
A Survey On Monitoring Model To Meet Deadlines In Scientific Workflows

Within Cloud

Chitra. B,

P.G. Scholar,

Angel College of Engineering

and Technology

 Sreekrishna. M,

 P.G. Scholar,

Angel College of Engineering

and Technology

Malarvizhi.V,

P.G. Scholar,

Angel College of Engineering

and Technology

Abstract

In the heterogeneous parallel and distributed

computing environments like cloud there were many

related approaches proposed for fault tolerant

execution of scientific workflows. Many of the works

involved earlier does not rely on resource failure

prediction that is hard to achieve even with years of

historic failure trace data of the target environment

and the monitoring has not kept pace. Here

Resubmission Impact (RI) that tries to establish a

metric describing the impact of resubmitting a task to

the overall execution time of a workflow application,

and to adjust the replication size of each task

accordingly is establised. In this paper, to solve the

software fault prediction, unavailability of the

resources and monitoring problems we propose a

failure prediction model that involves two different

methods. In order to predict the failures we propose a

method using IPMI that monitor the failure at nodes

and provide the corresponding data useful for

determining likely imminent failures. The other method

is to predict the Unavailability from past behavior

generates some initial results that indicate that nodes

differently from one another and their failure is

somewhat predictable and monitoring performed

which intimates about the failure.

Keywords Fault prediction, IPMI, Checkpoint,

Task Replication.

1. Introduction

To improve the fault tolerance of scientific

workflow applications, which emerged in the last

decade as one of the most successful paradigms for

programming e-science applications in highly

distributed environments such as Grids and Clouds.

Currently, there are two fundamental and widely

recognized techniques to support fault tolerance in

distributed environments: resubmission and replication.

Resubmission tries to re-execute a task after a failure

which can significantly delay the overall completion

time in case of multiple repeating failures. Replication

submits several copies of the same task in parallel on

multiple resources which suffers from potentially large

resource consumption. To find a compromise balance

between these two complementary techniques, we took

a algorithm called Resubmission Impact (RI) that tries

to establish a metric describing the impact of

resubmitting a task to the overall execution time of a

workflow application, and to adjust the replication size

of each task accordingly.

The number of dynamic resources in the cloud

system increases continuously, so fault tolerance

techniques the resubmission and replication becomes a

critical property for applications running on these

resources. However, in traditional implementations,

when a failure occurs, the whole application is

shutdown and has to be restarted from the beginning. A

technique to avoid restarting of the application from the

beginning is rollback recovery which is based on the

concept of checkpoint. Checkpoint mechanism is used

to reduce the limitations imposed by the high volatility

of resources. It periodically saves the application’s state

to stable storage. So, whenever a failure interrupts a

volunteer computation, the application can be resumed

from the last stable checkpoint. Checkpoint-recovery

techniques make it possible for the job to resume

execution from the last checkpoint instead of restarting

from the beginning, whenever a failure occurs. Over

provisioning techniques replicate a job in more than

one resource to increase the probability of successful

execution. Although these techniques address the

reliability challenges to some extent, no large-scale

study has been done on how effective they are when

coupled with scheduling. The Resubmission Impact

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

(RI) mentioned before if a failure occurs it will recover

from the beginning so in this paper we propose a

checkpoint mechanism that is a failure prediction

model which involve two methods Predicting Node

failure using IPMI and Predicting Unavailability from

Past Behavior.

The paper is organized as follows. Section 2

discusses related work, Section 3 introduces the

workflow and infrastructure models, task replication ,

Resubmission Impact heuristic and scheduling for soft

deadline and in Section 4 conclusion is given.

2. Related Work

Considering the faults in scientific workflows

the existing techniques available are by Jia

Yu,Rajkumar Buyya and Chen Khong Tham

[1]minimizes the cost of execution while meeting the

deadline.But on the other hand it uses run-time

rescheduling to handle service agreement violations

and problem occurs while scheduling dynamic pricing.

The work [2] not finds traces that include mostly

production workflows submitted by real users. L Guo,

A S McGough, A Akram, D Colling, J Martyniak, M

Krznaric [3] provide a level of QoS through resource

selection from priority information along with the use

of advanced reservation but which will not allow to

dynamically change the execution of the workflow

once deployed to the engine.

The advance reservation can have a major

impact on execution time and can increase considerably

predictability of a Grid environment and lacks in

concentrating dynamic reservation algorithms for

heavily loaded Grid environments [4]. Jayadivya S K*

Jaya Nirmala S Mary Sair Bhanu S [5] proposed an

approach with a prioritization of tasks that helps to

meet the deadline and reduces resource wastage along

with providing fault tolerance for the workflow system.

And does not consider the failures like data center

shutdowns, network failures that may also added to

faults. The technique of query planning is proposed in

[6] applications that incorporate kernel-level and user-

level checkpointing could receive signals generated by

chip monitoring facilities that recognize node failure is

imminent, alleviating the need to take periodic

checkpoints.

Ozan Sonmez, Nezih Yigitbase, Alexandru

Iosup [7] proposed methods cannot improve and adapt

to computational grids where the historical runtime and

wait time data considered are non-stationary. The

approach mentioned in [9] developed to extend

detection to lower levels, such as hardware and job

execution faults. The performance analysis of list

scheduling [10] is done and the total execution of the

program is minimized and even though it does not

degrade but not improve the worse case and average

case performance.

This method has the advantage of applicability

to new and unknown environments, however, it often

leads to unnecessarily large resource consumption and

to large differences between the expected execution

time (as promised to the end user) and the real

execution time. Our work belongs to this third category

and brings two advantages over existing methods: 1) it

reduces the resource consumption, and 2) it offers

improved QoS by meeting soft deadlines.

3. Proposed System

3.1. The Model

Let A Set= {A1; . . .;An} denote the set of n

activities or tasks in a workflow and DSet={(Ai;Aj;

Dataij)|Ai;Aj ASet} the set of control and data flow

dependencies, where Dataij denotes the amount (i.e.,

bits) of data that needs to be transferred from Ai to Aj

before Aj can start its execution (if Dataij=0, the

dependency becomes control flow only). Let wi

 Work denote the amount of work (e.g., number of

instructions) that each task Ai ASet requires in order

to be completely processed. A workflow Wf is defined

as a triplet: Wf={ASet;DSet;Work} representing a

directed graph of computational tasks. We use pred :

ASet2
ASet

, pred(A1)={A2 : (A2;A1; Dataij)

DSet} to denote the set of predecessors and succ : ASet

2
ASet

, succ={ A2 : A1;A2; Dataij DSet} to denote

the set of successors of a task A1ASet.

Our resource model consists of a set R of

heterogeneous processing cores, referred in the

following as resources. A schedule of a workflow is

defined as a function sched :ASet 2
R
 that assigns to

each task A 2
ASet

 a subset r R of resources which

simultaneously execute |r| replicas of A, where |r|

denotes the cardinality of r and r . We denote the

schedule of task Ai ASet as: sched(Ai) = r. We

assume a non preemptive scheduling model meaning

that individual tasks cannot be rescheduled unless they

are cancelled and then restarted. We further assume the

availability of the execution time TAi for all tasks Ai

ASet and for every resource p R, which also includes

the time for transferring data from the predecessor

activities to p. This information is available from

previous executions, or provided by an own prediction

service based on regression and similarity methods

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

3.2. Task Replication Technique

In our work, the technique replication submits

several copies of the same task in parallel on multiple

resources which suffers from potentially large resource

consumption. The idea behind task replication is that a

replication of size r can tolerate r -1 failed tasks while

keeping the impact on the execution time minimal. We

call r the replication size. While this technique can help

to successfully complete time-critical tasks, its

downside lies in the large resource consumption.

Algorithm 1 presents a trivial baseline heuristic called

REPLICATEALL that schedules a workflow by simply

replicating each task a fixed amount of times indicated

by a maximum replication size repmax input parameter.

This heuristic builds first a replication vector RV

defining the replication sizes repi RV for each task Ai

 ASet, and initializes it with the maximum replication

size parameter repmax (given by the user) for all tasks in

the workflow Then, it schedules the workflow

including the replicas onto the available resources R by

invoking HEFT_REPLICATION that replicates each

task according to the input replication vector RV and

schedules the resulting workflow according to an

extension of the HEFT algorithm.

Algorithm 1 REPLICATEALL heuristic

Wf = (ASet,DSet,Work): scientific workflow;

Require: R: resource set;

repmax: maximum replication size;

Ensure: |sched(A)| =repmax : A ASet

1: function REPLICATEALL(Wf, R, repmax)

2: RV }

3: return HEFT_REPLICATION(Wf,R,RV)

4: end function

Algorithm 2 HEFT algorithm with task replication

Wf = (ASet,DSet,Work): scientific workflow;

Require: R: resource set;

RV : replication vector;

Ensure |sched(A)| =repi : A ASet repi RV

1: function HEFT_REPLICATION(Wf, R, RV)

2: ranks B-RANKS(Wf)

3: sRanks SORT(ASet; ranks)

4: for all A sRanks do

5: sched(A) MAP ECT(A;R)

6: for all Ai pred(A) do

7: if sched(Asucc) : Asucc succ(Ai) then

8: C[1 : repi] REPLICATE(Ai, repi)

9: sched(Cj) MAP_ECT(Cj;R): j [1; repi]

10: end if

11: end for

12: end for

13: return sched(A) : A ASet

3.3. Resubmission impact heurisitic

The resubmission tries to re-execute a task

after a failure which can significantly delay the overall

completion time in case of multiple repeating failures.

In addition to the workflow application Wf and the set

of resources R, the RI heuristic receives as input the

maximum replication count repmax and the maximum

resubmission count resmax, which have to be given by

the user. The RI heuristic consists of two phases.

The first phase establishes the RI metric. First,

we make a copy Work 1 of the set Work defining the

work of each task in the workflow. Then, we enlarge

the amount of work wi in task Ai by multiplying it with

the resubmission count maximum resubmission count,

and define a new workflow Wf containing the new

work amount for each task. Afterwards, we compute

the difference in expected execution time and the real

time by scheduling both of them using the HEFT

algorithm. We repeat these steps for every task in the

activities. Finally, we compute the RI for every task in

Activity by normalizing the differences against the

maximum of all the tasks.
In the second phase, the replicate function is

again called and thus the tasks with a higher RI will have a

larger amount of replicas to avoid expensive resubmission.

Input
Workflows

Resubmission
Impact

Cloud
Resources

Replication Resubmission

Scheduling
for soft

deadlines

Figure 1. System Flow Diagram

 From the figure 1, Resubmission Impact (RI)

that tries to establish a metric describing the impact of

resubmitting a task to the overall execution time of a

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

workflow application, and to adjust the replication size

of each task accordingly. Real-life users typically want

to know an estimation of the execution time of their

application before deciding to have it executed. In

many cases, this estimation can be considered to be a

soft deadline that shall be satisfied with some

probability We propose on top of the RI heuristic a

method that first proposes to the end user a realistic soft

deadline and then monitors and dynamically

reschedules the workflow to meet the deadline in the

absence of failure models.

3.4. Predicting the Failure Using Intelligent

Platform Management Interface (IPMI)

To help reduce the amount of checkpoint data,

and to aid in the overall maintenance and monitoring of

a large computational cluster, an accurate yet light-

weight tool must monitor for failed nodes and provide

data useful for determining likely imminent failures.

Such a monitoring tool would allow an application to

decide at runtime whether a failure is likely to occur

and consequently check whether a checkpoint is

necessary.

We have to generate some initial results that

indicate that nodes fail differently from one another,

and that their failure is somewhat predictable. We track

their movement between 5 different availability states

(Available, User Present, CPU Threshold Exceeded,

Unavailable, and Becoming Unavailable), and classify

resources based on their behavior in terms of these

states, over time. A predictor is used after this.

4. Simulation Results

To evaluate the performance of our fault

tolerant system we have simulated the different

structures and workflows by using CloudSim 3.0.

 CloudSim is a framework for

simulation and modeling of cloud computing

environments mainly used for resource allocation and

scheduling. It includes data centers, Virtual machines,

brokers, cloudlets and hosts.

 Here in the below table we have

taken 5 virtual machines and its corresponding

parameters.

Table 1. Virtual machine with its parameters

VMid Mips CPU RAM BW

 0 350 1 512 1250

 1 350 2 2048 700

 2 500 3 1024 1500

 3 400 1 3056 1000

 4 350 3 512 800

Figure 2. Workflows with Earlier Completion Time

Here 20 workflows are considered with 5

Virtual Machines and the Earlier Completion Time

calculated with the above specified algorithm. The

earlier completion time is also calculated for the

respective tasks with the table given below.

The Table 2 and Figure 3 follows the

Comparision Analysis of Various Parameters of

Different Virtual Machines for our work

Table 2. Tasks with Earlier Completion Time

 Task ECT

 8 122.22

 3 499.99

 5 309.98

 10 428.56

 16 99.54

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3. Performance Analysis of Tasks Scheduled

Vs. Earlier Completion Time

5. Conclusion

 In this paper a new heuristic called RI to

increase fault tolerance of scientific workflows in

highly distributed environments such as computational

Grids in the absence of failure models is used. The

heuristic is based on a combination of task replication

and task resubmission using a new RI metric that

describes the impact of task resubmission on the overall

workflow makespan and we have a proposed a

checkpoint mechanism that is a failure prediction

model which involve Predicting Node failure using

IPMI and Predicting Unavailability from Past Behavior.

 Finally in the future, we have an idea of

designing and testing a simple prediction-based

scheduler, which chooses resources based on their

predicted failure rate during the application’s execution

interval, their current CPU load, and their CPU speed.

We compared results against two other schedulers, (i) a

Condor-like scheduler, which chooses the available

resource with the highest CPU speed, and (ii) a semi

optimal scheduler that given oracle knowledge about

the future availabilities of machines, chooses the

machine with the fastest CPU speed that will complete

the application without becoming unavailable.

REFERENCES

[1] Tharam Dillon, Chen Wu and Elizabeth Chang, ―Cloud

Computing: Issues and Challenges‖, 2010 24th IEEE

International Conference on Advanced Information

Networking and Applications.

[2] G.Kandaswamy, A. Mandal, and D.A. Reed, ―Fault

Tolerance and Recovery of Scientific Workflows on

Computational Grids,‖ Proc. IEEE Eighth Int’l Symp. Cluster

Computing and the Grid (CGDRID ’08), pp. 777-782, 2008.

[3] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertesz,

and P.Kacsuk, ―Fault-Tolerant Behavior in State-of-the-Art

Grid Worklow Management Systems,‖ Technical Report TR-

0091, Inst. On Grid Information, Resource and Worklow

Monitoring Services,CoreGRID—Network of Excellence,

Oct. 2007.

[4]] M. Wieczorek, M. Siddiqui, A. Villazon, R. Prodan, and

T. Fahringer, ―Applying Advance Reservation to Increase

Predictability of Workflow Execution on the Grid,‖ Proc.

IEEE Second Int’l Conf. e-Science and Grid Computing (E-

SCIENCE ’06), 2006.

[5]L.Guo, A.McGough,A.Akram,D.Colling, and J.Martyniak,

―Qos for Service Based Workflow on Grid,‖ Proc.Conf.UK e-

Science 2007 All Hands Meeting, January 2007.

[6] Y.Zhang, D. Wong, and W. Zheng, ―User-level

Checkpoint and Recovery for LAM/MPI,‖ SIGOPS Oper.

Syst. Rev., vol. 39, no. 3, pp. 72–81, 2005.

[7] J. Yu and R. Buyya, ―A Taxonomy of Scientific Workflow

Systems for Grid Computing,‖ ACM SIGMOD Record, vol.

34, no. 3, pp. 44- 49, 2005

[8] Seoko Son and Kwang Mong Sim ,―A price and time slot

Negotiation mechanism for Cloud Service Reservations‖ in

IEEE Transactions on Systems,Man, Cybernetics, June 2012

[9] Bernd Grobauer, Siemens CERT Tobias Walloschek,

Siemens IT Solutions and Services Elmar Stöcker, Siemens

IT Solutions and Services, ―Understanding cloud computing

vulnerabilities‖, IEEE Security and Privacy.

 [10] S. Ostermann, R. Prodan, T. Fahringer, A. Iosup, and D.

Epema, ―A Trace-Based Investigation of the Characteristics

of Grid Workflows,‖ From Grids to Service and Pervasive

Computing, pp. 191-203, Springer,

http://www.springerlink.com/content/

x21m42878m456338/fulltext.pdf, Aug. 2008

[11] K.M.Sim and B.Shi, ―Concurrent negotiation and

coordination for Grid resource coallocation‖ IEEE

Trans.Syst.,Man,Cybern.B,Cybern.,vol.40,no.3, pp.753-

766,May2010

[12] J.Yu,T.Buyya and chen Khong Tham, ―Qos- Based

Scheduling of Workflow Application on Service Grids,‖

Proc.IEEE First Int’l Conference e-Science GridComputing

(eScience’05),

Jan.2005

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

