

A Survey on Test Generation Techniques used in

Evosuite Automatic Unit Test Generation Tool

V. Ravi Kanth

M. Tech. Student: dept. of CSE

JNTUCEA, Anantapur

Abstract— Generating test cases automatically rather than

doing it manually reduces the effort and time of testers.

Evosuite, a result of research work by Arcuri et al, is such a tool

which generates test cases with assertions for java programs and

achieves high code coverage with the generated test cases.

Evosuite had undergone so many changes continuously

throughout its development for achieving better results;

meanwhile it implemented several techniques for test case

generation. This paper aims to present a comprehensive study of

those techniques which are involved in the development of

Evosuite.

Keywords— Testcase; automated test generation; environment

I. INTRODUCTION

In software testing test case generation is the most labor-

intensive work for testing people as it requires more effort to

write and execute them than other tasks. However, it is a very

important activity hence it evaluates the software system to

find whether it meets its intended requirements or not. Unit

testing, the initial phase in entire software testing is

performed on the software system units which cannot be

decomposed further. Unit testing will ensure that all the

individual units of software system are performing their

functionality or not. Unit testing will be performed by writing

test cases and executing them. These test cases are nothing

but the calls to the specifications of the unit under test. A test

suite is the combination of these sorts of test cases where

each test case will have a different goal. To perform this

whole process manually requires lot of effort from testers.

This had given motivation for developing automatic test case

generation techniques.

Evosuite is a tool which generates unit test suites

automatically for code written in java. It applies a novel

hybrid approach [1] for generating test cases for java code

while unit testing performed. Since Evosuite is fully

automated, there is no need for any tester to do manual

testing; instead tester just needs to select the class to be tested

and then the test cases are generated automatically with a

mouse-click.

Evosuite uses genetic algorithm for generating tests and then

applies some post processing techniques for adding assertions

to exhibit the behavior of the tested units. Arcuri et al has

made continuous research on this research prototype for

achieving high performance levels in automatic test

generation. As part of the development, Arcuri et al tried

several variations of techniques with various development

criterions like mutation analysis, coverage criteria and

triggering undeclared exceptions …etc. And there are many

techniques are proposed with Evosuite for addressing

particular problem.

Evosuite was evaluated against a large group of software

systems to prove its practical value. This large base contains

100 open source projects, 10 most popular open source

projects according to Source Forge website, 7 industrial

projects and 11 projects which are generated automatically

[2]. The reason behind selecting such large code base is to

evaluate Evosuite and is to ensure that there are no threats to

its external validity. And this evaluation also tries to prove

the fact that Evosuite will not only work well for the selected

projects but also its performance can scale up to complexity

of the real systems. These large set of projects used for

empirical set up are referred as SF110 corpus and contains

23,886 java classes which are big enough for setting a large

empirical assessment. In the process of improving the

performance, reaching up to the expected qualities and

getting rid of some drawback Arcuri et al have used number

of advanced techniques to enhance the ability of Evosuite

tool. For each enhancement the tool is evaluated against

SF110 to prove that tool with extensions was making

progress towards efficient performance or not.

Evosuite participated in unit testing competitions held at

SBST 2013[3], SBST 2015 [4] and SBST 2016 [5], where the

tool was applied for getting results in tool competition at the

International Workshop on Search-Based Software Testing

and achieved ranks first, second and first with respective

overall scores of 156.95, 190.6 and 1126.7 in the respective

years. Thus Evosuite proved to be the best unit test

generation tools for java code at higher software testing

environmental competitions. Hence these performances

emphasis on the significance of the techniques used for

enhancing Evosuite tool and notifies that these methods are

worth to software community. In the following section this

paper presents a detailed explanation about methods and

techniques used in developing Evosuite unit test generation

tool. Thus the following techniques are considered in this

paper which includes:

1. Mutation Analysis

2. Combining search based and constraint based testing

3. Generation of parameterized unit tests

4. Handling environmental dependencies

5. Whole test suite generation

It is worth noting that there are many other techniques that

are used in development of Evosuite but are not covered in

this paper. For keeping the paper in reasonable size, we

limited our selection of topics to above important techniques.

Hence, after brief representation of these techniques in the

next section, this paper will review the techniques.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

II. TECHNIQUES USED IN DEVELOPING EVOSUITE

Evosuite is an automatic unit test generation tool for java

code, which uses an evolutionary approach to generate the

test suites. It works at byte code level hence there is no need

of source code to be available for testing and it is fully

automated i.e. whenever Evosuite used along with its eclipse

and Intellij plug-ins, the user just needs to select Unit Under

Test and the tests are generated with just a mouse click. It can

be also used on command line by using following syntax.

java –jar evosuite.jar <target> [options]

Here target can be either name of a class to be tested or it can

be a jar file. There are many options one can use here but the

most important option is projectCP, which sets the class path

for test generation.

A. Mutation analysis

Mutation analysis [6] is a process of seeding mutants

which are known as artificial defects driven into programs for

detecting purpose. Evosuite uses an automated approach to

evolve test suites which detect these mutants. As part of

mutation analysis Evosuite present an approach called as u-

test that uses mutations rather than structural properties for

coverage criterion. This u-test approach allows tester for

getting guidance for what to test for and also where to test.

This allows Evosuite to generate test oracles effectively that

gives rise to automation of test generation. By generating

oracles along with test cases µtest also makes it simple for

checking if the assertions which are generated are valid. In

case the generated assertion is not valid then it is obvious that

the bug has been found. µtest uses following approaches for

effective mutation analysis.

 Uses a genetic algorithm which effectively detects

mutants by breed method call sequences.

 Generating minimum number of mutants when

compared to earlier executions of test cases and their

undetected mutants.

 Considering changes to the state of the program as

mutants that causes maximal impact on the program

behavior and thus reducing assessment effort.

 Optimizing test cases by removing all irrelevant

objectives and hence reducing the long sequences of

test cases which leads to shorter test cases that are

easier to understand.

The mutation analysis approach followed by Evosuite

provides improvement when compared to structural coverage

is that it not only shows where to test but also assists in

selecting what should be verified for. Evosuite applied this

mutation analysis that results test suites which are

significantly better than manually written ones when it comes

to finding defects.

B. Combining search based and constraint based testing

Modern automated test generators are based on meta-

heuristic search techniques or constraint based solvers [7].

These approaches have their advantages and also

disadvantages respectively. For example search based testing

finds inputs by applying relevant algorithms which generates

suitable tests and this approach scales good for any code with

any criterion only when heuristic approach provides needed

guidance. Whereas constraint based solvers which are

independent of heuristic methods will use dynamic symbolic

execution to enhance the efficiency of constrains to be

solved. There is a scope for getting results whenever these

two methods are combined that contains great potential for

achieving better results rather than applying individually.

Evosuite intrinsically combines both approaches although it

appears as if it is only search based approach from top level.

The procedure in which the combination of these two

approaches will work can be described as; a search based

approach generates a candidate solutions population. A

special mutant operator will be added for avoiding the

scenario where the search might just get stuck. This operator

negates the path conditions which represents the execution of

a candidate solution. And then constraint solver come into

play where it produces input which was mutated and

guaranteed to get diverted from original execution path. And

thus raising the efficiency of search based testing which

implicitly improves the constraint solver approach.

Eventually the combination results two advantages first

search based approach uses DSE to improve exploration and

to overcome problematic areas in the search landscape and

the second is DSE uses search based approach as a search

wrapper to control the conditions where constraint solver

fails.

C. Generation of parameterized unit tests

Often automatic test generation tools focus on providing

tests that covers the programs behavior without providing any

oracles as it is considered the duty of tester or user to find

what the test does and how to decide the correctness of the

resulted behavior. This is a difficult task for testers because it

needs to verify the output of the test and understanding what

a test does. To overcome this issue Fraser et al proposed a

technique for generating parameterized unit tests [8] in which

symbolic pre and post conditions are presented for

characterizing the test input and the test result. This approach

uses test generation and mutation to systematically

generalizing pre and post conditions. This technique presents

a novel approach that explores both pre and post conditions

which are embedded in tests in the form of parameterized unit

tests.

This approach will be implemented by separating test code

from test input which provides benefit of dropping large

amount of generated code and was replaced by symbolic

parameters, consequently reducing the size of the test cases.

And the next one was to filter the irrelevant behavior from

the important one by variation: which seeds the defects by

mutations that changes some post conditions. This approach

suggests oracles that are effective for finding defects by

identifying relevant pre conditions and also filter out

overlying post conditions. This approach also converts a

concrete method sequence to a more expressive test which

requires fewer computation steps and achieves high coverage

when compared to normal concrete tests.

D. Handling environmental dependencies by mocking

approach

When generating test cases for object oriented software

like java, the automatic test generation tools mainly faces two

kinds of problems: one is generated test cases may not cover

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

the code which is under test hence its execution depends on

its environment like File system, where the execution

depends on the contents of a file. Second, even if the code to

be tested covered by tests, there is no guarantee that these

tests will be success when they executed later on the same

code resulting unstable tests. In object-oriented software

systems the Class Under Test often embedded in an

interwoven environment which surrounded by number of

dependencies. These environmental dependencies may

involve operating system, file system, data bases and

networking interactions.

To overcome these problems caused by environmental

dependencies [9] Evosuite uses an approach based on

mocking. Here mocking referred as replacing the original

classes with the mocked versions. In java, a class interacts

with its environment by using library classes such as java.file

for interacting with file systems, java.sql for interacting with

data bases, java.io for interacting with input/output streams

and java.net for networking interactions. Hence Evosuite tries

to bring the environment under control instead of user classes

by mocking library classes. As Evosuite works at byte code

level it uses byte code instrumentation to mock these

interactions based Java Agent technology. Java agent is

responsible for instrumenting and altering the byte code of

the classes loaded. It is done by calling methods on the class

InstrumentingAgent. For example the methods like

InstrumentingAgent.intialize() will set up the agent, activate()

and deactivate() will be used for start and stop byte code

instrumentation respectively.

Whenever the test case executes the CUT, the original

interaction was redirected towards mock environment which

was controlled by Evosuite. For example when the CUT

interacts with file system, Evosuite will instrument the CUT

to use virtual file system rather than original one. This

mocking approach was implemented by overriding standard

library classes to perform as intended by Evosuite to get

control over the environment. This technique improves the

coverage of the Evosuite when it was evaluated against

SF110 corpus.

E. Whole test suite generation

A common application of search based test generation

tools is generating test cases for achieving various coverage

criterions like branch, line and mutants...etc. Instead of

generating individual test cases for achieving these coverage

goals one at a time, whole test suite generation optimizes

entire test suites towards satisfying all goals at the same time.

Empirical evidence suggests that this whole test suite

generation [10] obtains better results than individual test

cases. But there are some questions to be answered like a)

whether the results generalize beyond branch coverage b)

whether the whole test suite generation only optimized by

targeting coverage goals not already covered.

The fitness function guides to cover all goals according to the

whole test suite generation which follows the process as

instead of searching for a single test for each coverage goal in

sequence, the search will proceed to a set of coverage goals at

the same time. To achieve this Arcuri et al proposed a

technique where the use an archive can lead to better results,

but it may have some side effects, as the use of an archive

would require special search operators. Designing these

operators will require further research. Moreover the

incorporation of the archive as part of the whole test suite

generation gives raise to the question of whether it can still be

regarded as evolution of test suites.

III. CONCLUSIONS

This paper presents a survey of some of the prominent

techniques used by Evosuite automatic test generation tool as

part of its development. Each technique presented in this

paper carries its significance for the enhancement of the tool

and not only had they contributed to the development of

Evosuite but also to the environment of automatic test

generation which is the reason why those are selected for

study in this paper. Every time Evosuite implemented a

technique it was evaluated against SF110 corpus to prove that

there are no threats to its external validity. Although the

techniques presented in this paper achieves higher coverage

with test case generation there are still some issues with

seeding strategies which can further improve the Evosuite

tools performance and those are left for future work.

REFERENCES

[1] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for

object-oriented software. In ACM Symposium on the Foundations of
Software Engineering (FSE), pages 416–419, 2011.

[2] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit
test generation using evosuite,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 24, no. 2, p. 8, 2014.

[3] , “Evosuite at the SBST 2013 tool competition,” in International
Workshop on Search-Based Software Testing (SBST), 2013, pp. 406–
409.

[4] U. Rueda, T. E. Vos, and I. Prasetya, “Unit testing tool competition -
round three,” in International Workshop on Search-Based Software
Testing (SBST), 2015.

[5] Gordon Fraser, A.Arcuri, “Evosuite at the SBST 2016 Tool
Competetion” in International Workshop on Search-Based Software
Testing (SBST), 2016

[6] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In ISSTA’10: Proceedings of the ACM International
Symposium on Software Testing and Analysis, pages 147–158. ACM,
2010.

[7] A. Arcuri and X. Yao. Search based software testing of object-oriented
containers. Information Sciences, 178(15):3075–3095, 2008.

[8] N.Tillmann and W. Schulte, “Parameterized unit tests,” in ACM
Symposium on the Foundations of Software Engineering (FSE), ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 253–262.

[9] A.Arcuri, G.Fraser, and J.P.Galeotti, “Automated unit test generation
for classes with environmental dependencies”, in IEEE/ACM int.
Conference on Automated Software Engineering(ASE). ACM,2014,
pp.79-90.

[10] G. Fraser and A. Arcuri. “Evolutionary generation of whole test suites.”
In International Conference On Quality Software (QSIC), 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

