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Abstract

The paper considers two compartmentalized
mathematical model of HIV/AIDS disease dynamics of
the susceptible and infected members with age
structure introduced in the latter class. The
susceptables are virus free but prone to infection
through specific transmission pattern that is, coming
in contact with infected body fluids such as blood,
sexual fluids and breast milk. The total population is
partitioned into two distinct classes giving rise to a
set of model equations with one ordinary differential
equation and one partial differential equation.
Parameter values were used to represent the
consequential interactive characteristics of the
population. The equilibrium states and the
corresponding  characteristics  equation  were
obtained. The Bellman and Cooke’s theorem is
applied to analysed the equilibrium states of the model
for stability and critical values of these parameters
obtained. The result revealed that to sustain the
population, the birth rate must be greater than the
death rate among others.

1. Introduction

According to Benyah [3], mathematical modeling
is an evolving process, as new insight is gained the
process begins again as additional factors are
considered. The research work proposes a
deterministic mathematical model of HIV/AIDS
disease dynamics resulting into a system of ordinary
and partial differential equations. Differential
equations form very important mathematical tools
used in producing models of physical and biological

It is assumed that while the new births in S(t) are born
there in, the off-springs of I(t) are divided between
S(t) and I(t) in the proportion 6 and 1 — 6 respectively

processes. Burghes and Wood [4] opines that “...it
could even be claimed that the spread of modern
industrial civilization, for better or for worse, is partly
a result of man’s ability to solve the differential
equations which govern so many of our industrial
processes, be them chemical or engineering”.

In this work, the population is partitioned into two
compartments of the susceptible S(t), which is the
class of members that are virus — free but are prone to
infection as they interact with the infected class.

The infected class I(t) consists of members that
contracted the virus and are at various stages of
infection. This class is structured by the infection age,
with the density function p(t, a) where ‘t’ is the time
and ‘a’ is the infection age.

There is a maximum infection age T at which a
member of the infected class must leave the
compartment via death i.e. whena=T for0 <a <T.
However, a member of the class could still die by
natural causes at a rate u, which is also applicable to
the susceptible class S(t).

Members of S(t) move into I(t) at a rate a due to
negative change in behavior. The gross death rate via

infection is given by o(a) = p+é tan -, & is
additional burden from infection while K is a control
parameter associated with the measure of slowing
down the death of the infected member, such as the
effectiveness of the anti — retroviral drugs which give
the victims longer life — span. A high rate of ‘K’ will
imply high effectiveness of such measure and vice —
versa.

that is, 1 — 6 of the off-springs of I(t) are born with
the virus.
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2. The model equations
S' = (B-w)s(®) + 6B1(H) —xs(DI(D) (1)
and1(t) = [ p(t, a)da,0<a<T (2)

9p(t,a) 4 9P(ta) 4 (¢ 0@ =
208 4 220D L 4ot a) =0 (3)

Where o (a) = u+d tan T 4

p (8, 0) = B(t) = as(t)I(t) + (1-6) BI(t) (5)
and p (0, a) = ¢(a) (6)
S(0) = So, 1(0) = Io (7)

With the parameters given by

B = natural birth rate for the population;

u = natural death rate for the population.

o = rate of contracting the HIV virus.

o(a) = gross death rate of the infected class.

6 = additional burden from infection.

K = measure of the effectiveness of efforts at slowing
down the death of infected members.

6 = the proportion of the off-springs of the infected
which are virus free at birth0 <6 < 1.

T = maximum infection age i.e. whena =T the
infected member dies of the disease.

3. Equilibrium states

At the equilibrium states, let

SO)=x,10)=y (8)
if p (t, a) = o(a) 9)
from (1.2), y = [ o(a) (10)

from (5), ¢(0) = B(0) = x xy + (1-6)By (11)
Substituting (9) to (11) into (1) and (3)

(B—) x+ 0By-xxy=0  (12)
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S99 1 6(a)p(a) = 0 (13)
dog(a) _ _
2@ o(a)da (14)

Integrating both sides

®(@) = @(0) exp {~J; o(s) ds} (15)

Let (a) = exp {~J; o(s)ds} (16)
That is,

@(a) = @(0)m(a) (17)
and

y=¢(0)f, n@@)da=@0)T  (18)
Using (11) and (18)

y=(xxy + (1-0) By) ® (19)
From (12) and (19).

x = (1-(1-6) pT) (20)
Substituting (20) in (12)

(B-1) = (1-(1-8)B7)

21
[(1-(1-6)pm)-6B ] @D

y =
Hence, the zero equilibrium state, is (x,y) = (0,0) and

the non-zero equilibrium state is given by (20) and
(21).

4. The characteristics equation

As in Akinwande [1], let the equilibrium state be
perturbed as follows:

S(t) = x+p(1), p(t) = pe**  (22)

1) =y+q®;q(t) =ge* (23)

Letp (t-a) = @(a) + n(a) e (24)
Withg = [ (a)da (25)

Substituting (22) to (25) into the model equations (1)
and (3)
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NS (x + pet) = (Bu) (erpett) + 9B(y+Te)
—oc (x+p et)(y+q e

xpe''= (B-1) x + (B-w)per + 6By +6pge
—ocxy — ocx et —xyp ert—ocpg et

From equation (12) and neglecting terms of order 2,
we have;

xpert = (B—u) per + 6B e —xxqert —xyqelrt
or (B—pu—xy=x)p + (0—xx)g = 0
(26)

Substituting (24) into (3), gives

20 (0@) (@) €] + o5 )+ o(a) g (a)+(a)er]
=0

That is,

~p(@)ert + 720+ e + o(a)g(a) + o(a)p(a)ert =
0

Since

220+ o(a)p(a) = 0
Then

x(a)ert + ext %ﬁ(” +o(a)p(a)ert =0
d
—n@+o(@)+>)p@=0  (27)
Solving the Ordinary Differented Equation (27), gives

% = (o(a)+ n)da (28)

17 @) = 17 (0) exp {~[;(o(s) + »)ds}  (29)

Integrating (29) over [0, T] gives

1(0) [ [ exp {~J; (a(s) + »)ds}] da

q =
or d =1(0) b(») (30)
Since q=1n(0)b(»),where b(x) =

[} exp {-[(o(s) + s} da (31)

7 (0) is calculated as follows:
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From (11), @(0) = xcxy + (1-0)By.
and (24) p(t, @) = @(a) + y(a) et
But p(t, 0) = B(t) = @(0) + y(0) ex*  (32)
From (5), B(t) = «s(t) + (1-0)BI(t)

Substituting (22) to (25) into (5) and using (11)
and (32)

B(t) = oc(x + per9 (v + gerv + (1-0) (v +qe~9)
= oxy + XPyert + ccxgert+ «pge’t + (1-

0)By + (1-6)pgext
(33)

Compare this with (32) using (11) for ¢(0) gives
xxy + (1-0)By + n(0)ert = ocxy + xpyert + xxqert
+ o« pge’t + (1-0)By + (1-0)pge>t
neglecting terms of order 2

n(0) = «xpy + gy + (1-6)Bg  (34)

Substituting 77 (0) in (30)

q=(oyp +oxg+ (1-0)pa) b()  (35)
oxyp + [(cx + (1-0)B) b(x)-D]G=0  (36)

Using (26) and (36), we obtain the Jacobian
determinant for the system with the eigen value »

B—p— oy —x Op — x x

=0 (37)
ay (xx + (1-0)p)b(x)-1

and the characteristics equation is given by:

(B—p— oy =) [(xx + (1-6)B)b(>)-1] —ocy(6p-
xx)=0 (38)
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5. Stability of the zero equilibrium state

At the zero equilibrium state (x, y) = (0, 0),
the characteristic equation becomes:

(B—u—2)[(1-6)pb(X)-1] =0 (39)

Thatis,

either (B—p—>) =0 or (1-0)Bb(x)-1=0  (40)
1= P-p (41)

This shows that »1 < 0,ifp < u

The nature of the roots of the transcendental equation
(1-6)Bb(»)-1 is now investigated.

Since  b(x) = [, exp {~f;(» + o(s)} da, which
implies that

b(») = [, e>am(a) da (42)
Using the approximation

b(») = [,(1-»a) m(@) da =
Jy m(a)da - [, an(a)da (43)

=T - XA whereA = fOT am(a) da
So, (1-0)Bb(x) — 1 = 0 takes the form:
(1-0)B(T-2A)-1=0 (44)

_ a-9)pm-1

X = ST (45)
So, sign \ =sign {(1- 8)pm - 1} (46)
Let D1 (k) = (1-0)pm- 1 47)

So, the origin will be stable when D; (k) < 0 and
Unstable when otherwise.
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Table 1. Stability analysis of the zero state.

K| 6 |o|T| 8| n| DK Relr(nar
0.1 0 |0 |1]03]|01]000088 | Instab
31003 |4 0| 1] 2]2 ility
0.1 0 |0 |1]03|01]000141 | Instab
41003 40| 1] 2 |38 ility
0.1 0 |0 [1]03[01]000119 | Instab
51003 |4 0| 1] 2]76 ility
0.1 0 |0 [1]03[01]000109 | Instab
6 003 |4 0| 1] 2|43 ility
0.1 0 |0 |1]03[01]000099 | Instab
71003 |4 0| 1] 2|17 ility
0. 0000 | 1]03][01]00008L | Instab
8| 3 |4alo| 1|28 ility
0. 1000 0. | 1]03]01]000027 | Instab
9| 3 |4lo| 1] 2|78 ility

From table 1, D; (k) > 0 when B > p, which implies
the instability of the origin.

6. Stability analysis of the non zero state

At the non zero state

(B -u)= [1-(1-6)p]

{[ 1-(1-0)p7]- 08} P9

(x,y) = {Z (1- (1 - O)pT,

To analyse the non — zero state for stability,
we shall apply the result of Bellman and Cooke [2] to
the characteristics equation (38) taking it in the form
H(>»)=0

if we set x = iw; and have H(iw) = F(w) + iG(w)
(49)

Since b(») = [} exp {~f; (» + o(s)ds} da

b(iw) = f, exp {~[](iw + o(s)} da

= [ e "7 (a)da (50)

= fOT[(cos wa — (4sin wa)] n(a) da =
f(w) +ig(w) (51)

in f(w) = [ m(a) coswada (52)

and g(w) = - fOT n(a) sinwada (53)
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s0,f(0) = [ m(@da=T  (54)
g(0)=0  (55)
Also, f(w) = - [ an(a) sin (wa) da
f0)=0 (56)
and, g(w) = - [, an(a) cos wa da
g(0) =-f, an(a)da=-A (57)

Thus, H(iw) = (B — p — <y —iw) [(x x + (1 — 6)B)
b(iw) — xy (0p — < x)  (58)

H(iw) = (B —p — <y —iw) [(«xx + (1 - 0)p) fiw) +
ig(w) — 1] — o<y (6P — o x)

=B -p-oy-iw) [(cx + (1 -0)p) flw) +
(¢ x + (1 - 0)B)ig(w) — 1] —ocy (6 — o x)

Fw)=B-p—xy) (cx+(1-0)B) fiw)+ w(x x +
1-0)BegwW)-B-p-xy)-xy (OB —ocx) (59)

G(w) = (B —p—oxy) (<x + (1-0)B) g(w) —w (xx
+(1 - 0)B) fiw) +w (60)

G(0)=0

FO)=B-p-xy) (xx+ (1-0B)T—(B-p—xy)
— < y(6p—o< x) (61) and

G'0)=—(B-p—oy) (xx+(1-0)B)A (o x + (1 -
0)) 7 + 1 (62)

F{(0)=0

For stability or otherwise of the equilibrium state,
we need to satisfy the condition for which the
inequality F(0) G*(0) — F*(0) G(0) > 0 holds.

The inequality then gives F(0) G*(0) > 0
Let D,(k) = F(0) G*(0)

Then, the non-zero state will be stable when D,(k) > 0
(63)
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Table 2. Stability analysis of the non-zero state.

Re
6 | uw| o |0 ]|T| Duk mar
K
0.023285
0. 0.10.10 41 Sta
o |otfoo| . |1 ok
511 |4
0. 0.10 0.023254
c())i o1lo0|.|1] o1 E}z
52 |4
0.0 [0 |0023553
(())i o1]o00|.|1] 26 E}g
53 |4
0.0 [0 |0023685
(())i o100 . |1 85 E}Z‘
54 |4
0.023817
0.9 1010 56 Sta
o |o1|oo| . |1 ok
5|5 |4
0.023948
0. 0. 0. 10 39 Sta
o1 | %[00 . ble
56 |4
1
0.l 0 1|0 0.024078
AR
517 |4
1
0.0 [0l | 0024207
& o1o00|. 1] a1 E}:
5|8 |4
0.024335
o |00 |0 24 sta
o | ot |00 ok
59 |4
1
0. c())i 0. |9 . 0'03‘1462 Sta
o1 |0 lo|, ble

From table 2, D,(k)>0 which implies the stability of

the non zero state.



Conclusion

The zero equilibrium state which is the state of
population extinction will be stable when the birth
rate is less than the death rate in addition to meeting
the requirement of inequality D,(k)<0. The non zero
state, which is the state of population sustenance will
be stable if the inequality (63) is satisfied. So efforts
must be geared toward meeting this non zero
stability bound through public enlightenment.
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