
A Verilog Implementation of Fixed Point Cordic Processor

Ashish Gambhir, Susmita Samanta, Sunil Kumar

Department of ECE, Dronacharya College of Engineering, Gurgaon

Abstract - There are two types of representations for real

numbers that is fixed point and floating point. This paper

compares the original CORDIC for sine-cosine generation

on the basis of their area for 16-bit, 24-bit and 32-bit fixed

point numbers. The advantage of floating-point

representation over fixed-point (and integer)

representation is that it can support a much wider range of

values and precision. A high speed Original CORDIC for

sine cosine generation for 24-bit, 28-bit and 32-bit (single

precision IEEE 754) floating point numbers is also

synthesized and the results have been compared. It is

shown that there is 2%, 3% and 5% utilization of slice

registers for 16-bit, 24-bit and 32-bit fixed point CORDIC.

Keywords-Coordinate Rotation Digital Computer(CORDIC),

Fixed point, Floating Point.

I. INTRODUCTION

CORDIC is an acronym for COrdinate Rotation

Digital Computer. It is a class of shift and add algorithms for

rotating vectors in a plane, which is usually used for elegant

computation of several transcendental functions such as

trigonometric functions, multiplication, division and

conversion between binary and mixed radix number systems

of DSP applications, such as Fourier Transform. Two another

functions are the absolute magnitude of a vector and the

corresponding phase angle (arctangent computation). These

functions can be evaluated using the CORDIC in its angle

accumulation or vectoring mode. On VLSI implementation

level, the area also becomes quite important as more area

means more system cost. In this paper, area efficient CORDIC

algorithm is implemented for calculations of trigonometric

functions. Verilog HDL is used to implement technology-

independent design. There are two types of representations for

real numbers that is fixed point and floating point. The

comparison of original CORDIC for sine-cosine generation on

the basis of their area for 16-bit, 24-bit and 32-bit fixed point

numbers have been synthesized and discussed. A high speed

Original CORDIC for sine cosine generation for 24-bit, 28-bit

and 32-bit (single precision IEEE 754) floating point numbers

is also synthesized. The rest of the paper is structured as

follows: Section II describes the theory of the CORDIC with

its application areas, conventional CORDIC, and Section III

describes the fixed point CORDIC algorithms. Section IV

explains the two types of representations for real numbers.

Section V compares the results obtained in terms of delay and

hardware utilization when the number is represented in 16-bit,

24-bit and 32-bit fixed point format. Section VI gives the

conclusion for the paper.

II. COORDINATE ROTATION DIGITAL

COMPUTER(CORDIC)

A. Introduction

The Coordinate Rotation DIgital Computer (CORDIC)

algorithm [1], [2] has been used for many years for efficient

implementation of vector rotation operations in hardware. It is

executed merely by table look-up, shift, and addition

operations. Thus, the corresponding hardware can be

implemented in very economic fashion. Subsequently, it has

been applied for many performance demanding applications in

digital signal processing (DSP), image processing, and video

technology like Fast Fourier Transform (FFT) [3], [4],

Discrete Hartley Transform (DHT) [4], [5], Discrete Cosine

Transform (DCT) [4], [6], [14] Discrete Sine Transform

(DST)[4], Hough Transform (HT) [7]–[9], [12], graphics

application [10], [11], and motion vector estimation[12].

In essence, a CORDIC can be operated in two

different modes: the rotation and the vectoring mode. In the

former mode of operation, given a vector with initial

coordinate(x0, y0) and a target rotation angle(z0), the

objective is to compute the final coordinate(x1,y1) through a

series of backward and forward rotation of the vector in an

iterative manner. In the vectoring mode, the objective is to

compute the magnitude and the phase angle of a vector given

its initial and final coordinates. Table I shows the different

modes of CORDIC operations in different coordinate systems

where Kh and Kc are two constants known as scale factors for

the hyperbolic and circular coordinate systems, respectively.

However, despite its attractiveness, the conventional CORDIC

algorithm has some drawbacks, such as slow speed,

requirement of compensation of a bulk scale factor, and

limited convergence range.
Mode of

Operation

y  0

(Vectoring)

z  0

(Rotation)

Hyperbolic x1 = Kh x02 − y02

z1 = z0 + tanh−1(y0/x0)

|tanh−1(y0/x0)|<=1.1182

x1 =

Kh[x0cosh(z0) +

y0sinh(z0)]

y1 =

Kh[x0sinh(z0) +

y0cosh(z0)]

|z0| <= 1.1182

Linear x1 = x0

z1 = z0 + (y0/x0)

|(y0/x0)| <= 1

x1 = x0

y1 = y0 + (x0z0)

|z0| <= 1

Circular x1 = Kc x02 + y02

z1 = z0 + tanh−1(y0/x0)

|tanh−1(y0/x0)|<=1.7433(99.9o)

x1 =

Kc[x0cosh(z0) -

y0sinh(z0)]

y1 =

Kc[x0sinh(z0) -

2673

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110762

y0cosh(z0)]

|z0| <=

1.7433(99.9o)

 Table 1 : Functionality of the Generalized CORDIC

B. Conventional CORDIC

The rotation of a vector [𝑥0 𝑦0]𝑇 in the Cartesian coordinate

system can be described as (considering clockwise rotation)

x1
y1

 =
cos θ sin θ

− sin θ cos θ

x0
y0

 (1)

Where [𝑥1 𝑦1]𝑇 is the final vector and Ө is the target angle of

rotation. In the CORDIC algorithm [13], Ө is expressed as the

summation of a decreasing sequence of elementary angles αi so

that

Ө = σiαi
b−1
i=0 (2)

 αi = tan−1(2−i) (3)
Where b is the word length of the machine in which the

operation is to be implemented and σi 𝜖 {1, −1} is known as

the direction of vector rotation for the ith iteration. Substituting

(2) into (1) and using (3), one may write

x1
y1

 = cos αi
b−1
i=0

1 σi2
−i

−σi2
−i 1

xi

yi
 (4)

and
σi = Sign [θ − αr

i−1
r=0] (5)

zi+1 = zi + σi2
−i (6)

Equations (4)–(6) are the basic working equations of the

CORDIC rotator operation where [xi yi]
𝑇 and zi are the

intermediate result vector and the residual angle, respectively,

at the beginning of the ith iteration step. From the hardware

implementation point of view, this vector rotation is nothing

but a sequence of shift-and-add operations. However, the final

result requires a scaling by a factor cos αi
𝑏−1
𝑖=0 (Kc in Table

I). The scale factor remains a machine constant as long as the

index runs through all of the values from 0 to b-1, i.e., when all

of the allowed iteration steps are executed. However, if i

changes in a different manner, i.e., if some of the allowed

iterations are bypassed or repeated in order to achieve a faster

convergence rate or a larger convergence range, the scale factor

will not remain constant and, for its compensation, one requires

extra hardware and comparable post processing cycles.

III. FIXED POINT CORDIC ALGORITHM

Fixed-point Fast Fourier Transform (FFT) units are widely

used in digital communication systems. The twiddle multipliers

required for realizing large FFTs are typically implemented

with the Coordinate Rotation Digital Computer (CORDIC)

algorithm to restrict memory requirements. Recent approaches

aiming to optimize the bit widths of FFT units while satisfying

a given maximum bound on Mean-Square- Error (MSE)

mostly focus on the architectures with integer multipliers. They

ignore the quantization error of coefficients, disabling them to

analyze the exact error defined as the difference between the

fixed-point circuit and the reference floating-point model.

Radecka et.al. presents an efficient analysis of MSE as well as

an optimization algorithm for CORDIC based FFT units, which

is applicable to other Linear-Time-Invariant (LTI) circuits as

well [13].

IV. NUMBER FORMAT

A number format in computer is the internal representation of

numeric values in digital computer hardware and software.

Normally, numeric values are stored as groupings of bits,

named for the number of bits that compose them. In real life,

we deal with real numbers that is numbers with fractional part.

In most modern computer we have hardware support for fixed

point numbers and floating point numbers for representing real

numbers.

A. Fixed point number representation:

Fixed point formatting is useful to represents fractions in

binary. In fixed point representation every word has the same

number of digits and the binary point is always fixed at the

same position. By implementing algorithms using fixed point

mathematics a significant improvement in execution speed can

be observed because of inherent integer math hardware support

in a large number of processor as well as the reduced software

complexity for emulated integer multiply and divide. This

speed improvement does come at the cost of reduced range and

accuracy of the algorithm variables.

Qm.n format: m bit for whole part, n bit for fractional part.

N-bit

 Binary Point

Figure 1: Fixed Point Number Representation

B. Floating point number representation

In computing, floating point describes a method of representing

real numbers in a way that can support a wide range of values.

Numbers are, in general, represented approximately to a fixed

number of significant digits and scaled using an exponent. The

base for the scaling is normally 2, 10 or 16. The typical number

that can be represented exactly is of the form:

Significant digits × baseexponential

The term floating point refers to the fact that the radix point

(decimal point, or, more commonly in computers, binary point)

can "float" that is, it can be placed anywhere relative to the

significant digits of the number. This position is indicated

separately in the internal representation, and floating-point

representation can thus be thought of as a computer realization

of scientific notation. The advantage of floating-point

 Whole Part Fractional Part

2674

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110762

representation is that it can support a much wider range of

values and are very accurate.

 N bit

V. RESULTS

With the angle assumed to be 60𝑜 and the clock signal

applied, the results for 16-bit, 24-bit and 32-bit fixed point

representation are found as shown in Table 2. 60o in binary is

0001111000000000 for 16-bit fixed point representation,

000111100000000000000000 for 24-bit fixed point

representation and 00011110000000000000000000000000 for

32-bit fixed point representation. The design was synthesized

into a Xilinx VIRTEX 5 family FPGA.

As can been seen in the Table 2, as we increase the no. of bits

the delay keeps on increasing. On the other hand, there is

marginal increase in utilization in terms of no. of slice

registers.

Figure 2: Floating Point Number Representation

Table 3: Comparison between 16-bit, 24-bit and 32-bit fixed point CORDIC

 16-bit 24-bit 32-bit

Total Utilization Total Utilization Total Utilization

No. of slice registers 5106/

207360

2% 6981/

207360

3% 9532/

207360

5%

No. of slice LUTs 2916/

207360

1% 5102/

207360

2% 11012/

207360

4%

No. of bonded IOBs 53/1200 4% 67/1200 5% 83/1200 7%

Delay 2.01ns 2.34ns 2.59ns

Frequency 497.51 MHz 427.35 MHz 386.10 MHz

VI. CONCLUSION

In this paper, we implemented the conventional CORDIC

algorithm for computing the sine and cosine values in fixed

point number format. We used 16-bit, 24-bit and 32-bit fixed

point representation representation. The comparison in table 2

suggests that as we increase the no. of bits for the number

representation, the delay increases. In terms of hardware

utilization, there is marginal increase in no. of slices for fixed

point representation.

References

[1] J. E. Volder, “The CORDIC trigonometric computing

technique,” IRE Trans. Electron. Comput., vol. EC-8, no. 3,

pp. 330–334, Sep. 1959.

[2] J. S. Walther, “A unified algorithm for elementary

functions,” in Proc. Joint Spring Comput. Conf., vol. 38, Jul.

1971, pp. 379–385.

[3] E. F. Deprettere, P. Dewilde, and R. Udo, “Pipelined

CORDIC architectures for fast VLSI filtering and array

processing,” in Proc. ICASSP, 1984, pp. 41 A 6.1–41 A. 6.5.

[4] K. Maharatna, A. S. Dhar, and S. Banerjee, “A VLSI array

architecture for realization of DFT, DHT, DCT and DST,”

Signal Process., vol. 81, pp. 1813–1822, 2001.

[5] E. L. Zapata and F. Arguello, “A VLSI constant geometry

architecture for the Hartley and Fourier transform,” IEEE

Trans. Parallel Distrib. Syst., vol. 3, no. 1, pp. 58–770, Jan.

1992.

[6] M. C. Mandal, A. S. Dhar, and S. Banerjee, “Multiplierless

array architecture for computing discrete cosine transform,”

Computers Elect. Eng., vol. 21, no. 4, pp. 327–333, 1994.

[7] J. D. Bruguera, N. Guil, T. Lang, J. Villalba, and E. L.

Zapata, “CORDIC-based parallel/pipelined architecture for

hough transform,” J. VLSI Signal Process., vol. 12, pp. 207–

221, 1996.

[8] D. Timmermann, H. Hann, and B. J. Hosticka, “Hough

transform using CORDIC method,” Electron. Lett., vol. 25,

no. 3, pp. 205–206, 1989.

[9] K. Maharatna and S. Banerjee, “A VLSI array architecture

for hough transform,” Pattern Recognit., vol. 34, pp. 1503–

1512, 2001.

[10] H. Yoshimura, T. Nakanishi, and Y. Yamaguchi, “A 50

MHz CMOS geometrical mapping processor,” IEEE Trans.

Circuits Syst., vol. 36, no. 10, pp. 1360–1363, Oct. 1989.

[11] K. Maharatna and S. Banerjee, “CORDIC based array

architecture for affine transformation of images,” in Proc. Int.

Exponential Part Mantissa Part

2675

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110762

Conf. Communications, Computers and Devices, vol. II,

Kharagpur, India, Dec. 2000, pp. 645–648.

[12] H. L. Li and C. Charkrabarti, “Hardware design of a 2-D

motion estimation system based on hough transform,” IEEE

Trans. Circuits Syst. II, vol. 45, no. 1, pp. 80–95, Jan. 1998.

 [13] A. Despain, “Fourier Transform Computers Using

CORDIC Iterations,” IEEE Transactions on Computers, vol.

23, pp. 993-1001, 1974.

[14] Liyi Xiao and Hai Huang, “A Novel CORDIC based

unified architecture for DCT and IDCT”, International

Conference on Optoelectronics and Microelectronics (ICOM),

pp. 496-500, 2012

2676

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110762

