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Abstract 

    The paper considers two compartmentalized 

mathematical model of HIV/AIDS disease dynamics of 

the susceptible and infected members with age 

structure introduced in the latter class. The 

susceptables are virus free but prone to infection 

through specific transmission pattern that is, coming 

in contact with infected body fluids such as blood, 

sexual fluids and breast milk. The total population is 

partitioned into  two distinct classes giving rise to a 

set of model equations with one ordinary differential 

equation and one partial differential equation. 

Parameter values were used to represent the 

consequential interactive characteristics of the 

population. The equilibrium states and the 

corresponding characteristics equation were 

obtained. The Bellman and Cooke’s theorem is 

applied to analysed the equilibrium states of the model 

for stability and  critical values of these parameters 

obtained. The result revealed that to sustain the 

population, the birth rate must be greater than the 

death rate among others. 

1. Introduction 

     According to Benyah [3], mathematical modeling 

is an evolving process, as new insight is gained the 

process begins again as additional factors are 

considered. The research work proposes a 

deterministic mathematical model of HIV/AIDS 

disease dynamics resulting into a system of ordinary 

and partial differential equations. Differential 

equations form very important mathematical tools 

used in producing models of physical and biological 

processes. Burghes and Wood [4] opines that “…it 

could even be claimed that the spread of modern 

industrial civilization, for better or for worse, is partly 

a result of man‟s ability to solve the differential 

equations which govern so many of our industrial 

processes, be them chemical or engineering”. 

    In this work, the population is partitioned into two 

compartments of the susceptible S(t), which is the 

class of members that are virus – free but are prone to 

infection as they interact with the infected class. 

     The infected class I(t) consists of members that 

contracted the virus and are at various stages of 

infection. This class is structured by the infection age, 

with the density function ρ(t, a) where „t‟ is the time 

and „a‟ is the infection age. 

    There is a maximum infection age T at which a 

member of the infected class must leave the 

compartment via death i.e. when a = T for 0 ≤ a ≤ T. 
However,  a member of the class could still die by 

natural causes at a rate 𝜇, which is also applicable to 

the susceptible class S(t). 

     Members of S(t) move into  I(t) at a rate α due to 

negative change in behavior. The gross death rate via 

infection is given by ς(a) = μ+𝛿 tan 
πa

2TK
, 𝛿 is 

additional burden from infection while K is a control 

parameter  associated with the measure of slowing 

down the death of the infected member, such as the 

effectiveness of the  anti – retroviral drugs which give 

the victims longer life – span. A high rate of „K‟ will 

imply high effectiveness of such measure and vice – 

versa. 

It is assumed that while the new births in S(t) are born 

there in, the off-springs of I(t) are divided between 

S(t) and I(t) in the proportion 𝜃 and 1 ⎯ 𝜃 respectively 

that is, 1 ⎯ 𝜃 of the off-springs of I(t) are born with 

the virus. 
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2. The model equations 

 S
1
 = (𝛽⎯𝜇)s(t) + 𝜃𝛽I(t) ⎯ ∝s(t)I(t)  (1) 

 and I(t) =  ρ
T

0  (t, a)da, 0 ≤ a ≤ T     (2) 

  
∂ρ

∂t

(t, a)
 + 

∂ρ

𝜕𝑎

(t, a) + (t +
σ(a)

)ρ(t, a) = 0       (3) 

 Where  (a) = μ+𝛿 tan 
πa

2TK
    (4) 

 ρ (t, 0) = B(t) = ∝s(t)I(t) + (1⎯𝜃) 𝛽I(t)  (5) 

 and ρ (0, a) = φ(a)        (6) 

 S(0) = S0, I(0) = I0        (7) 

With the parameters given by 

𝛽 = natural birth rate for the population; 

𝜇 = natural death rate for the population. 

∝ = rate of contracting the HIV virus. 

σ(a) = gross death rate of the infected class. 

𝛿 = additional burden from infection. 

K = measure of the effectiveness of efforts at slowing 

down the death of infected members. 

𝜃 = the proportion of the off-springs of the infected 

which are virus free at birth 0 ≤ θ ≤ 1. 

T = maximum infection age i.e. when a = T the 

infected member dies of the disease. 

3. Equilibrium states  

 At the equilibrium states, let 

 S(0) = 𝑥, I(0) = y           (8) 

if ρ (t, a) = φ(a)           (9) 

from (1.2), y  =  φ
T

0
(a)                                        (10)   

from (5), φ(0) = 𝛽(0) = ∝ 𝑥y + (1⎯𝜃)𝛽y  (11) 

Substituting (9) to (11) into (1) and (3) 

   (𝛽⎯𝜇) 𝑥+ θ𝛽y⎯∝ 𝑥y = 0     (12) 

                 
dφ⌀

𝑑𝑎

(a)
 + σ(a)φ(a) = 0              (13) 

 
d⌀φ(a)

𝜑(𝑎)
 = –σ(a)da                     (14) 

Integrating both sides 

φ(a) = φ(0) exp {⎯ ς
a

0
(s) ds}   (15) 

Let π(a) = exp *⎯ ς
a

0
(s)ds}  (16) 

That is, 

φ(a) = φ(0)π(a)                 (17) 

and 

 y = φ(0) π
T

0
(a)da = φ(0)π            (18) 

Using (11) and (18) 

  y = (∝𝑥y + (1⎯𝜃) 𝛽y) π    (19) 

From (12) and (19). 

  𝑥 = 
1

∝
 (1 ⎯ (1⎯𝜃) 𝛽π )  (20) 

Substituting (20) in (12) 

  y =  
(β⎯μ) 

1

∝
 (1⎯(1⎯θ)βπ )

[ (1⎯(1⎯θ)βπ )⎯θβ ]
        (21) 

Hence, the zero equilibrium state, is (𝑥,y) = (0,0) and 

the non-zero equilibrium state is given by (20) and 

(21). 

 
4.  The characteristics equation 

As in Akinwande [1], let the equilibrium state be 

perturbed as follows: 

 S(t) = 𝑥+p(t), p(t) = p eλt       (22) 

           I(t) = y + q(t); q( t) = q eλt       (23)     

Let ρ (t. a) = φ(a) + 𝔶(a) eλt                 (24) 

With q =   (a)
T

0
da                      (25) 

Substituting (22) to (25) into the model equations (1) 

and (3) 
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⋋)d
d

𝑑𝑡
 (x + p  eλt ) 

= (𝛽⎯𝜇)  (𝑥+p  eλt) + 𝜃𝛽(y+q eλt ) 

⎯∝ (𝑥+p  eλt)(y+q  eλt) 

⋋p  eλt = (𝛽⎯𝜇) 𝑥 + (𝛽–𝜇) p  eλt  + 𝜃𝛽y +𝜃𝛽q eλt  

⎯∝𝑥y ⎯ ∝𝑥q  eλt  ⎯∝yp  eλt⎯∝p q  e2λt  

From equation (12) and neglecting terms of order 2, 

we have; 

⋋ p  eλt  = (𝛽⎯𝜇) p eλt  + 𝜃𝛽q  eλt  ⎯∝𝑥q  eλt  ⎯∝yq  eλt  
or (𝛽⎯𝜇⎯∝y⎯⋋)p  + (𝜃𝛽⎯∝𝑥)𝓆  = 0                                                                                                           
(26) 

Substituting (24) into (3), gives 

 
dρ

𝑑𝑡
(φ(a) 𝔶(a) eλt] + 

d

𝑑𝑎

[φ(a)+𝔶(a) eλt ]
 + σ(a)[φ(a)+𝔶(a)e⋋t] 

= 0 

That is, 

 ⋋𝔶(a)e⋋t + 
dφ

𝑑𝑎

(a) 
+ e⋋t

d

𝑑𝑎

 𝔶(a)
 + σ(a)φ(a) + σ(a)𝔶(a)e⋋t = 

0   

Since 

dφ

𝑑𝑎

(a) 
+ σ(a)φ(a) = 0  

Then 

 ⋋(a)e⋋t + e⋋t 
d

𝑑𝑎
𝔶(a)

 + σ(a)𝔶(a)e⋋t = 0 

 
d

𝑑𝑎
𝜂 (a)

 +(σ(a) +⋋) 𝔶(a) = 0           (27) 

Solving the Ordinary Differented Equation (27), gives 

 
d𝔶(a)

𝔶(a)
 = –(σ(a)+ ⋋)da         (28) 

 (a) =  (0) exp {– (ς
a

0
(s) + ⋋)ds}       (29) 

Integrating (29) over [0, T] gives 

q  =   (0)  [
T

0
 exp {– (ς

a

0
(s) + ⋋)ds}] da 

or q  = 𝔶(0) b(⋋)                     (30) 

Since   q  =  (0) b(⋋),where  b(⋋) = 

 e
T

0
xp {– (ς

a

0
(s) + s}] da   (31) 

 (0) is calculated as follows: 

From (11), φ(0) = ∝𝑥y + (1–θ)βy. 

and (24) ρ(t, a) = φ(a) + 𝔶(a) e⋋t  

But ρ(t, 0) = β(t) = φ(0) + 𝔶(0) e⋋t      (32) 

From (5), β(t) = ∝s(t) + (1–θ)βI(t) 

Substituting (22) to (25) into (5) and using (11) 
and (32) 

B(t) = ∝( 𝑥 + p e⋋t) (y + q e⋋t) + (1–θ)β (y +q e⋋t) 

= ∝𝑥y + ∝p ye⋋t + ∝𝑥q e⋋t + ∝p q e
2⋋t + (1– 

θ)βy + (1–θ)βq e⋋t                                                                                                                                                                                                                                                                                                                      
(33)   

Compare this with (32) using (11) for φ(0) gives 

∝𝑥y + (1–θ)βy + 𝔶(0)e⋋t = ∝𝑥y + ∝p ye⋋t + ∝𝑥q e⋋t  

+ ∝ p q e
2⋋t + (1–θ)βy + (1–θ)βq e⋋t 

neglecting terms of order 2 

  (0) = ∝ p y + ∝q χ + (1–θ)βq       (34) 

Substituting  (0) in (30) 

  q  = (∝yp  + ∝𝑥q  + (1–θ)βq ) b(⋋)              (35) 

∝yp  + [(∝𝑥 + (1–θ)β) b(⋋)–1)] q  = 0           (36) 

Using (26) and (36), we obtain the Jacobian 

determinant for the system with the eigen value ⋋ 

 

 

β– 𝜇 – ∝y –⋋  θβ – ∝ 𝑥   

                                     

      

                                                         = 0    (37)                                                    
αy              (∝𝑥 + (1–θ)β)b(⋋)–1  

      

  

and the characteristics equation is given by: 

(β – 𝜇 – ∝y –⋋) [(∝𝑥 + (1–θ)β)b(⋋)–1] –∝y(θβ–

∝ 𝑥) = 0   (38) 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T



5. Stability of the zero equilibrium state 

 At the zero equilibrium state (x, y) = (0, 0), 

the characteristic equation becomes: 

(β – 𝜇 –⋋)[(1–θ)βb(⋋)–1] = 0   (39) 

That is, 

either (β – 𝜇 –⋋) = 0 or (1–θ)βb(⋋)–1 = 0        (40) 

  ⋋1 = β– 𝜇            (41) 

This shows that ⋋1 < 0, if β < 𝜇 

The nature of the roots of the transcendental equation 

(1–θ)βb(⋋)–1 is now investigated.  

Since  b(⋋) =  e
T

0
xp {– (⋋  +

a

0
 σ(s)} da, which 

implies that 

 b(⋋) =  e
T

0
–⋋a π(a) da  (42) 

Using the approximation 

  b(⋋) =  (
T

0
1–⋋a) π(a) da = 

 π(a) da
T

0
 – ⋋  aπ(a) da

T

0
     (43) 

     

 = π  – ⋋A where A =  aπ(a) da
T

0
 

So, (1–θ)βb(⋋) – 1 = 0 takes the form: 

(1–θ)β(π  – ⋋A)– 1 = 0   (44) 

⋋ =  
(1–θ)βπ  – 1 

(1–θ)βA
                                                       (45) 

So, sign ⋋ = sign {(1– θ)βπ  –  1}                           (46) 

Let D1 (k) = (1–θ)βπ  –  1                                         (47) 

So, the origin will be stable when D1 (k) < 0 and 

Unstable when otherwise. 

 

 

 

 

Table 1. Stability analysis of the zero state. 

K 𝛿 θ T β μ D1(k) 
Remar

k 

0.

3 

0. 

003 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00088

26 

Instab

ility 

0.

4 

0. 

003 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00141

38 

Instab

ility 

0.

5 

0. 

003 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00119

76 

Instab

ility 

0.

6 

0. 

003 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00109

43 

Instab

ility 

0.

7 

0. 

003 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00099

17 

Instab

ility 

0.

8 

0.00

3 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00081

81 

Instab

ility 

0.

9 

0.00

3 

0.

4 

1

0 

0.3

1 

0.1

2 

0.00027

78 

Instab

ility 

 

From table 1, D1 (k) > 0 when β > μ, which implies 

the instability of the origin. 

6. Stability analysis of the non zero state 

At the non zero state 

(𝑥, y) = {
1 

∝
 (1 – (1 – θ)βπ , 

 β  –μ 
1 

∝
 [1– 1–θ βπ ] 

{  1– 1–θ βπ  – θβ }
}      (48) 

To analyse the non – zero state for stability, 

we shall apply the result of Bellman and Cooke [2]  to 

the characteristics equation (38) taking it in the form 

H(⋋) = 0  

if we set ⋋ = iw; and have H(iw) = F(w) + iG(w)        
(49) 

 Since b(⋋) =  e
T

0
xp {– (⋋  +

a

0
 σ(s)ds} da 

  b(iw) =  e
T

0
xp {– (iw +

a

0
 σ(s)} da 

=  e
a

0
– iwa π  (a)da   (50) 

                             =  [
T

0
(cos wa – (𝒾sin wa)] π(a) da = 

f(w) + ig(w)   (51) 

 in f(w) =  π
T

0
(a) cos wa da   (52) 

 and g(w) = –  π
T

0
(a) sin wa da    (53) 
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so , f(0) =  π
T

0
(a)da = π         (54) 

  g(0) =0        (55) 

Also , f(w) = – aπ
T

0
(a) sin (wa) da 

 f(0) = 0     (56) 

and, g(w) = – aπ
T

0
(a) cos wa da 

 g(0) = – aπ
T

0
(a)da = – A   (57) 

Thus, H(iw) = (β – μ – ∝ y –iw) [(∝ 𝑥 + (1 – θ)β) 

b(iw) – ∝y (θβ – ∝ 𝑥)     (58) 

H(iw) = (β – μ – ∝ y –iw) [(∝ 𝑥 + (1 – θ)β) f(w) + 

ig(w) – 1] – ∝y (θβ – ∝ 𝑥) 

= (β – μ – ∝ y –iw) [(∝ 𝑥 + (1 – θ)β) f(w) + 

(∝ 𝑥 + (1 – θ)β)ig(w) – 1] –∝y (θβ – ∝ 𝑥) 

F(w) = (β – μ – ∝ y) (∝ 𝓍 + ( 1 – θ )β) f(w) + w(∝ 𝑥 + 

1 – θ)β)g(w)-(β – μ – ∝ y) – ∝ y (θβ – ∝ 𝑥)      (59) 

G(w) = (β – μ – ∝ y) (∝ 𝑥 + (1 – θ)β) g(w) – w (∝ 𝑥 

+(1 – θ)β) f(w) + w            (60) 

 G(0) = 0 

F(0) = (β – μ – ∝ y) (∝ 𝑥+ (1 – θ)β) π  – (β – μ – ∝ y) 

– ∝ y(θβ–∝ 𝑥)   (61)  and 

G
1
(0) = –(β – μ – ∝ y) (∝ 𝑥 + (1 – θ)β)A –(∝ 𝑥 + (1 – 

θ)β) π  + 1          (62) 

F
1
(0) = 0 

        For stability or otherwise of the equilibrium state, 

we need to satisfy the condition for which the 

inequality F(0) G
1
(0) – F

1
(0) G(0) > 0  holds. 

The inequality then gives F(0) G
1
(0) > 0 

Let D2(k) = F(0) G
1
(0) 

Then, the non-zero state will be stable when D2(k) > 0    

(63) 

 

Table 2. Stability analysis of the non-zero state. 

 

 

From table 2, D2(k)>0 which implies the stability of 

the non zero state. 

 

K β 𝛿 μ ∝ θ T D2(k) 

Re

mar

k 

0

.

1 

0

.

2 

0.

01 

0.

01

5 

0.

00

1 

0

.

4 

1 

0.023285

41 Sta

ble 

         
0

.

2 

0

.

2 

0.

01 

0.

01

5 

0.

00

2 

0

.

4 

1 

0.023254

01 Sta

ble 

       
 

 
0

.

3 

0

.

2 

0.

01 

0.

01

5 

0.

00

3 

0

.

4 

1 

0.023553

26 
Sta

ble 

0

.

4 

0

.

2 

0.

01 

0.

01

5 

0.

00

4 

0

.

4 

1 

0.023685

85 
Sta

ble 

0

.

5 

0

.

2 

0.

01 

0.

01

5 

0.

00

5 

0

.

4 

1 

0.023817

56 Sta

ble 

         
0

.

6 

0

.

2 

0.

01 

0.

01

5 

0.

00

6 

0

.

4 
 

0.023948

39 Sta

ble 

      
1  

 
0

.

7 

0

.

2 

0.

01 

0.

01

5 

0.

00

7 

0

.

4 
 

0.024078

34 Sta

ble 

      
1  

 
0

.

8 

0

.

2 

0.

01 

0.

01

5 

0.

00

8 

0

.

4 

1 

0.024207

41 
Sta

ble 

0

.

9 

0

.

2 

0.

01 

0.

01

5 

0.

00

9 

0

.

4 
 

0.024335

60 Sta

ble 

      
1  

 

1 

0

.

2 

0.

01 

0.

01

5 

0.

01 

0

.

4 

1 

0.024462

91 
Sta

ble 
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 Conclusion 

The zero equilibrium state which is the state of 
population extinction will be stable when the birth 
rate is less than the death rate in addition to meeting 
the requirement of inequality D1(k)<0. The non zero 
state, which is the state of population sustenance will 
be stable if the inequality (63) is satisfied. So efforts 
must be geared toward meeting this non zero 
stability bound through public enlightenment.  
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