
A Survey on Organizing user Search Histories

Rupali D. Navagire
Department of Computer Engineering

Smt. Kashibai Navale College of Engineering.

 Pune, India

Prof. Trupti H. Gurav
Department of Computer Engineering

Smt. Kashibai Navale College of Engineering.

Pune, India

Abstract— As the size of information on web is growing, the

use of it to accomplish variety of task is also growing. Peoples

are started using Internet to do many tasks such as managing

finances, planning purchase decision etc. To help users in their

information search, search engines maintains user search

history consisting of their clicks and query. However, the search

histories are not well organized. In this paper, we study the

problem of organizing user’s historical queries into groups of

related queries in a dynamic and automated fashion.

Keywords— click graph, queries reformulation , query

clustering, search engine, user log.

I. INTRODUCTION

Large amount of data is available on the web and is

continuously growing every day. Out of this morass of data,

users typically search for the relevant information that they

want by posing search queries to search engines. End users

are no longer content with issuing simple queries. Various

studies on query logs reveal that only about 20 percent of

queries are Hierarchal. The remaining queries are

informational or transactional. The problem that the search

engines face is that the queries are very diverse. Most of the

individual queries may refer to a single concept, while a

single query may correspond to several techniques.

To increase usability of internet, most commercial search

engines provide some additional services such as query

recommendation or query suggestion. These services make it

more convenient for users to issue queries and obtain

accurate results from the web search engine, and thus it is

quite valuable. From the search engine view, efficient group

of search queries is a necessary pre-requisite for these

services to function well. Following are the some applications

where groupings of related queries can be used.

1) To help the users keep track of clicks and queries in

their search history.

2) Query grouping can also help other users. For

example, if a set of query groups created by expert

users is given, we can recommend queries that are

highly relevant to the current user’s query activity.

3) Query grouping can also help to improve some of

the features and services provided by search engine

such as query suggestions, result ranking, query

alterations etc.

So in this paper we study the problem of organization of

user’s search history into a set of related query groups. Our

approach is to generate these query groups automatically and

dynamically.

It is challenging to organize queries into related query

group. Following are the some of the reasons. Firstly, it is

possible that related queries may not appear close to one

another .They may be separated by many unrelated queries.

In this case, the approaches that rely on time or sequence to

identify related queries may not work efficiently. Therefore,

it is not good to rely solely on time based approaches.

Secondly, they may not be textually similar but have the

same semantics. Therefore, approaches relying solely on

string similarity will not work also. Our approach does not

rely on time-based and text-based measure but uses

information from query log.

The rest of the paper is organized as follows. In Section 2,

we state the goal of our paper. In Section 3, we review the

related work. In Section 4, we explain how to construct the

query fusion graph from search logs. Also we explain how to

determine relevance value for each query in user’s history

and perform query grouping. We describe proposed system in

section 5. We conclude with a discussion on our results and

future research directions in Section 6.

II. PRELIMINARIES

A. Goal

Our goal is to automatically organize a user’s search

history into query groups. A query group is an ordered list of

queries, qi, together with the corresponding set of clicked

URLs, clki of qi. A query group is denoted as s = ({q1, clk1},

{qk, clkk}).

The specific formulation of our problem is as follows:

 Given: a set of existing query groups of a user,

 S= {s1, s2, ..., sn} and her current query and clicks

{qc, clkc}.

 Find: the query group for {qc , clkc}, which is either

one of the existing query groups in S that it is most

related to, or a new query group sc={qc, clkc} if there

does not exist a query group in S that is sufficiently

related to {qc, clkc}.

The core of the solution is a measure of relevance between

two queries (or query groups) that not only rely on time or

text but also we propose a relevance measure based on

signals from search logs.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060705

International Journal of Engineering Research & Technology (IJERT)

391

B. Dynamic Query Grouping

One approach to identify query groups is by using

online clustering algorithms [2]. In this approach first we

place the current query and clicks into a singleton query

group sc = {qc, clkc}, and then compare it with each existing

query group si within a user’s history (i.e., si Є S) to find the

best match. SelectBestQueryGroup algorithm is used to select

the query group that is the most similar to the given query

and clicked URLs as given below.

SelectBestQueryGroup

Input:
1) The current singleton query group sc containing the

current query qc and set of clicks clkc

2) A set of existing query groups S = {s1, . . . , sm}

3) A similarity threshold τsim

4) Query fusion vector rel(qc,clkc)

Output: The query group s that best matches sc, or a new one

if necessary

1) τmax = τsim

2) for all group si in query groups set S

3) if sim(sc, si) > τmax

4) s = si

5) τmax = sim(sc, si)

6) if s =Ф and rel(qc,clkc) > τsim

7) S = S Ư sc

8) s = sc

9) return s

C. Query Relevance

It is important to have a suitable relevance measure sim

between the current query singleton group sc and an existing

query group si Є S. There are a number of possible

approaches to determine the relevance between sc and si.

Many relevance matrics are either Time-based or text-based

[6] and [7].But these relevance metrics may work well in

some cases, they cannot capture certain aspects of query

similarity as discussed in section I. Therefore, we need a

more robust relevance measure. Our approach makes use of

search logs in order to determine the relevance between query

groups more effectively. We will discuss our proposed

relevance measure in greater detail in Sections 4 and 5.

III. RELATED WORK

In recent work, Jones and Klinkner [8] worked on search-

task identification problem. He constructed a query flow
graph to solve the problem. Our work is different from these
prior works as we consider query pairs having common
clicked URLs and we also exploit both co-occurrence and
click information through a combined query fusion graph.
Some prior work [9] and [10] proposed segmentation of a
user’s query streams into “sessions” based on a “time-out
threshold”. But time is not a good basis for identifying query
groups because related queries may not appear close to one
another. Keyword-based query grouping has provided
interesting results. However, because, specifically the
queries submitted to the web search engines usually are very
short; in many cases it is hard to deduce the semantics from

the query itself. Therefore, keywords alone do not provide a
reliable basis for grouping queries effectively.

Radlinski and Joachims [11] employed a classifier that
combines a timeout threshold with textual similarity features
of the queries to identify query sequences. While text
similarity may work in some cases, it may fail to capture
cases where there is “semantic” similarity between queries.

 The problem of query clustering [12] and [13] is also
related to online query grouping. In Beeferman and Berger
[12] and Baeza-Yates and Tiberi [13], commonly clicked
URLs on query-click bipartite graph are used to cluster
queries. Wen et al. [14] proposed a query clustering
algorithm that considers both query contents and URL clicks.
They assumed that two queries are related to each other, if
they contain the same or similar terms, and lead to the
selection of the same documents. However, since Web search
queries contain less keyword and common clicks on
documents are rare, Wen et al.’s method may not be very
effective. While these prior work make use of click graphs,
our approach is much better in that we use the click graph in
combination with the reformulation graph.

IV. QUERY RELEVANCE

A. Constructing Query Graphs

We assume that queries that frequently appear together

are relevant. Also queries that have induced the users to click

on similar sets of pages are relevant. So we are considering

both these important properties of relevant queries to measure

query relevance. We derive three types of graphs from the

search logs of a commercial search engine. These three

graphs are: Query Reformulation Graph, Query Click Graph

and Query Fusion Graph.

The query reformulation graph, QRG= (VQ, EQR), captures

the first important property of related queries. We construct a

query click graph, QCG=(VQ, EQC) by constructing CG

=(VQ U VU; EC), used by Fuxman et al.[6] and then we

derive our query click graph, QCG = (VQ, EQC). In QCG ,the

vertices are the queries. If there exists at least one URL that

both qi and qj link to in CG we draw a directed edge from qi

to qj in QCG.

We construct QFG =(VQ, EQF), by combining QRG and

QCG into a single graph, that we refer to as the query fusion

graph.

B. Computing Query Relevance

Having constructed QFG, we now compute the relevance

between two queries. Relevance Algorithm is used for

calculating the query relevance by simulating random walks

over the query fusion graph.

 Relevance (q)

 Input:

1) the query fusion graph, QFG

2) the jump vector, g

3) the damping factor, d

4) the total number of random walks, numRWs

5) the size of neighborhood, maxHops

6) the given query, q

Output: the fusion relevance vector for q, rel
F

q

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060705

International Journal of Engineering Research & Technology (IJERT)

392

1) Initialize rel
F

q = 0

2) numWalks = 0; numVisits = 0

3) while numWalks < numRWs

4) numHops = 0; v = q

5) while v = NULL ^ numHops < maxHops

6) numHops++

7) rel
F

q(v)++; numVisits++

8) v = SelectNextNodeToVisit (v)

9) numWalks++

10) For each v, normalize rel
F

q(v) = rel
F

q(v)/numVisits

This algorithm computes the fusion relevance vector of a

given query q, rel
F

q.

 The algorithm works as follows: jump vector gq is used

to pick up the starting point for the random walk. At each

node v, the random walk either continues by following one of

the outgoing edges of v or stops or restarts at one of the

starting points in gq. The selection of the next node to visit is

based on the outgoing edges of the current node v in QFG.

C. Creating query group using QFG

In this section, we explain our proposed similarity function

simrel to be used in the online query grouping process. For

each query, we maintain a query image. Query image contain

all the queries related to the query and for each query group,

we maintain a context vector. The similarity between the

query group and the user’s latest singleton query group is

computed by using context vector. The context vector for a

query group s, denoted cxts, is obtained by aggregating the

fusion relevance vectors of the queries and clicks in s.The

relevance between the user’s latest singleton query group sc =

(qc, clkc) and an existing query group s i Є S will be calculated

as follow.

Where,

 Sc = singleton group

 Si = existing group

 I = Image of query group

 Q = current query

Cxtsi = Context vector of query group si.

rel (qs, clks) = relevance between query q and

corresponding url clk

This relevance metric simrel is used in the Step (5) of the

SelectBestQueryGroup algorithm .

V. A PROPOSED SYSTEM

A proposed System architecture is shown in fig 1. It consists

of the following major steps.

1. When a user submits a query, those queries and its

associated clicks along with other information is

stored in database.

2. Query Reformulation Graph and Query click graph

are constructed. Using both graph third graph, Query

Fusion Graph is constructed.

3. Query Fusion Graph is used to calculate fusion

relevance vector for given query. Also query Images

are maintained for each query.

4. Context vector is calculated for each existing group.

5. Fusion relevant vector of given query is compared

with Context vector of each group to find the best

match. If best match is found query is merged to that

group otherwise new group is formed.

Fig.1. System architecture.

VI. CONCLUSION

Search engines maintain historical data but it is not well

organized. Organizing user search histories have very

important utilities. In this paper, we study a method to

organize user search history logs into groups of related

queries. The approach described in this paper is fully capable

of grouping search engine queries. There are several

directions for future work, including developing better

treatment of ambiguous queries, and developing methods that

uses the knowledge gained from these query groups to

improve the search experience and to provide query

suggestion. Our method of query similarity calculation can

also be used in different contexts.

ACKNOWLEDGMENT

I would like to acknowledge and thank my guide, Prof. Trupti

Gurav, Professor of Computer Science Department at

SKNCOE, Pune for her valuable guidance, support and

motivation.

REFERENCES

[1] Heasoo Hwang, Hady W. Lauw, Lise Getoor, and Alexandros Ntoulas”

Organizing User Search Histories”, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY
2012

[2] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna,
“The Query-Flow Graph: Model and Applications,” Proc. 17th ACM
Conf. Information and Knowledge Management (CIKM), 2008.

[3] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal, “Using the
Wisdom of the Crowds for Keyword Generation,” Proc. the 17th Int’l
Conf. World Wide Web (WWW ’08), 2008.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060705

International Journal of Engineering Research & Technology (IJERT)

393

[4] Ji-Rong Wen And Jian-Yun Nie,” Query Clustering Using User Logs”,

ACM Transactions on Information Systems, Vol. 20, No. 1, Pages 59–
81, 2002.

[5] Wilfred Ng, Lin Deng and Dik Lun Lee,” Mining User Preference

Using Spy Voting for Search Engine Personalization”, ACM
Transactions on Internet Technologies, Vol. 7, No. 3, 2007.

[6] Lecture Notes in Data Mining, M. Berry, and M. Browne, eds. World

Scientific Publishing Company, 2006.
[7] V.I. Levenshtein, “Binary Codes Capable of Correcting

Deletions,Insertions and Reversals,” Soviet Physics Doklady, vol. 10,

pp. 707-710, 1966
[8] R. Jones and K.L. Klinkner, “Beyond the Session Timeout: Automatic

Hierarchical Segmentation of Search Topics in Query Logs,” Proc. 17th

ACM Conf. Information and Knowledge Management (CIKM), 2008.
[9] D. He, A. Goker, and D.J. Harper, “Combining Evidence for

Automatic Web Session Identification,” Information Processing and

Management, vol. 38, no. 5, pp. 727-742, 2002.
[10] R. Jones and F. Diaz, “Temporal Profiles of Queries,” ACM

Trans.Information Systems, vol. 25, no. 3, p. 14, 2007.

[11] F. Radlinski and T. Joachims, “Query Chains: Learning to Rank from

Implicit Feedback,” Proc. ACM Conf. Knowledge Discovery and Data

Mining (KDD), 2005.

[12] D. Beeferman and A. Berger, “Agglomerative Clustering of a Search
Engine Query Log,” Proc. Sixth ACM SIGKDD Int’l Conf.Knowledge

Discovery and Data Mining (KDD), 2000.

[13] R. Baeza-Yates and A. Tiberi, “Extracting Semantic Relations from
Query Logs,” Proc. 13th ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining (KDD), 2007.
[14] A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, vol. 36,no.

2, pp. 3-10, 2002.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060705

International Journal of Engineering Research & Technology (IJERT)

394

