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Abstract— As the size of information on web is growing, the 

use of it to accomplish variety of task is also growing. Peoples 

are started using Internet to do many tasks such as managing 

finances, planning purchase decision etc. To help users in their 

information search, search engines maintains user search 

history consisting of their clicks and query. However, the search 

histories are not well organized. In this paper, we study the 

problem of organizing user’s historical queries into groups of 

related queries in a dynamic and automated fashion. 

Keywords— click graph, queries reformulation , query 

clustering, search engine,  user log.  

I.  INTRODUCTION  

 

Large amount of data is available on the web and is 

continuously growing every day. Out of this morass of data, 

users typically search for the relevant information that they 

want by posing search queries to search engines. End users 

are no longer content with issuing simple queries. Various 

studies on query logs reveal that only about 20 percent of 

queries are Hierarchal. The remaining queries are 

informational or transactional. The problem that the search 

engines face is that the queries are very diverse. Most of the 

individual queries may refer to a single concept, while a 

single query may correspond to several techniques.  

To increase usability of internet, most commercial search 

engines provide some additional services such as query 

recommendation or query suggestion. These services make it 

more convenient for users to issue queries and obtain 

accurate results from the web search engine, and thus it is 

quite valuable. From the search engine view, efficient group 

of search queries is a necessary pre-requisite for these 

services to function well. Following are the some applications 

where groupings of related queries can be used. 

1) To help the users keep track of clicks and queries in 

their search history. 

2) Query grouping can also help other users. For 

example, if a set of query groups created by expert 

users is given, we can recommend queries that are 

highly relevant to the current user’s query activity. 

3) Query grouping can also help to improve some of 

the features and services provided by search engine 

such as query suggestions, result ranking, query 

alterations etc. 

So in this paper we study the problem of organization of 

user’s search history into a set of related query groups. Our 

approach is to generate these query groups automatically and 

dynamically.  

It is challenging to organize queries into related query 

group. Following are the some of the reasons. Firstly, it is 

possible that related queries may not appear close to one 

another .They may be separated by many unrelated queries. 

In this case, the approaches that rely on time or sequence to 

identify related queries may not work efficiently. Therefore, 

it is not good to rely solely on time based approaches. 

Secondly, they may not be textually similar but have the 

same semantics. Therefore, approaches relying solely on 

string similarity will not work also. Our approach does not 

rely on time-based and text-based measure but uses 

information from query log. 

The rest of the paper is organized as follows. In Section 2, 

we state the goal of our paper. In Section 3, we review the 

related work. In Section 4, we explain how to construct the 

query fusion graph from search logs. Also we explain how to 

determine relevance value for each query in user’s history 

and perform query grouping. We describe proposed system in 

section 5. We conclude with a discussion on our results and 

future research directions in Section 6. 

II. PRELIMINARIES 

A. Goal 

Our goal is to automatically organize a user’s search 

history into query groups. A query group is an ordered list of 

queries, qi, together with the corresponding set of clicked 

URLs, clki of qi. A query group is denoted as s = ({q1, clk1}, 

{qk, clkk}). 

The specific formulation of our problem is as follows: 

 Given: a set of existing query groups of a user, 

 S= {s1, s2, ..., sn} and her current query and clicks 

{qc, clkc}. 

 Find: the query group for {qc , clkc}, which is either 

one of the existing query groups in S that it is most 

related to, or a new query group sc={qc, clkc} if there 

does not exist a query group in S that is sufficiently 

related to {qc, clkc}. 

The core of the solution is a measure of relevance between 

two queries (or query groups) that not only rely on time or 

text but also we propose a relevance measure based on 

signals from search logs. 
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B.  Dynamic Query Grouping 

One approach to identify query groups is by using 

online clustering algorithms [2]. In this approach first we 

place the current query and clicks into a singleton query 

group sc = {qc, clkc}, and then compare it with each existing 

query group si within a user’s history (i.e., si Є S) to find the 

best match. SelectBestQueryGroup algorithm is used to select 

the query group that is the most similar to the given query 

and clicked URLs as given below.  

 

SelectBestQueryGroup  

Input:  
1) The current singleton query group sc containing the 

current query qc and set of clicks clkc  

2) A set of existing query groups S = {s1, . . . , sm}  

3) A similarity threshold τsim 

4) Query fusion vector rel(qc,clkc) 

Output: The query group s that best matches sc, or a new one 

if necessary  

1)  τmax = τsim  

2) for all group si in query groups set S  

3) if sim(sc, si) > τmax  

4) s = si  

5) τmax = sim(sc, si)  

6) if s =Ф and  rel(qc,clkc) > τsim 

7) S = S Ư sc  

8) s = sc  

9) return s  

 

C. Query  Relevance 

It is important to have a suitable relevance measure sim 

between the current query singleton group sc and an existing 

query group si Є S. There are a number of possible 

approaches to determine the relevance between sc and si. 

Many relevance matrics are either Time-based or text-based 

[6] and [7].But these relevance metrics may work well in 

some cases, they cannot capture certain aspects of query 

similarity as discussed in section I. Therefore, we need a 

more robust relevance measure. Our approach makes use of 

search logs in order to determine the relevance between query 

groups more effectively. We will discuss our proposed 

relevance measure in greater detail in Sections 4 and 5. 

 

III. RELATED WORK 

 
In recent work, Jones and Klinkner [8] worked on search-

task identification problem. He constructed a query flow 
graph to solve the problem. Our work is different from these 
prior works as we consider query pairs having common 
clicked URLs and we also exploit both co-occurrence and 
click information through a combined query fusion graph. 
Some prior work [9] and [10] proposed segmentation of a 
user’s query streams into “sessions” based on a “time-out 
threshold”. But time is not a good basis for identifying query 
groups because related queries may not appear close to one 
another. Keyword-based query grouping has provided 
interesting results.  However, because, specifically the 
queries submitted to the web search engines usually are very 
short; in many cases it is hard to deduce the semantics from 

the query itself. Therefore, keywords alone do not provide a 
reliable basis for grouping queries effectively. 

Radlinski and Joachims [11] employed a classifier that 
combines a timeout threshold with textual similarity features 
of the queries to identify query sequences. While text 
similarity may work in some cases, it may fail to capture 
cases where there is “semantic” similarity between queries. 

 The problem of query clustering [12] and [13] is also 
related to online query grouping. In Beeferman and Berger 
[12] and Baeza-Yates and Tiberi [13], commonly clicked 
URLs on query-click bipartite graph are used to cluster 
queries. Wen et al. [14] proposed a query clustering 
algorithm that considers both query contents and URL clicks. 
They assumed that two queries are related to each other, if 
they contain the same or similar terms, and lead to the 
selection of the same documents. However, since Web search 
queries contain less keyword and common clicks on 
documents are rare, Wen et al.’s method may not be very 
effective. While these prior work make use of click graphs, 
our approach is much better in that we use the click graph in 
combination with the reformulation graph.  

IV. QUERY RELEVANCE 

A. Constructing Query Graphs 

We assume that queries that frequently appear together 

are relevant. Also queries that have induced the users to click 

on similar sets of pages are relevant. So we are considering 

both these important properties of relevant queries to measure 

query relevance. We derive three types of graphs from the 

search logs of a commercial search engine. These three 

graphs are: Query Reformulation Graph, Query Click Graph 

and Query Fusion Graph.  

The query reformulation graph, QRG= (VQ, EQR), captures 

the first important property of related queries. We construct a  

query click graph, QCG=(VQ, EQC ) by constructing  CG 

=(VQ U VU; EC), used by Fuxman et al.[6] and then we 

derive our query click graph, QCG = (VQ, EQC). In QCG ,the 

vertices are the queries. If there exists at least one URL that 

both qi and qj link to in CG we draw a directed edge from qi 

to qj in QCG. 

We construct QFG =(VQ, EQF ), by combining QRG and 

QCG into a single graph, that we refer to as the query fusion 

graph.  

B. Computing Query Relevance 

Having constructed QFG, we now compute the relevance 

between two queries. Relevance Algorithm is used for 

calculating the query relevance by simulating random walks 

over the query fusion graph. 

 

 Relevance (q) 

 Input:   

1) the query fusion graph, QFG  

2) the jump vector, g  

3) the damping factor, d  

4) the total number of random walks, numRWs 

5) the size of neighborhood, maxHops  

6) the given query, q  

Output: the fusion relevance vector for q, rel
F

q 
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1) Initialize rel
F

q = 0  

2) numWalks = 0; numVisits = 0 

3) while numWalks < numRWs 

4) numHops = 0; v = q 

5) while v = NULL ^ numHops < maxHops 

6) numHops++  

7) rel
F

q(v)++; numVisits++  

8) v = SelectNextNodeToVisit (v) 

9) numWalks++ 

10) For each v, normalize rel
F

q(v) = rel
F

q(v)/numVisits 

 

This algorithm computes the fusion relevance vector of a 

given query q, rel
F

q.  

       The algorithm works as follows: jump vector gq is used 

to  pick up the starting point for the random walk. At each 

node v, the random walk either continues by following one of 

the outgoing edges of v or stops or restarts at one of the 

starting points in gq. The selection of the next node to visit is 

based on the outgoing edges of the current node v in QFG. 

C. Creating query group using QFG  

In this section, we explain our proposed similarity function 

simrel to be used in the online query grouping process. For 

each query, we maintain a query image. Query image contain 

all the queries related to the query and for each query group, 

we maintain a context vector. The similarity between the 

query group and the user’s latest singleton query group is 

computed by using context vector. The context vector for a 

query group s, denoted cxts, is obtained by aggregating the 

fusion relevance vectors of the queries and clicks in s.The 

relevance between the user’s latest singleton query group sc = 

(qc, clkc) and an existing query group s i Є S will be calculated 

as follow. 

 

 
 

Where, 

 Sc = singleton group 

 Si = existing group 

 I = Image of query group 

 Q = current query 

Cxtsi = Context vector of query group si. 

rel (qs, clks) = relevance between query q and 

corresponding url clk 

 

This relevance metric simrel is used in the Step (5) of the 

SelectBestQueryGroup algorithm .  

 

V. A PROPOSED SYSTEM  

 

A proposed System architecture is shown in fig 1. It consists 

of the following major steps. 

1. When a user submits a query, those queries and its 

associated clicks along with other information is 

stored in database. 

2. Query Reformulation Graph and Query click graph 

are constructed. Using both graph third graph, Query 

Fusion Graph is constructed. 

3.  Query Fusion Graph is used to calculate fusion 

relevance vector for given query. Also query Images 

are maintained for each query. 

4. Context vector is calculated for each existing group.  

5. Fusion relevant vector of given query is compared 

with Context vector of each group to find the best 

match. If best match is found query is merged to that 

group otherwise new group is formed.  

 

 

Fig.1. System architecture. 

 

VI. CONCLUSION 

Search engines maintain historical data but it is not well 

organized. Organizing user search histories have very 

important utilities. In this paper, we study a method to 

organize user search history logs into groups of related 

queries. The approach described in this paper is fully capable 

of grouping search engine queries. There are several 

directions for future work, including developing better 

treatment of ambiguous queries, and developing methods that 

uses the knowledge gained from these query groups to 

improve the search experience and to provide query 

suggestion. Our method of query similarity calculation can 

also be used in different contexts.  
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