynamic and

heterogeneous environment.

 If middleware were designed to help manage

the complexity and heterogeneity inherent in

distributed systems, one can imagine the new role

middleware has to play in order to respect to the

evolution from distributed and mobile computing to

pervasive one.

Hardly a day passes without some new

evidence of the proliferation of portable computers in

the marketplace, or of the growing demand for

wireless communication. Support for mobility has

been the focus of number of experimental systems,

researches and commercial products, and that since

several decades. The mission of mobile computing is

to allow users to access any information using any

device over any network at any time. When this access

becomes to every information using every device and

over every network at every time, one can say that

mobile computing has evolved to what we now call

pervasive computing [2].

1 . 1 A b o u t M i d d l e w a r e

Any piece of software that glues together

various other pieces of software can be labeled

as middleware [4]-[5].The two most common

functions handled by middleware solutions are

messaging and data access services. A typical usage

scenario is one where a graphical user interface (GUI)

component needs to access a remote database. Usually

the GUI part has to be independent of the actual

database implementation and a middleware component

or a set of middleware components provide that

functionality to the GUI. Thus middleware provides a

service layer in the software architecture that separate

the details of implementation from users of

middleware in Fig.1. The typical users of middleware

are application developers who build new applications

to be deployed in the target environment. Other typical

middleware services include message passing,

transaction monitoring, directory lookup and object

brokerage or other distributed computing environment

services. Many of the middleware solutions in

use today are application-specific or

optimized for a set of applications but

naturally there are a l s o g e n e r i c

m i d d l e w a r e s o l u t i o n s [6] . E x a m p l e s o f

c u r r e n t g e n e r i c - p u r p o s e middleware

solutions are CORBA (Common Object

Request Broker Architec ture), DCOM

(Distributed Common Object Model), J2EE

(Java 2 Enterprise Edition), J2ME (Java 2 Micro

Edition) and WAE (Wireless Application

Environment).Of these only J2ME and WAE are

intended to be used on mobile devices. The remaining

three are still suitable for server-side computing but

1616

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

they don‟t adapt well to more challenging

requirements of pervasive computing like

automatic reconfiguration and service discovery or

context-awareness on the device.

Fig 1: Architecture of Middleware

1.2Pervasive computing technologies

 Pervasive computing involves three

convergence areas of ICT [7] computing,

communications and user interfaces.

1. Devices

PCS devices are likely to assume many

different forms and sizes, from handheld units (similar

to mobile phones) to near-invisible devices set into

„everyday‟ objects (like furniture and clothing).

These will all be able to communicate with

each other and act „intelligently‟. Such devices can be

separated into three categories: sensor: input devices

that detect environmental changes user behaviors,

human commands etc; processor: electronic

systems that interpret and analyze input-data;

actuator: output devices that respond to processed

information by altering the environment via electronic

or mechanical means.

2. Connectivity

Pervasive computing systems will rely on the

interlinking of independent electronic devices into

broader networks. This can be achieved via both wired

(such as Broadband (ADSL) or Ethernet) and wireless

networking technologies (such as Wi-Fi or Bluetooth),

with the devices themselves being capable of assessing

the most effective form of connectivity in any given

scenario. The effective development of pervasive

computing systems depends on their degree

of interoperability, as well as on the convergence of

standards for wired and wireless technologies.

3. User interfaces

User interfaces represent the point of contact

between ICT and human users. For example with a

personal computer, the mouse and keyboard are used

to input Information, while the monitor usually

provides the output. With PCS, new user interfaces

are being developed that will be capable of

sensing and supplying more information about users,

and the broader environment, to the computer for

processing. With future user interfaces the input might

be visual information –for example recognizing a

person‟s face, or responding to gestures. It might also

be based on sound, scent or touch recognition, or other

sensory information like temperature. The output

might also be in any of these formats. The technology

could „know‟ the user (for example through expressed

preferences, attitudes, and behaviors) and tailor the

physical environment to meet specific needs and

demands.

2. Middleware in Pervasive Environment

2.1 ubiSOAP:

The ubiSOAP middleware enriches the Web

service architecture with key features for services to

become truly pervasive by taking full benefit of the

rich capacities, including multi-radio interfaces, now

embedded in wireless devices.

The ubiSOAP middleware empowers the service-

oriented architecture with pervasive networking

capabilities, in particular enabling adaptive lightweight

services to be run on mobile nodes and access to

services over multi-radio, multi-network links.

ubiSOAP brings multi-radio, multi-network

connectivity to services through a comprehensive

layered architecture:

 The multi-radio device management and

networking layers together abstract multi-

radio connectivity, selecting the optimal

communication link to/from nodes, according

to quality parameters.

 The communication layer allows for

communication in the pervasive networking

environment according to SOAP. ubiSOAP in

particular enriches traditional functionalities

of a SOAP engine to allow for SOAP-based

point-to-point and group-based interactions in

the pervasive network. It further enables

1617

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

access to services that may be in distinct

networks thanks to multi-network routing.

 The middleware services layer brings

advanced distributed resource management

functionalities customized for the pervasive

networking environment. From that layer, the

Discovery Service enables the dynamic

advertising and location of networked

services, in particular accounting for extra-

functional properties.

Fig 2: ubiSOAP Middleware Architecture

Last but not least, the ubiSOAP middleware

is mobility-aware so that its functionalities adapt to the

physical mobility of both clients and services, in

particular exploiting the rich multi-radio, multi-

network connectivity. The ubiSOAP middleware has

been implemented using Java for both desktop (J2SE)

and mobile (J2ME CDC) environments.

2.2 CDTOM

Context-Driven Task-Oriented Middleware

(CDTOM) for Pervasive Homecare, which is

established in such a fact that man is a creature of

habit, and he will perform a certain activity at a

particular situation as a routine. The CDTOM uses the

abstraction of tasks in order to separate logical

relations of relevant items from the services realizing

and fulfilling the intended goals.

CDTOM provides a number of system-level

services, such as context data acquisition, context

storage, context-driven task reasoning, service

discovery and task-oriented mapping, to facilitate the

development and deployment of various pervasive

homecare applications. The middleware architecture

separates context management, context-driven task,

and task related services in different layers that are

accessible by the applications. This scheme, not only

decouples the dependency of techniques used in

individual layers, but also provides a greater flexibility

for the selection and deployment of appropriate

techniques in each layer by the specific system

requirements. Similarly, the development effort and

cost of Homecare system would be reduced through

the task layer and its programming interfaces.

2.2.1Overview of the CDTOM Architecture

The overall architecture of CDTOM which is

to support the context-driven tasks in pervasive

homecare environment, and provide the assistance of

daily activities and necessary healthcare to the elders.

The CDTOM consists of the following four logical

layers:

Context Provider: Real-world contexts often originate

from diverse sources, leading to dissimilar approaches

to generating context description. Context providers

obtain raw context information from various sources

such as hardware sensors and software programs and

transform them into context mark-ups. Some context

providers, including the location context providers, the

environment context providers (which gather

environmental information such as temperature, noise,

and light from embedded sensors), work with the

hardware sensors deployed in our prototypical smart

space. Software-based context providers include the

task context providers, which extracts schedule

information from the inhabitant‟s.

Context Server: The main objective of this layer is to

enable the effective and efficient context data

aggregator, storage and query. Its functions are

deployed in the system server. Briefly, the context

aggregator component discovers context providers and

gathers context mark-ups from them. The context

knowledge Base (CKB) provides persistent context

knowledge storage. Contexts in smart spaces display

very high change rates, so the aggregator must

regularly update the CKB with fresh contexts.

Task Processor: This is the most important layer in

CDTOM; there are three key components in it: Task

 Network –

agnostic

connectivity

 SOAP unicast

and group com

Multi network

overlay

SOAP-based API

Group transport

Point-to-point

transport

LANWLAN GSM GPRS UMTS Bluetooth

Multi-radio networking

Multi-network

routing

1618

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

Reasoner, Task Scheduler, and the Rule Engine. The

task reasoned is to infer the inhabitant‟s current task

according to the real-time context data and the

historical context information. The Task Scheduler

enables the high-priority task, e.g. fire alarm, to be

executed in a priority-scheduling algorithm when there

are several concurrent tasks in a given context.

 Service Manager: This logical layer of CDTOM

manages context-aware services to enable the

orchestration of homecare applications, and also it is

the coordinator between the inferred tasks and diverse

services enabling the task to be executed automatically

and adaptively. All the services in smart home will be

registered and updated as a bundle in the service

manager located in the OSGi service gateway. It is

implemented by a mapping scheme for abstract and

specific service management.

2.3 MIPA

Pervasive computing creates environments

that embed computation and communication in a way

that organically interacts with humans to enhance or

ease their daily behavior. Contexts refer to the pieces

of information that capture the characteristics of

computing environments, and context-awareness

allows applications to dynamically adapt to the

pervasive computing environment.

PDPC (Property Detection for Pervasive

Context) is one of the primary approaches to achieving

context-awareness. Specifically, context-aware

applications need to detect whether contexts bear user-

specified properties, in order to adapt their behavior

accordingly. Predicate detection is a promising

approach to detecting contextual properties in

asynchronous environments. Predicate detection

basically relies on the classical Lamport's definition of

the happen-before relationship resulting from message

causality, and it‟s "on the fly" coding given by logical

vector clocks. The Middleware Infrastructure for

Predicate detection in Asynchronous environments

(MIPA), to support PDPC in pervasive computing

environments. MIPA aims at supporting the

development and deployment of various predicate

detection-based contextual property detection schemes

for different pervasive computing scenarios.

2.4 IPAC

The IPAC aims at delivering a middleware

and service creation environment for developing

embedded, intelligent, collaborative, context-aware

services in mobile nodes. IPAC relies on short range

communications for the ad hoc realization of dialogs

among collaborating nodes. Advanced sensing

Components leverage the context-awareness attributes

of IPAC, thus rendering it capable of delivering highly

innovative applications for mobile and pervasive

computing. IPAC networking capabilities are based on

rumor spreading techniques, a stateless and resilient

approach, and information dissemination among

embedded nodes. Spreading of information is subject

to certain rules (e.g., space, time, and price). IPAC

nodes may receive, store, assess and possibly relay the

incoming content to other nodes. The same

distribution channel is followed for the dissemination

of new applications and application components that

"join the IPAC world". IPAC aims at providing all the

communication functionality, relying on flexible

components: the Sensing Elements Component, the

Short Range Communication Component, and the

IPAC core middleware itself. An important feature of

IPAC is the embedded intelligence which relies on

emerging knowledge representation and reasoning

schemes, allowing behavior self-adjustment, seamless

interoperation at the messaging level and software

integration.

2.5 PANOPLY

Panoply is a middleware that aims to enable

secure and scalable interactions among devices that

participate in a ubiquitous computing environment.

This research builds on earlier work done in active or

intelligent spaces and deals with the concepts of group

formation and change, event management and policy

management, which have not been dealt with in a

comprehensive manner. Current and past ubiquitous

computing research has concentrated on building more

intelligence into physical spaces or designing better

applications. Though largely effective, existing

systems lack a common representational model for

device communities, semantics for the formation and

interaction of such communities, and ways to handle

the vast permutations of context and policy

disagreements that might occur in a global-scale

ubiquitous system. Security and access control

solutions are domain-specific and neither extensible

nor scalable. The heterogeneity of devices, software

and networks we are seeing today is only going to

increase in the future, and ad hoc design of active

spaces cannot provide a scalable or a secure solution

for the systems of the future, where interoperation is

going to be all-important.

1619

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

Fig 3: The Panoply Architecture

3. Classification of the Pervasive

 Middleware Requirements

Pervasive computing brought new challenges

to distributed and mobile computing. We identify the

following five fundamental requirements for service

composition in pervasive environments:

discoverability, adaptability, context awareness,

heterogeneity, and environment.

Discoverability is a major issue for ubiquity

and composition as devices and services need to be

located and accessed before being composed. One of

the fundamental challenges of distributed and highly

dynamic environments is how the applications can

discover the surrounding entities and, conversely, how

the applications can be discovered by the other entities

in the system. In a pervasive system, the execution

environment of applications can be logically

considered as a single container including all

applications, other components, and resources.

Moreover, the idea in distributed environments is that

the resources can be accessed without any knowledge

of where the resources or the users are physically

located.

Adaptability is the ability of a software entity

to adapt to the changing environment. Changes in

applications' and users' requirements or changes within

the network, may require the presence of adaptation

mechanisms within the middleware. Moreover,

adaptation is necessary when a significant mismatch

occurs between the supply and demand of a resource.

As the application's execution environment changes

due to the user's mobility, the vital resources need to

be substituted by corresponding resources in the new

environment in order to ensure continuous operation.

The requirement for adaptation is present on many

different layers of a computing system.

Context awareness is the ability of pervasive

middleware to be aware in terms of devices coming

and leaving; functionalities offered and retrieved

quality of service changing, etc. They need to be

aware of all these changes, in order to offer the best

functionalities to applications regardless the context

around. When considering context-aware systems in

general, some common functionalities that are present

in almost every system can be identified: context

sensing and processing, context information

representation, and the applications that utilize the

context information. In general, the context

information can be divided into low and high-level

context information. Low-level context information

can be collected using sensors in the system. Low-

level context information sources can be combined or

processed further to higher level context information.

Able to operate across different homogeneous

environments, seamless integration of devices and

environments, taking on new contexts when new

resources become available

Environments, where connectivity is very

variable. A pervasive middleware need to take the non

functional parameters of applications and devices into

consideration in order to provide viable and flexible

composition plans. QoS parameters for environments

concern not only the services but also the devices

where the execution is taking place. The composition

execution needs to rely on this parameter in order to

take place in the best conditions. Not only the QoS of

different services need to be compatible, but also the

devices performing the composition need to respect

certain characteristics and constraints.

1620

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

4. Comparison of Pervasive Middleware

Architecture

Fig 4: Comparison of pervasive middleware with requirements.

5. Conclusion

In this paper, a survey of five middleware for

pervasive environment, located in the middleware

layer, UBISOAP, PANOPLY, MIPA, IPAC, and

CDTOM. Here, the classification of these middleware

under several requirements related to the ubiquity of

the environments. If some requirements such as

discoverability and context awareness are well

verified, adaptability still being explored.

6. References

[1]T. Erl, Service-Oriented Architecture (SOA): Concepts,

Technology, and Design, Prentice Hall, 2005.

[2]M. Satyanarayanan "Pervasive Computing: Vision and

Challenges", IEEE Personal Communication, 2001.

[3]D.Saha and A.Mukherjee, Pervasive

Computing: A paradigm for the21st

Century. IEEE Computer Magazine, Mar 2003

 [4]Qusay H.Mahmoud, Middleware for

communication, John Wiley &Sons, 2001

[5]BernsteinPhilipA, Middleware, Communication

of the ACM, vol. 39, n o 2 , p p 8 6 – 9 8 , F e b 1 9 9 6

[6]Guruduth Banavar and Abraham Bernstein

“Software infrastructure and design challenges for

ubiquitous computing applications”, Commun.ACM, Vol.

45, pp. 92-96, December 2002

[7]Mark Weiser, Ubiquitous computing, IEEE
Computer, 1993

[8]Panoplywebsite:http://www.lasr.cs.ucla.edu/panoply/p
anoply.html

[9] Caporuscio Mauro; Raverdy Pierre-Guillaume; Issarny

ValérieIEEE Transactions on Services Computing (2010)

[10] IPAC website: http://pcomp.di.uoa.gr/projects.jsp

[11]SEEMPubSwebsite:

http://www.fit.fraunhofer.de/projects/mobiles-
wissen/seempubs_en.html

[12]ubiSOAP:website:https://wwwroc.inria.fr/arles/index.ph

p/software/84-ubisoap-a-service-oriented middleware-for-

seamless-networking-featuring multi-radio-networking-

b3gsoap-and-multi-network-service-discovery-developed-as-
part-of-the-plastic-middleware.html

[13]MIPA website: http://code.google.com/p/mipa/

M
id

d
le

w
a

r
e

A
d

a
p

ta
b

il
it

y

C
o

n
te

x
t-

a
w

a
r
e
n

e
ss

H
e
te

r
o

g
e
n

e
it

y

D
is

c
o
v
e
r
a

b
il

it
y

E
n

v
ir

o
n

m
e
n

t

UBISOAP

PANOPLY

MIPA

IPAC

CDTOM

1621

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120762

