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Abstract 

 
In this paper, the author deals with the ability assessment of a solar photovoltaic (PV) system integrated 

with greenhouse. The power produced from the solar PV system has been used to operate the required 

heating/cooling equipments inside the greenhouse. The block diagram of solar PV system has been shown 

in fig 1-(a). The authors have been used supplementary variables technique to mathematical formulation of 

the model. The difference-differential equations of various flow states are then solved subjected to Laplace 

transform. The reliability function, availability function and M.T.T.F have obtained. Steady-state behavior 

of the system and a particular case (when repairs follow exponential time distribution) have also been 

computed to improve practical utility of the model. A numerical example together with its graphical 

illustration has also appended in the end to highlight important results of the study. 
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1. INTRODUCTION 

 
The whole system under consideration consists of four main subsystems A, B, C, and E, connected in 

series. Subsystem A is a solar panel and produced DC power from sunlight. Subsystem B is a charge 

controller and it controls the charging of batteries. Subsystem C is a battery bank and stores the DC power 

produced by the solar panel. Here, in this model, the subsystem C has two units, namely 1C  and 2C  in 

standby redundancy. Originally, one battery bank 1C  works and on failure of 1C  we can online standby 

battery bank 2C  by the help of imperfect switching device D. In last, the subsystem E is an inverter and it 

converts 3.0KVA DC power to 220V/50Hz AC power. The flow of states for this system has been shown 

in fig-1(b). 
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Fig-1 (a): Block Diagram of Solar PV System 
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Fig-1 (b): Flow of states 

 

2. ASSUMPTIONS 

 
The following assumptions have been associated with this model: 

(i.) Initially at t=0, all the subsystems and the system as a whole is operable. 

(ii.) Repair to subsystem C has given only if its both units are failed. In this case, the system 

has to wait for repair otherwise repair facilities are always available. 
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(iii.) The whole system can also fail due to environmental reasons. 

(iv.) Failures are S-independent and nothing can fail from a failed state. 

(v.) Repairs are perfect i.e., after repair components work as new. 

(vi.) All failures follow exponential time distribution whereas all repairs follow general time 

distribution. 

 

3. NOMANCLATURE 

 

   tPtP
C1

00 /  Pr {At time t, system is operable while unit 1C  is working/failed}. 

    tjPtjP
C

ii ,/, 1  Pr {At time t, system is failed due to failure of 
thi subsystem and elapsed 

repair time lies in the interval  jj,  while unit 1C  is working /failed}. 

 tPW

C  Pr {At time t, system is failed due to failure of subsystem C and is waiting for 

repair}. 

 tzPR

C ,  Pr {At time t, system is ready for repair of subsystem C and elapsed repair time 

lies in the interval  zz, }. 

 trPEV ,  Pr {At time t, system is failed due to environmental reasons and elapsed repair 

time lies in the interval  rr, }. 

 sP  Laplace transform of function  tP . 

 xSi    dxxx ii )(.exp)(  ,  i and x. 

M.T.T.F. Mean time to failure.  

i  Failure rate of 
thi  subsystem. 

EV  Failure rate due to environmental reasons.  

 ji  First order probability that 
thi subsystem will be repaired in the time interval 

 jj, , conditioned that it was not repaired up to the time j.  

 

4. FORMULATION OF MATHEMATICAL MODEL 

 
Probability considerations and limiting procedure yield the following set of difference-differential 

equations governing the behaviour of considered system, which is continuous in time and discrete in space: 
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Boundary conditions are :  

   tPtP AA 0 ,0   …(13) 

   tPtP BB 0 ,0  ` …(14) 

   tPtP EE 0 ,0   …(15) 
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C

EVEV
1

00P ,0    …(21) 

Initial conditions are: 

  ,10 0 P  otherwise all state probabilities at t=0 are zero.  

 

…(22) 

 

5. SOLUTION OF THE MODEL 

 
Taking Laplace transforms of equations (1) through (21) subjected to initial conditions (22) and then on 

solving them one by one, we obtain the following Laplace transforms of various transition-state (depicted 

in fig-1b)  probabilities: 

 
 sB

1
 0 sP  

…(23) 
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It is worth noticing that 

 

 

…(37) 

Sum of equations (23) through (34) = 
s

1
 

…(38) 

 

6. STEADY-STATE BEHAVIOUR OF THE SYSTEM 

 

By using Abel’s lemma, viz.,     PsPsLimtPLim
st




      
0

(say), provided the limit on L.H.S. exists, 

one can obtain the steady-state probabilities from equations (23) through (34): 

     

7. PARTICULAR CASE 

 
When all repairs follow exponential time distribution   
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In this case, we have obtained the following Laplace transforms of various flow state probabilities from 

equations (23) through (34) by putting    ,
i

i
i

s
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  for all i: 
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8. RELIABILITY AND M.T.T.F. OF THE SYSTEM 

 
Laplace transform of system’s reliability is given by: 
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            tDCEVEBA  1   exp.                  …(53) 

Also, M.T.T.F. = )(lim
0

sR
s
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1

1
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9. AVAILABILITY EVALUATION 

 
We have  
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)1(
1

1

1
s  

On taking inverse Laplace transform, we obtain 

     t 1.exp1)( DCEVEBAup AtP    

                t .exp EVEDCBAA                  …(55) 

where, 
)1(

)1(

CD

DCA







                    …(56) 

It is important to note that 1)0( upP  

Also, )(1)( tPtP updown                     …(57) 

 

10. NUMERICAL COMPUTATION 

 
For a numerical computation, let us consider the values 

,001.0A  ,02.0B  ,003.0C ,4.0D  ,04.0E  005.0EV  an t = 0,1,2,-----. 

By using these values in equations (53), (54) and (55), one can compute the table- 1, 2, 3 and 4. The 

corresponding graphs have been shown in fig-2, 3, 4 and 5, respectively. 

 

11. RESULTS AND DISCUSSION 

 
In this paper, the authors have considered a solar PV system to evaluate its reliability measures. 

Supplementary variables technique has been used to formulate a mathematical model for the system. The 

so obtained difference-differential equations have been solved by using Laplace transform. Reliability, 

availability and M.T.T.F. of the system have computed. Steady-state behaviour and a particular case (when 

all repairs follow exponential time distribution) have also mentioned to make the model more compatible. 

A numerical example has also appended in last to highlight important results of the study. By using this 

numerical example tables- (1) through (4) have been computed and the corresponding graphs have been 

shown by the figs- (2) through (5), respectively.  
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