
A Vision towards Column-Oriented Databases
Punam Bajaj Simranjit Kaur Dhindsa

Department of Computer Science & Engineering

 Chandigarh Engg. College, Landran, Mohali, India

Abstract:

This paper describes a basic difference

between column-oriented databases and

traditional row-oriented databases. As

applications require higher storage and

easier availability of data, the demands are

satisfied by better and faster techniques [1].

Column-oriented database systems

(Column-stores) have attracted a lot of

attention in the past few years. A column-

oriented DBMS is a database management

system (DBMS) that stores its content by

column rather than by row as in row-

oriented databases. This has advantages for

data warehouses and library catalogues

where aggregates are computed over large

numbers of similar data items [4]. In this

paper, we discuss how Column oriented

Database better than traditional row-

oriented DBMSs. This paper focuses on

conveying an understanding of columnar

databases and the proper utilization of columnar

databases within the enterprise.

Keywords: Column–Stores, Column–

oriented DBMS, Data WareHouses,

Columnar Database.

I Introduction:

Faced with massive data sets, a growing user

population, and performance-driven service

level agreements, organizations everywhere are

under extreme pressure to deliver analyses faster

and to more people than ever before. That means

businesses need faster data warehouse

performance to support rapid business decisions,

added applications, and better system utilization.

And as data volumes continue to increase driven

by everything from longer detailed histories to

the need to accommodate big data companies

require a solution that allows their data

warehouse to run more applications and to be

more responsive to changing business

environments. Plus, they need a simple, self-

managing system that boosts performance but

helps reduce administrative complexities and

expenses. Column Oriented DBMS provides

unlimited scalability, high availability and self-

managing administration [5].

 Fig 1. Base concept

In fig 1, Starting with a generic table, There are

two obvious ways to map database tables onto a

one dimensional interface: store the table row-

by-row or store the table column-by-column.

The row-by-row approach keeps all information

about an entity together. In the example above, it

will store all information about the first

employee, and then all information about the

second employee, etc. The column-by-column

approach keeps all attribute information

together: all of the employee id’s will be stored

consecutively, then all of the employee job, etc.

Both approaches are reasonable designs and

typically a choice is made based on performance

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

1www.ijert.org

expectations. If the expected workload tends to

access data on the granularity of an entity (e.g.,

find an employee, add an employee, delete an

employee), then the row-by-row storage is

preferable since all of the needed information

will be stored together. On the other hand, if the

expected workload tends to read per query only

a few attributes from many records (e.g., a query

that finds the most common e-mail address

domain), then column-by-column storage is

preferable since irrelevant attributes for a

particular query do not have to be accessed [2].

 Traditionally, Row oriented databases

are better suited for transactional environments,

such as a call center where a customer's entire

record is required when their profile is retrieved.

 Column-oriented databases are

better suited for analytics, where only portions

of each record are required. By grouping the

data together like this, the database only needs to

retrieve columns that are relevant to the query,

greatly reducing the overall I/O needed [6].

II Core difference of Columnar Database

than row-oriented Database:

The world of relational database systems is a

two-dimensional world. Data is stored in tabular

data structures where rows correspond to distinct

real-world entities or relationships, and columns

are attributes of those entities. There is,

however, a distinction between the conceptual

and physical properties of database tables. This

aforementioned two-dimensional property exists

only at the conceptual level. At a physical level,

database tables need to be mapped onto one

dimensional structure before being stored. This

is because common computer storage media

(e.g. magnetic disks or RAM), despite ostensibly

being multi-dimensional, provide only a one

dimensional interface. For example, a database

might have this table [2].

Fig 2. Two Dimensional Table

This simple table includes an employee

identifier (EmpId), name fields (Lastname and

Firstname) and a Salary .The database must coax

its two-dimensional table into a one-dimensional

series of bytes, for the operating system to write

it to either the RAM, or hard drive, or both. A

row-oriented database serializes all of the values

in a row together, then the values in the next

row, and so on.

 1, Wilson, Joe, 40000;

 2, Yaina, Mary, 50000;

 3, John, Cathy, 44000;

A column-oriented database serializes all of the

values of a column together, then the values of

the next column, and so on.

 1, 2, 3;

 Wilson, Yaina, Johnson;

 Joe, Mary, Cathy;

 40000, 50000, 44000;

This is a simplification. Partitioning, indexing,

caching, views, OLAP cubes, and transactional

systems such as write ahead logging or

multiversion concurrency control all

dramatically affect the physical organization [4].

III Limitations of Row oriented DBMS’s:

Historically, database system implementations

and research have focused on the row-by-row

data layout, since it performs best on the most

common application for database systems:

business transactional data processing. However,

there are a set of emerging applications for

database systems for which the row-by-row

layout performs poorly. These applications are

more analytical in nature, whose goal is to read

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

2www.ijert.org

through the data to gain new insight and use it to

drive decision making and planning. The nature

of the queries to data warehouses (analytical

databases) is different from the queries to

transactional databases. Queries tend to be:

1) Less Predictable: In the transactional

world, since databases are used to

automate business tasks, queries tend to

be initiated by a specific set of

predefined actions. As a result, the basic

structure of the queries used to

implement these predefined actions is

coded in advance, with variables filled

in at run-time. In contrast, queries in the

data warehouse tend to be more

exploratory in nature. They can be

initiated by analysts who create queries

in an ad-hoc, iterative fashion.

2) Longer Lasting: Transactional queries

tend to be short, simple queries (“add a

customer”, “find a balance”). In

contrast, data warehouse queries, since

they are more analytical in nature, tend

to have to read more data to yield

information about data in aggregate

rather than individual records.

3) More Read-Oriented Than Write-

Oriented: Analysis is naturally a read-

oriented endeavor. Typically data is

written to the data warehouse in batches,

followed by many read only queries.

Occasionally data will be temporarily

written for “what-if” analyses, but on

the whole, most queries will be read-

only.

4) Attribute-Focused Rather Than

Entity-Focused: Data warehouse

queries typically do not query individual

entities; rather they tend to read multiple

entities and summarize or aggregate

them. Further, they tend to focus on only

a few attributes at a time rather than all

attributes.

 As a consequence of these

query characteristics, storing data row-by-row is

no longer the obvious choice; in fact, specially

as a result of the latter two characteristics, the

column-by-column storage layout can be better

[2].

IV Evolution of Column Oriented DBMSs:

The following are some cited advantages of

column-stores:

Improved bandwidth utilization: In a column-

store, only those attributes that are accessed by a

query need to be read off disk (or from memory

into cache). In a row-store, surrounding

attributes also need to be read since an attribute

is generally smaller than the smallest granularity

in which data can be accessed.

Improved data compression: Storing data from

the same attribute domain together increases

locality and thus data compression ratio

(especially if the attribute is sorted). Bandwidth

requirements are further reduced when

transferring compressed data.

Improved code pipelining: Attribute data can be

iterated through directly without indirection

through a tuple interface. This results in high

IPC (instructions per cycle) efficiency, and code

that can take advantage of the super-scalar

properties of modern CPUs.

Improved cache locality: A cache line also tends

to be larger than a tuple attribute, so cache lines

may contain irrelevant surrounding attributes in

a row-store. This wastes space in the cache and

reduces hit rates [3,4].

 Additional Considerations:

In addition to better performance, the column-

orientation aspect of column-based database

supplies a number of useful benefits to those

wishing to deploy fast business intelligence

databases.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

3www.ijert.org

First, there is no need for indexing as with

traditional row-based databases. The elimination

of indexing means: (1) less overall storage is

consumed in columnar databases because

indexes in legacy RDBMS’s often balloon the

storage cost of a database to double or more the

initial data size; (2) data load speed is increased

because no indexes need to be maintained; (3)

ad-hoc DML work speed is increased because no

index updates are performed; (4) no indexing

design or tuning work is imposed on the

database IT staff.

Second, there is far less design work forced on

database architects when a column-based

database is used. The need for complicated

partitioning schemes, materialized view or

summary table designs, and other such work is

completely removed because column databases

need none of these components to achieve

superior query performance.

Data Compression:

Compression is a technique used by many

DBMSs to increase performance. Compression

improves performance by reducing the size of

data on disk, decreasing seek times, increasing

the data transfer rate and increasing buffer pool

hit rate [7].One of the most-often cited

advantages of Column-Stores is data

compression. Intuitively, data stored in columns

is more compressible than data stored in rows.

Compression algorithms perform better on data

with low information entropy (high data value

locality) [1]. Imagine a database table containing

information about customers (name, phone

number, e-mail address, e-mail address, etc.).

Storing data in columns allows all of the names

to be stored together, all of the phone numbers

together, etc. Certainly phone numbers will be

more similar to each other than surrounding text

fields like e-mail addresses or names. Further, if

the data is sorted by one of the columns, that

column will be super-compressible. Column

data is of uniform type; therefore, there are some

opportunities for storage size optimizations

available in column-oriented data that are not

available in row-oriented data. Compression is

useful because it helps reduce the consumption

of expensive resources, such as hard disk space

or transmission bandwidth. Infobright is an

example of an open source column oriented

database built for high-speed reporting and

analytical queries, especially against large

volumes of data. Data that required 450GB of

storage using SQL Server required only 10GB

with Infobright, due to Infobright’s massive

compression and the elimination of all indexes.

Using Infobright, overall compression ratio seen

in the field is 10:1. Some customers have seen

results of 40:1 and higher. Eg.1TB of raw data

compressed 10 to 1 would only require 100 GB

of disk capacity [6].

V Conclusion:

Column oriented DBMS is an enhanced

approach to service the needs of Business

Intelligence (BI), data warehouse, and analytical

applications where scalability, performance and

simplicity are paramount. It delivers a future-

proof data management infrastructure with the

ability to scale from a single database node to a

multi-node. When you need to analyse a

mountain of data, there simply is no substitute

for column database technology that ensure

scalable, linear performance capabilities and to

deliver faster performance than legacy databases

that use all of them just to cross the finish line

second. The Columnar Database is evolving

software which can overcome the lacks of the

scope of row oriented databases. It provides a

range of benefits to an environment needing to

expand the envelope to improve performance of

the overall analytic workload. It is usually not

difficult to find important workloads that are

column selective, and therefore benefit

tremendously from a columnar orientation.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

4www.ijert.org

VI Future Work:

Columnar database benefits are enhanced with

larger amounts of data, large scans and I/O

bound queries. While providing performance

benefits, they also have unique abilities to

compress their data. Therefore, Columnar can

now be used in a data mart or a large integrated

data warehouse[5]. Oracle describes the Exadata

columnar compression scheme where Hybrid

Columnar Compression on Exadata enables the

highest levels of data compression and provides

enterprises with tremendous cost-savings and

performance improvements due to reduced I/O.

Average storage savings can range from 10x to

15x depending on which Exadata Hybrid

Columnar Compression feature is implemented;

customer benchmarks have resulted in storage

savings of up to 204x! Exadata Hybrid

Columnar Compression is an enabling

technology for two new Oracle Exadata Storage

Server features: Warehouse Compression and

Archive Compression. We can explore Exadata

Hybrid Columnar Compression – the next

generation in compression technology [8].

VII References:

[1]Daniel J. Abadi, Peter A. Boncz, Stavros

Harizopoulos, Column-oriented Database

Systems, VLDB ’09, August 24-28, 2009, Lyon,

France.

[2] Daniel J. Abadi, Query Execution in

Column-Oriented Database Systems,

[3] D. J. Abadi, S. R. Madden, N. Hachem,

Column-stores vs. row-stores: how different

are they really?, in: SIGMOD’08, 2008, pp.

967–980.

[4] Column-Oriented DBMS, wikipedia

[5] TeraData Columnar, www.TeraData.com

[6] Infobright, Analytic Applications With

PHP and a Columnar Database(2010), 403-47

Colborne St Toronto, Ontario M5E 1P8 Canada.

[7] Miguel C. Ferreira, Compression and

Query Execution within Column Oriented

Databases.

[8] Oracle Exadata, Hybrid Columnar

Compression (HCC) on Exadata.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

5www.ijert.org

