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Abstract - There are two types of representations for real 

numbers that is fixed point and floating point. This paper 

compares the original CORDIC for sine-cosine generation 

on the basis of their area for 16-bit, 24-bit and 32-bit fixed 

point numbers. The advantage of floating-point 

representation over fixed-point (and integer) 

representation is that it can support a much wider range of 

values and precision. A high speed Original CORDIC for 

sine cosine generation for 24-bit, 28-bit and 32-bit (single 

precision IEEE 754) floating point numbers is also 

synthesized and the results have been compared. It is 

shown that there is 2%, 3% and 5% utilization of slice 

registers for 16-bit, 24-bit and 32-bit fixed point CORDIC. 

Keywords-Coordinate Rotation Digital Computer(CORDIC), 

Fixed point, Floating Point. 

I.  INTRODUCTION 

CORDIC is an acronym for COrdinate Rotation 

Digital Computer. It is a class of shift and add algorithms for 

rotating vectors in a plane, which is usually used for elegant 

computation of several transcendental functions such as 

trigonometric functions, multiplication, division and 

conversion between binary and mixed radix number systems 

of DSP applications, such as Fourier Transform. Two another 

functions are the absolute magnitude of a vector and the 

corresponding phase angle (arctangent computation). These 

functions can be evaluated using the CORDIC in its angle 

accumulation or vectoring mode. On VLSI implementation 

level, the area also becomes quite important as more area 

means more system cost. In this paper, area efficient CORDIC 

algorithm is implemented for calculations of trigonometric 

functions. Verilog HDL is used to implement technology-

independent design. There are two types of representations for 

real numbers that is fixed point and floating point. The 

comparison of original CORDIC for sine-cosine generation on 

the basis of their area for 16-bit, 24-bit and 32-bit fixed point 

numbers have been synthesized and discussed. A high speed 

Original CORDIC for sine cosine generation for 24-bit, 28-bit 

and 32-bit (single precision IEEE 754) floating point numbers 

is also synthesized. The rest of the paper is structured as 

follows: Section II describes the theory of the CORDIC with 

its application areas, conventional CORDIC, and Section III 

describes the fixed point CORDIC algorithms. Section IV 

explains the two types of representations for real numbers. 

Section V compares the results obtained in terms of delay and 

hardware utilization when the number is represented in 16-bit, 

24-bit and 32-bit fixed point format. Section VI gives the 

conclusion for the paper.  
 

II. COORDINATE ROTATION DIGITAL 

COMPUTER(CORDIC) 

A. Introduction 

The Coordinate Rotation DIgital Computer (CORDIC) 

algorithm [1], [2] has been used for many years for efficient 

implementation of vector rotation operations in hardware. It is 

executed merely by table look-up, shift, and addition 

operations. Thus, the corresponding hardware can be 

implemented in very economic fashion. Subsequently, it has 

been applied for many performance demanding applications in 

digital signal processing (DSP), image processing, and video 

technology like Fast Fourier Transform (FFT) [3], [4], 

Discrete Hartley Transform (DHT) [4], [5], Discrete Cosine 

Transform (DCT) [4], [6], [14] Discrete Sine Transform 

(DST)[4], Hough Transform (HT) [7]–[9], [12], graphics 

application [10], [11], and motion vector estimation[12]. 

In essence, a CORDIC can be operated in two 

different modes: the rotation and the vectoring mode. In the 

former mode of operation, given a vector with initial 

coordinate(x0, y0) and a target rotation angle(z0), the 

objective is to compute the final coordinate(x1,y1) through a 

series of backward and forward rotation of the vector in an 

iterative manner. In the vectoring mode, the objective is to 

compute the magnitude and the phase angle of a vector given 

its initial and final coordinates. Table I shows the different 

modes of CORDIC operations in different coordinate systems 

where Kh  and Kc  are two constants known as scale factors for 

the hyperbolic and circular coordinate systems, respectively. 

However, despite its attractiveness, the conventional CORDIC 

algorithm has some drawbacks, such as slow speed, 

requirement of compensation of a bulk scale factor, and 

limited convergence range. 
Mode of 

Operation 

y  0 

(Vectoring) 

z  0 

(Rotation) 

Hyperbolic x1 = Kh x02 − y02 

z1 = z0 + tanh−1(y0/x0) 

|tanh−1(y0/x0)|<=1.1182 

x1 = 

Kh[x0cosh(z0) + 

y0sinh(z0)] 

y1 = 

Kh[x0sinh(z0) + 

y0cosh(z0)] 

|z0| <= 1.1182 

Linear x1 = x0 

z1 = z0 + (y0/x0) 

|(y0/x0)| <= 1 

x1 = x0 

y1 = y0 + (x0z0) 

|z0| <= 1 

Circular x1 = Kc x02 + y02 

z1 = z0 + tanh−1(y0/x0) 

|tanh−1(y0/x0)|<=1.7433(99.9o) 

x1 = 

Kc[x0cosh(z0) - 

y0sinh(z0)] 

y1 = 

Kc[x0sinh(z0) - 
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y0cosh(z0)] 

|z0| <= 

1.7433(99.9o) 

 

       Table 1 : Functionality of the Generalized CORDIC 

 

B. Conventional CORDIC 

The rotation of a vector [𝑥0 𝑦0]𝑇  in the Cartesian coordinate 

system can be described as (considering clockwise rotation) 

 
x1
y1

  =  
cos θ sin θ

− sin θ cos θ
  

x0
y0

   (1)  

Where [𝑥1 𝑦1]𝑇 is the final vector and Ө is the target angle of 

rotation. In the CORDIC algorithm [13], Ө is expressed as the 

summation of a decreasing sequence of elementary angles αi so 

that 

Ө  =  σiαi
b−1
i=0              (2) 

 αi  =  tan−1(2−i)         (3) 
Where b is the word length of the machine in which the 

operation is to be implemented and σi  𝜖 {1, −1} is known as 

the direction of vector rotation for the ith iteration. Substituting 

(2) into (1) and using (3), one may write 

 
x1
y1

  =  cos αi
b−1
i=0  

1 σi2
−i

−σi2
−i 1

  
xi

yi
      (4) 

and 
σi  = Sign [θ −   αr

i−1
r=0 ]                   (5) 

zi+1 = zi   + σi2
−i                       (6) 

 

Equations (4)–(6) are the basic working equations of the 

CORDIC rotator operation where [xi yi]
𝑇 and zi  are the 

intermediate result vector and the residual angle, respectively, 

at the beginning of the ith iteration step. From the hardware 

implementation point of view, this vector rotation is nothing 

but a sequence of shift-and-add operations. However, the final 

result requires a scaling by a factor  cos αi
𝑏−1
𝑖=0  (Kc  in Table 

I). The scale factor remains a machine constant as long as the 

index runs through all of the values from 0 to b-1, i.e., when all 

of the allowed iteration steps are executed. However, if i 

changes in a different manner, i.e., if some of the allowed 

iterations are bypassed or repeated in order to achieve a faster 

convergence rate or a larger convergence range, the scale factor 

will not remain constant and, for its compensation, one requires 

extra hardware and comparable post processing cycles. 

III. FIXED POINT CORDIC ALGORITHM 

 

Fixed-point Fast Fourier Transform (FFT) units are widely 

used in digital communication systems. The twiddle multipliers 

required for realizing large FFTs are typically implemented 

with the Coordinate Rotation Digital Computer (CORDIC) 

algorithm to restrict memory requirements. Recent approaches 

aiming to optimize the bit widths of FFT units while satisfying 

a given maximum bound on Mean-Square- Error (MSE) 

mostly focus on the architectures with integer multipliers. They 

ignore the quantization error of coefficients, disabling them to 

analyze the exact error defined as the difference between the 

fixed-point circuit and the reference floating-point model. 

Radecka et.al. presents an efficient analysis of MSE as well as 

an optimization algorithm for CORDIC based FFT units, which 

is applicable to other Linear-Time-Invariant (LTI) circuits as 

well [13]. 

 

IV. NUMBER FORMAT 

 

A number format in computer is the internal representation of 

numeric values in digital computer hardware and software. 

Normally, numeric values are stored as groupings of bits, 

named for the number of bits that compose them. In real life, 

we deal with real numbers that is numbers with fractional part. 

In most modern computer we have hardware support for fixed 

point numbers and floating point numbers for representing real 

numbers. 

A. Fixed point number representation: 

Fixed point formatting is useful to represents fractions in 

binary. In fixed point representation every word has the same 

number of digits and the binary point is always fixed at the 

same position. By implementing algorithms using fixed point 

mathematics a significant improvement in execution speed can 

be observed because of inherent integer math hardware support 

in a large number of processor as well as the reduced software 

complexity for emulated integer multiply and divide. This 

speed improvement does come at the cost of reduced range and 

accuracy of the algorithm variables. 

Qm.n format: m bit for whole part, n bit for fractional part. 

 

N-bit 

 

    

 

 

        Binary Point 

 

Figure 1: Fixed Point Number Representation 

 

B. Floating point number representation 

In computing, floating point describes a method of representing 

real numbers in a way that can support a wide range of values. 

Numbers are, in general, represented approximately to a fixed 

number of significant digits and scaled using an exponent. The 

base for the scaling is normally 2, 10 or 16. The typical number 

that can be represented exactly is of the form: 

Significant digits × baseexponential  

The term floating point refers to the fact that the radix point 

(decimal point, or, more commonly in computers, binary point) 

can "float" that is, it can be placed anywhere relative to the 

significant digits of the number. This position is indicated 

separately in the internal representation, and floating-point 

representation can thus be thought of as a computer realization 

of scientific notation. The advantage of floating-point 

 Whole Part         Fractional Part 
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representation is that it can support a much wider range of 

values and are very accurate. 

  N bit 

 

V. RESULTS 

 

With the angle assumed to be 60𝑜  and the clock signal 

applied, the results for 16-bit, 24-bit and 32-bit fixed point 

representation are found as shown in Table 2. 60o  in binary is 

0001111000000000 for 16-bit fixed point representation, 

000111100000000000000000 for 24-bit fixed point 

representation and 00011110000000000000000000000000 for 

32-bit fixed point representation. The design was synthesized 

into a Xilinx VIRTEX 5 family FPGA.  

 

As can been seen in the Table 2, as we increase the no. of bits 

the delay keeps on increasing. On the other hand, there is 

marginal increase in utilization in terms of no. of slice 

registers.

Figure 2: Floating Point Number Representation 

 

Table 3: Comparison between 16-bit, 24-bit and 32-bit fixed point CORDIC 

 

 16-bit 24-bit 32-bit 

Total Utilization Total Utilization Total Utilization 

No. of slice registers 5106/ 

207360 

2% 6981/ 

207360 

3% 9532/ 

207360 

5% 

No. of slice LUTs 2916/ 

207360 

1% 5102/ 

207360 

2% 11012/ 

207360 

4% 

No. of bonded IOBs 53/1200 4% 67/1200 5% 83/1200 7% 

Delay 2.01ns  2.34ns  2.59ns  

Frequency 497.51 MHz  427.35 MHz  386.10 MHz  

 

VI. CONCLUSION 

In this paper, we implemented the conventional CORDIC 

algorithm for computing the sine and cosine values in fixed 

point number format. We used 16-bit, 24-bit and 32-bit fixed 

point representation representation. The comparison in table 2 

suggests that as we increase the no. of bits for the number 

representation, the delay increases. In terms of hardware 

utilization, there is marginal increase in no. of slices for fixed 

point representation. 
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