
A Survey on Readability Improving Techniques

on Automated Unit Test Case Generation

A. Sushma Deepthi

M. Tech. Student: dept. of CSE

JNTUACEA, Anantapur

Abstract--The goal of automated test generation tools is

reducing the cost of testing activities. However generated tests

are shown that are not helpful to developers in finding and

detecting more bugs although they reach higher structural

coverage compared to manual testing. The main reason is that

generated tests are difficult to read, understand and maintain.

Readability is a key factor to optimize in the context of

automated test generation. For this problem various

techniques are proposed to improve the readability of test

cases. This paper presents a survey on readability improving

techniques.

Keywords— Test case; automated test generation;

readability

I. INTRODUCTION

Software testing plays a key role in software development

life cycle. However, testing is labor-intensive and

expensive. It often accounts for more than 50% of total

development costs. Various search-based techniques and

tools have been proposed to reduce the time, developers

need to spend on testing by automatically generating a set

of test cases with respect to a specific test coverage criteria

[1].Indeed, a recent study[2] reported that developers spend

up to 50% of their time in understanding and analyzing the

output of automatic tools. Automatically generated tests are

not improving the ability of developers to detect faults

when compared to manual testing [3]. Readability of test

cases is a key factor to optimize in the context of

automated test generation. However, the quality of the code

composing the generated test cases e.g., input parameters,

assertions, etc. is not the only factor affecting their

comprehensibility. However, it is difficult to tell, without

reading the contents of the target class, (I) what is the

behavior under test, (ii) whether the generated assertions

are correct, (iii) which if-conditions are finally traverse

when executing the test (coverage).For this a solution is

need to help developers to quickly understand both tests

and code covered. Several techniques were proposed to

improve the readability of the automated unit test case

generation however in this paper focus only on few of the

techniques. The following are the techniques

1. Incorporating a language model into search-based

test input generation

2. Test case Adaptation

3. A technique to follow patterns of common object

usage

4. The test describer approach

These are the some of the techniques used to improve the

readability of automated unit test case generation, the

remaining section of this paper will discuss in detail about

the techniques of improving readability.

II. TECHNIQUES USED IN IMPROVING

READABILITY

A. Incorporating A Language Model into Search-Based Test

Input Generation

In this technique[4] applied a natural language model to the

automatic generation of strings inputs, with the aim of

generating readable tests that are easy for humans to

comprehend. A language Model (LM) assigns a score to a

string reflecting the “likeness” of a string. Once an input

has been found to cover a branch, the LM component of

the fitness function can be connected to improve string

inputs from the perspective of human readability. An

empirical study is conducted in that to evaluate the

capabilities of the LM test input generation approach with

human judgments. Programmers evaluate test cases for a

series of 17 open source projects of java case studies. The

results of this study shows that test inputs generated by the

LM approach took significantly less time to evaluate for 10

java case studies, with medium to large effect sizes

recorded in 6 case studies. For 3 java case studies, the

accuracy of test input evaluation was significantly

improved. finally the results of a human study in the

language model technique is compared with a

conventional, non-informed approach to generating branch-

covering test suites, revealing cases where participants

were both faster and more accurate in making oracle

judgments and improves readability of strings without

failing the test adequacy criterion

B. Test case Adaptation

Test case Adaptation [5] reuses the information available in

existing test cases to automatically evolve test suites. A set

of algorithms are proposed that can automatically evolve

test suites.TCA requires inputs from software developers

those are(1) the original and the modified version of the

program(2) the test cases written for the original program

and (3) the name of the test case to repair or the class to

generate test cases for. TCA evolves the test suite by:

1) Analyzing the software changes by defining the original

and modified version of software;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

2) Adapting the test cases using the appropriate test

evolution algorithms.

The following are the five algorithms are used for evolving

test cases as a solution to support software developers.

They are i. Repair Signature Changes ii. Test Class

Hierarchies iii. Test Interface Implementations. iv. Test

New Overloaded Methods. v. Test New Overridden

Methods

The experimental results show that the approach can repair

and generate many test cases, thus reducing the testing

effort and improved the readability of test cases by

repairing the test cases. TCA properly repairs 90% of the

compilation errors, and generates test cases that cover the

same amount of instructions of state of the art techniques.

The test cases produced by TCA are complementary to the

ones generated by other techniques, which indicates that

TCA could be integrated with other approaches to improve

testing results.

C. A Technique to follow Patterns of Common Object

Usage

Test cases having a problem of methods, it can have

implicit preconditions of which the developer might be

aware but the test case generation tool is not [6]. Common

object usage-patterns of object interaction as found in

manually written code-to make generated test cases more

similar to existing client code.

The general process is involved in this is start from the

client node

i. Extract object usage models

ii. That reflects the usage of the software under test. These

models are merged into API models

iii. Representing the usage of the entire API and then

derive test cases

iv. That conforms to the API model and thus covers typical

usage in the software under test.

By using this approach, the resulting test cases are shorter,

reference fewer different classes, and violate fewer

preconditions, making them altogether more

understandable and more valuable. However no objective

measurement for readability of test cases to date. Similarly

it is not possible to directly measure violations of implicit

preconditions, these preconditions are not explicit. Future

work will include work on quantifying readability, and

setting up benchmarks that allow evaluation of test

generation techniques with respect to how they treat

implicit preconditions.

D. The Test Describer Approach

Test describer[7] a novel approach to automatically

generate natural language summaries of junit test cases and

the portion of the target classes they are going to test and

generates summaries for the portion of code exercised by

each individual test case, thus providing a dynamic view of

the code under test. In this approach it consists of four

steps.

i. Test case generation -generate test cases using Evosuite

[8]

ii. Test coverage analysis-Test Describer identifies the code

implemented in each individual test case generated in the

step one and collects the information that will be

summarized in the following steps.

iii. Summary generation -Test Describer takes the collected

information and generates a set of summaries at different

levels of granularity: a global description of the class under

test, each test case, a set of fine-grained descriptions of

each test.

iv. Summary agreement-the extracted information and/or

descriptions are added to the original test suite.

The results of this empirical study involving thirty human

participants from both industry and academe. The impact

of the generated test summaries on the number of bugs

actually fixed by developers when assisted by automated

test generation tools. Results of the study indicate that test

describer substantially helps developers to find more bugs

(twice as many) reducing testing effort and test case

summaries do not intense how developers manage test

cases in terms of structural coverage. It could be used to

automatically document tests, improving their readability

and understandability. Results of post-test questionnaire

reveal that test summaries significantly improve the

comprehensibility of test cases

III. CONCLUSIONS

This paper presents a survey on some of the techniques that

are used to improve the readability of the test cases and

each technique have been implemented with a different

mechanism to reduce the effort of the testers and

developers to understand the test cases and make them easy

to read and maintain. The techniques discussed in this

paper are very much worth for other testing aspects.

However, these techniques are limited in these

achievements so there is further work to be done on these

techniques.

REFERENCES

[1] A. Cavarra, C. Crichton, J. Davies, A. Hartman, and L. Mounier.

Using uml for automatic test generation. In Proc. of the International

Symposium on Software Testing and Analysis (ISSTA). Springer-
Verlag, 2002.

[2] G. Fraser and A. Arcuri. 1600 faults in 100 projects: automatically

_finding faults while achieving high coverage with Evosuite.
Empirical Software Engineering, 2013:611-639, 2015.

[3] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P.

Tonella. Do automatically generated test cases make debugging
easier? An experimental assessment of debugging effectiveness and

efficiency. ACM Trans. Software. Eng. Methodology, 25(1):5:1-

5:38, 2015.
[4] S. Afshan, P.McMinn, and M. Stevenson, “Evolving readable string

test inputs using a natural language model to reduce human oracle

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

cost,” in Int. Conference on Software Testing, Verification and

Validation(ICST), 2013,pp.352-361.

[5] M. Mirazaaghaei, F. Pastore, and M. Pezze,:Supporting test suite

evolution through test case adaption,” in IEEE Int, Conference on

Software Testing, Verification and Validation(ICST) ,2012, pp.231-
240.

[6] G. Fraser and A. Zeller, “Exploiting common object usage in test

case generation,” International Conference on Software Testing,
Verification and Validation(ICST 2011), pp. 80–89.

[7] S Panichella, A Panichella, M Beller, A Zaidman H C Gall, “The

Impact of test cases summaries on bug fixing performance: an
empirical investigation”, in Proc. 38th International Conference on

Software Engineering (ICSE), 2016 , pp. 547-558.

[8] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation
for object-oriented software,” in Symposium on the Foundations of

Software Engineering,2011, pp 416-419.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

