

A Systematic Study of Test Adequacy Criteria satisfied by UML

Behavioural Models

Gargi Bhattacharjee

Dept of Comp Sc & Engg

BIT Mesra

India

K. S. Patnaik

Dept of Comp Sc & Engg

BIT Mesra

India

Abstract

Software testing ensures the quality of software and

in turn increases its reliability and robustness. The

quality of the end product developed depends

largely on “how effectively it has been tested”. The

quality of test is one of the vital objectives of

software testing. Many test criteria have been

proposed and studied for this purpose. A survey of

the adequacy criteria satisfied by the UML models

has been reported.

Keywords: - Test Adequacy Criteria, Coverage

Criteria, UML Behavioural Models, Software

Testing.

1. Introduction

Software engineering is a discipline concerned with

all aspects of software right from its inception to its

acceptance. Software testing plays a vital role in

quality control of the software. Testing aims at

detecting errors in the software and is carried out

by executing the program on a set of tests and then

comparing the actual outputs with the expected

outputs. Software testing accounts for nearly 50%

of the total development cost of the software.

Therefore, there is a need for effective testing

strategies. Exhaustive testing is not possible

because there are no limits on how much we can

test. Thus, to limit the process of testing, the

concept of testing criteria was introduced.

Satisfying the testing criteria marks an end to

testing process.

Numerous techniques have been proposed for

software testing in the literature [1]. Due to the

increased use of the object oriented (OO) paradigm,

several new testing strategies have been

specifically proposed for OO software [2].

Furthermore, with the increasing use of the Unified

Modelling Language (UML) to model OO systems,

researchers have begun investigating how UML

can be used in the testing phase. Consequently,

several UML-based approaches to software testing

have been proposed [3, 4, and 5]. In these

approaches, test requirements and coverage criteria

are derived from UML models. A software test

adequacy criterion is a predicate whose successful

execution assures no error in the tested program.

For example: generate all inputs or seed with faults

or cause certain parts of the system to be exercised.

A testing technique guides the tester through the

testing process by including a testing criterion and

a process for creating test case values. Testers

measure the extent to which a criterion is satisfied

in terms of coverage. Test criteria help in defining

test objectives or goals that are to be achieved

while performing software testing. Cost

considerations and available resources often

determine the selection of one criterion over

another. Testing can be stopped when tests that

satisfy all the criteria have been carried out

successfully.

In this paper, we present a survey of various test

adequacy criteria satisfied by UML behavioural

models. Prior to that, we present an insight into the

various aspects of test adequacy criteria. The rest

of the paper is organized in the following way:

section 2 gives an insight to adequacy criteria,

section 3 discusses about UML models, section 4

shows the various test adequacy criteria followed

by various UML behavioural models. Finally

section 5 discusses the conclusion.

2806

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

2. Test Adequacy Criteria

One important aspect of software testing is to

decide when enough testing has been done. Then,

the question arises as how to decide if a test set is

adequate? This question was first addressed by

Goodenough and Gerhart [6]. According to them, a

test adequacy criterion is a predicate that defines

“what properties of a program must be exercised to

constitute a thorough test. It can be viewed as a rule

or a set of rules that impose requirements on a test

set. It is a set of test obligations that have to be

fulfilled to ensure complete testing.

A test suite satisfies an adequacy criterion if:

 All the tests succeed (pass).

 Every test obligation in the criterion is

satisfied by at least one of the test cases in

the test suite.

2.1. Classification of Adequacy Criteria

There are various ways to classify test adequacy

criteria [7].One of the most common is by the

source of information used to specify testing

requirements and in the measurement of test

adequacy. Hence, an adequacy criterion can be

classified as:

 Specification-based: The test cases should

be developed in such a manner that they

should cover all the features that have

been identified from the requirements

specification.

 Program-based: The test cases are

designed in terms of the program under

test. A test set is said to be adequate if the

program under test has been thoroughly

exercised.

 Design based: The test criterion

determines the configurations that must be

covered in an adequate design-level test.

 Combined specification and program

based criteria: This criterion uses the ideas

of both program-based and specification

based criteria.

Test adequacy criteria can be also classified by the

underlying testing approach. There are three basic

approaches to software testing:

 Structural testing: It specifies testing

requirements in terms of the coverage of a

particular set of elements in the structure

of the program or the specification.

 Fault-based testing: It focuses on detecting

faults (i.e., defects) in the software. An

adequacy criterion of this approach is

some measurement of the fault detecting

ability of test sets.

 Error-based testing: It requires test cases

to check the program on certain error-

prone points according to our knowledge

about how programs typically depart from

their specifications.

2.2. Axiomatic properties of Test Data

Adequacy

Axiomatic theories [8] have traditionally been used

in two complimentary ways. On one hand, they

serve to make underlying assumptions explicit. On

the other hand, they tend to derive properties

common to a collection of different structures. The

axiomatic property proposed is with respect to the

first use.

Axiom 1: Applicability – For every program, there

exists a finite adequate test set.

Axiom 2: Nonexhaustive Applicability – There is a

program P and test set T, such that P is adequately

tested by T and T is not an exhaustive test set. A

program is exhaustively tested if it has been tested

on all representable points of the specification‟s

domain. Such a test set which performs exhaustive

testing is called an exhaustive test set.

Axiom 3: Monotonicity – If a test set T, is adequate

for a program P, and T ⊆ T‟, then T‟ is adequate

for P.

Axiom 4: Inadequate Empty Set – The empty set is

not adequate for any program.

2807

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

Axiom 5: Antiextensionality- There are programs P

and Q, such that P Q, T is adequate for P, but T is

not adequate for Q.

Axiom 6: General Multiple Change – There are

programs P and Q which are of the same shape, and

a test set T such that T is adequate for P, but T is

not adequate for Q.

Axiom 7: Antidecomposition – There exists a

program P and a component Q, such that a test set

T is adequate for P, T‟ is the set of vectors of

values that variables can assume on entrance to Q

for some t of T, and T‟s is not adequate for Q.

Axiom 8: Anticomposition – There exists programs

P and Q such that a test set T is adequate for P and

P(T) is adequate for Q but T is not adequate for P;

Q.

2.3. Properties of Test Adequacy Criteria

Zhu et al [7] presented the following properties in

their work.

 Stopping rule- An adequacy criterion is

considered to be a stopping rule that

determines whether sufficient testing has

been done that it can be stopped. Testing

stops if 100% of the statements have been

tested.

 Specifies requirements- An adequacy

criterion specifies a particular software

testing requirement, and hence determines

the test cases to satisfy the requirement.

 Provides measurement- Test data

adequacy criteria provide measurements

of test quality when a degree of adequacy

is associated with each test set so that it is

not simply classified as good or bad. In

practice, the percentage of code coverage

is often used as an adequacy measurement.

Thus, an adequacy criterion C can be

formally defined to be a function C from a

program p, a specification s, and a test set

t to a real number r = C(p, s, t), the degree

of adequacy.

 Test Case Generator- Test case selection

criteria are generators, i.e., functions that

produce a class of test sets from the

program under test and the specification.

Any test set in this class is adequate, so

that we can use any of them equally. Here

we look for a test which exercises some

statements which have not covered by the

tests so far.

2.4. Use of Test Adequacy Criteria

 Test adequacy criteria guide us in

selecting the proper testing technique and

in turn, we are able to choose the correct

test suite.

 Test adequacy criteria reveal the test cases

that might have been missed in the test

suite.

 Adequacy criteria provide a way to define

a notion of “thoroughness” in a test suite.

 Adequacy criteria can be used for either

selecting test cases or for providing a

measurement for test quality.

2.5. Test Coverage

Goodness of a test suite is determined by the

coverage of the product by the test set so far i.e.

percentage of statements or requirements tested.

There have been 3 types of coverage proposed in

the literature so far.

 Statement coverage criterion requires that

every statement in the program is executed

at least once. A test set that satisfies this

requirement is considered to be adequate

according to the statement coverage

criterion. The percentage of the statements

exercised by testing is a measurement of

the adequacy.

 Branch coverage criterion requires that all

control transfers in the program under test

are exercised during testing. The

percentage of the control transfers

executed during testing is a measurement

of test adequacy.

2808

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

 Path coverage criterion requires that all

the execution paths from the program‟s

entry to its exit are executed at least once

during testing.

2.6. Comparing Test Criteria

To distinguish stronger criteria from weaker

criteria, we have the subsumes relation. It states;

“Test adequacy criterion A subsumes test adequacy

criterion B if, for every program P, every test suite

satisfying A with respect to P also satisfies B with

respect to P”.

Eg: Exercising all program branches (branch

coverage) subsumes exercising all program

statements.

3. The Unified Modelling Language

The Unified Modelling Language [9,10] (UML) is

an Object Management Group (OMG) Object-

Oriented (OO) modelling language standard that is

gaining widespread usage in the software

development industry. It is used for specifying,

visualizing, constructing, and documenting the

artifacts of software systems. It is also used for

business modelling and other non-software

systems. The language is primarily intended to be

used with object-oriented software. The UML

represents a collection of engineering practices that

have been used to model large and complex

systems. Modelling a large, complex system can

result in a system model that consists of a variety of

diagrams representing different views of the model.

The UML defines nine graphical diagrams to

specify and design software. These diagrams are

grouped under two heads: Structure Diagrams &

Behavioural Diagrams.

Structure Diagrams

Structure diagrams lay emphasize on the things that

must be present in the system to be modelled. Since

structure diagrams represent a static view of the

system, they are used extensively in documenting

the software architecture of these systems.

 Class diagram describes the structure of a

system by showing the system's classes,

their attributes, and the relationships

among the classes.

 Component diagram describes how a

software system is split up into

components and shows the dependencies

among these components.

 Composite structure diagram describes the

internal structure of a class and the

collaborations that this structure makes

possible.

 Deployment diagram describes the

hardware used in system implementations

and the execution environments and

artifacts deployed on the hardware.

 Object diagram shows a complete or

partial view of the structure of an example

modelled system at a specific time.

 Package diagram describes how a system

is split up into logical groupings by

showing the dependencies among these

groupings.

Behavioural diagrams

 Behavioural diagrams emphasize what

must happen in the system to be modelled.

Since behaviour diagrams illustrate the

behaviour of a system, they are used

extensively to describe the functionality of

software systems.

 Activity diagram describes the business

and operational step-by-step workflows of

components in a system. An activity

diagram shows the overall flow of control.

 State machine diagram describes the states

and state transitions of the system.

 Use Case Diagram describes the

functionality provided by a system in

terms of actors, their goals represented as

use cases, and any dependencies among

those use cases.

2809

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

Interaction diagrams, a subset of behaviour

diagrams, emphasize the flow of control and data

among the things in the system being modelled.

 Communication diagram shows the

interactions between objects or parts in

terms of sequenced messages. They

represent a combination of information

taken from Class, Sequence, and Use Case

Diagrams describing both the static

structure and dynamic behaviour of a

system.

 Interaction overview diagram provides an

overview in which the nodes represent

communication diagrams.

 Sequence diagram shows how objects

communicate with each other in terms of a

sequence of messages. Also indicates the

lifespans of objects relative to those

messages.

 Timing diagrams a specific type of

interaction diagram where the focus is on

timing constraints.

Since Behavioural models represent the dynamic

nature of the system, more importance is laid on

them.

This paper lays focus on all the possible test

adequacy criteria that can be satisfied by these

diagrams.

4. Test Coverage Criteria satisfied by

UML Behavioural Models

4.1. Test criteria based on Activity Diagram

Let „p‟ be a program,„t‟ be a test case and „ts‟ be a

test suite.

M.Chen et al [11] in their work considered activity

coverage and transition coverage as their test

criteria.

 Activity Coverage requires that all the

activity states in the activity diagram be

covered. For any t ∈ ts, the corresponding

program execution trace „pet‟ is found out.

If there exists any function in pet whose

activity is not marked in the activity

diagram, the corresponding unmarked

activities of pet are marked and then test

case „t‟ is recorded. The value of activity

coverage is the ratio of the marked

activities to all activities in the activity

diagram.

 Transition Coverage requires that all

transitions in the activity diagram be

covered. For any t ∈ ts, the corresponding

program execution trace „pet ‟is found out.

If there exists any function in pet whose

transition is not marked in the activity

diagram, the corresponding unmarked

transitions of pet are marked and then test

case t is recorded. The value of transition

coverage is the ratio between the checked

transitions to all transitions in the activity

diagram.

Debasish Kundu and Debasis Samanta [12] in their

paper considered the following two approaches.

 Basic path coverage: A basic path is a

sequence of activities where an activity in

that path occurs exactly once. A basic path

considers a loop to be executed at most

once. Basic path coverage requires that for

a set of basic paths PB obtained from an

activity graph and a set of test cases ts, for

each basic path pi ∈ PB, there must be at

least one test case t ∈ ts such that when the

system is executed with the test case t, pi

is exercised.

 Simple Path Coverage: A simple path for

activity diagrams is one that contains

concurrent activities. Given a set of simple

paths PS for an activity graph which

contains concurrent activities and a set of

test cases ts, for each simple path pi ∈ PS,

there must be a test case t ∈ ts such that

when the system is executed with a test

case t, pi is exercised in such a way that all

simple paths in the activity diagram are

covered. The value of simple path

coverage is the ratio of the traversed

simple paths to all simple paths in the

activity diagram.

2810

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

4.2. Test criteria based on Sequence

Diagram

Vikas Panti et al [13] executed object coverage and

boundary value testing criterion as their adequacy

criteria while Santosh Swain et al [14] thought of

using all message path coverage, full predicate

coverage, concurrent coverage and branch coverage

criteria to test their work. Ashalatha Nayak tested

her work using loop adequacy criterion [15].

 Object Coverage covers every object in

the sequence diagram for basic test case

generation. Object coverage is a test

adequacy criterion that requires tests to

check program‟s output variables. All

variables still defined when executing in

test scope (even those which are not

visible, such as private fields of objects)

are considered by object coverage.

 Boundary-testing criterion: The boundary-

testing criterion is satisfied for inequality

borders. If each selected inequality border

B is tested by two points (ON-OFF) of test

input domain such that, if for one of the

point the outcome of a selected predicate

„r‟ is true, then for the other point the

outcome of „r‟ is false Also the points

should satisfy the initial path associated

with B and the considered points should

be as close as possible to each other. It

should be tested carefully because domain

boundaries are particularly fault prone.

Boundary-testing criterion is a criterion

for ensuring that a boundary is tested

adequately. Instead of generating several

test data values that achieve transition path

coverage, the border is simply tested as

determined by a simple predicate. It helps

to reduce the number of test cases

significantly; at the same time, the

generated test cases achieve very high test

coverage.

 All Message Path coverage: A set of

concurrent message paths P satisfies the

all-message-paths coverage criterion if

and only if P contains all start-to-end

message paths in a sequence diagram. A

start-to-end message path in a sequence

diagram is a sequence of messages that

begins with an externally generated event

and ends with the production of a response

that satisfies this event.

 Full-Predicate-Coverage: A test set T

satisfies the full predicate coverage

criterion if and only if for each clause „c‟

in each condition in a sequence diagram

there exist t1 in T such that t1 causes c to

evaluate to TRUE and there exists t2 in T

such that t2 causes c to evaluate to FALSE

while all other clauses in the condition

have values such that the value of the

condition will always be the same as the

clause under test. This criterion ensures

that all the predicates are checked i.e. all

possible combinations of the different

predicates in the condition are checked.

 Concurrent coverage criterion: For each

concurrent node in sequence diagram, T

must include one scenario corresponding

to every valid interleaving of message

sequences.

 Branch Coverage Criterion: Given a test

set T and sequence diagram, if a message

is sent under some condition c, the set of

test cases should ensure that at least one

path which covers the condition with c is

FALSE. This criterion was initially

proposed by Binder [16]. The primary

difference between this and concurrent

coverage is that in branch coverage if a

condition appears more than once and if it

is covered at least once, the criterion is

satisfied.

 Loop adequacy criterion: For each loop

fragment,

 T must include at least one

scenario in which the control

reaches the loop and then the

body of the loop is not executed

("zero iteration" path).

 T must include at least one

scenario in which control reaches

the loop and then the body of the

2811

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

loop is executed at least once

before control leaves the loop

("more than zero iteration" path).

4.3 Test criteria based on State Chart

Diagram

Ranjita Swain et al [17] tested her work with the

following coverage criteria.

 State Coverage requires that all the state

nodes in a state chart diagram be covered.

The value of state coverage is the ratio

between the covered states and all the

states in the state chart diagram.

 Transition Path Coverage: A test suite „ts‟

is said to achieve transition path coverage

if for a given state chart graph „G‟, „ts‟

causes each possible transition path in „G‟

to be taken at least once. It should cover

all arbitrarily long distinct paths through

transitions for exhaustive test generation.

As there is a defined set of transitions in

the state model, a coverage measure

associated with this strategy is to measure

the proportion of transitions exercised by a

set of test cases. The value of transition

coverage is the ratio between the

transitions exercised and the total number

transitions in the state model.

 Condition coverage: A decision consists of

conditions separated by logical operators

(e.g. and, or). A single condition is

covered, if it evaluates to both true and

false at some point during test execution.

Decision coverage is also been called

branch coverage or predicate coverage.

 Transition-pair coverage: This requires

covering each pair of adjacent transitions

at least once in some test case. Therefore,

the transition-pair coverage subsumes the

transitions path coverage. The transition-

pair coverage criterion generates more test

cases than the transition path coverage

criterion.

5. Conclusion

In this article, various types of software test

adequacy criteria that have been proposed till date

are reviewed. Test criteria have become a vital part

of research for software testing. While covering

these criteria, test cases bring out the faults

associated with the software under test. It has been

noted that relatively little work has been done on

how effective the criteria are at detecting faults.

Therefore, they can be considered an important

topic for future research.

REFERENCES

[1]. B. Beizer, “Software Testing Techniques”, John

Wiley & Sons, Inc., New York, NY, USA, 1990.

[2]. R.V.Binder, “Testing object-oriented software: a

survey”, Software Testing Verification and Reliability,

6(3/4): 125-252, 1996.

[3]. L. Briand and Y. Labiche, “A UML-based approach

to system testing”, Journal of Software and Systems

Modelling, 1:10–42, 2002.

[4]. J. Hartmann, C. Imoberdorf, and M. Meisinger,

“UML based integration testing”, SIGSOFT Software

Engineering Notes, 25(5):60–70, September 2000.

[5]. Bertolino, F. Basanieri, “A practical approach to

UML based derivation of integration tests”, in:

Proceedings of the Fourth International Software

Quality Week Europe and International Internet Quality

Week Europe (QWE), Brussels, Belgium, 2000.

[6]. J.B. Goodenough and S.L. Gerhart, “Toward a theory

of test data selection”, In Proceedings of the

International Conference on Reliable Software, pages

493–510, Los Angeles, California, 1975.

[7]. H. Zhu, P. Hall, and J. May, “Software Unit Test

Coverage and Adequacy”, ACM Computing Surveys,

29(4):366–427, December 1997.

[8]. E.J.Weyuker, “Axiomatizing software test data

adequacy”, IEEE Trans. Software Eng, vol. SE-12,

pp.1128 -1138 1986.

[9]. J. Rumbaugh, I. Jacobson, and G. Booch, “The

Unified Modeling Language Reference Manual”,

Addison-Wesley, 2001.

[10] J. Rumbaugh, I. Jacobson, and G. Booch, “The

Unified Modeling Language User Guide”, Addison-

Wesley, 2001.

[11]. M.Chen, X.Qiu, and X.Li, “Automatic test case

generation for UML activity diagrams”, Proc. Int.

Workshop on Automated Software Testing (AST06),

Shanghai, China, 23 May, pp. 2–8. ACM Press, NJ.

[12]. Debasish Kundu, Debasis Samanta, “A Novel

Approach to Generate Test Cases from UML Activity

Diagrams”, Journal of Object Technology, Vol. 8, No. 3,

pp.65 -83, May-June 2009.

[13]. Vikas Panthi, D.P.Mohapatra, “Automatic Test

Case Generation using Sequence Diagrams”,

2812

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

International Journal of Applied Information Systems

(IJAIS) – ISSN : 2249-0868 Foundation of Computer

Science FCS, New York, USA Volume 2– No.4, May

2012.

[14]. Santosh Kumar Swain, Durga Prasad Mohapatra,

and Rajib Mall, “Test Case Generation Based on Use

case and Sequence Diagram”, Int.J. of Software

Engineering, IJSE Vol.3 No.2 July 2010.

[15]. Ashalatha Nayak and Debasis Samanta, “Automatic

Test Data Synthesis using UML Sequence Diagrams”,

Journal of Object Technology, Vol. 09, No. 2, March-

April 2010.

[16]. R.V Binder, “Testing Object-Oriented Systems

Models, Patterns, and Tools”, Object Technology Series.

Addision Wesley, Reading, Massachusetts, October 1999.

[17]. Ranjita Swain, V Panthi, Prafulla Kumar Behera

and Durga Prasad Mohapatra, “Automatic Test case

Generation From UML State Chart Diagram”,

International Journal of Computer Applications (0975 –

8887) Volume 42– No.7, March 2012.

2813

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121143

