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Abstract

Let N be the 6�dimensional nilpotent Lie group and let R9 be its
vector group. we construct a 9�dimensional new group that contains the
two groups N and R9. We will de�ne the Fourier transform on N , in order
to obtain the Plancherel theorem. Moreover, we show how F. Treves and
M. Atiyah methods can be used to obtain the division of distributions on
N: To this end, a classi�cation of all ideals of the Banach algebra L1(N)
of N will be obtained.
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1 Introduction.

1.1. The abstract harmonic analysis, is a powerful area of pure mathematics
that has connections to analysis, algebra, geometry, theoretical physics and
solving problems in robotics, image analysis, mechanics,engineering. Abstract
harmonic analysis is the �eld in which results from Fourier analysis are extended
to topological groups which are not commutativ This analysis is generally a hard
theory and its di¢ culty makes the noncommutative version of the problem very
challenging. The main task is therefore the case of Lie groups which is locally
compact, not compact and not commutative. If the Lie group N is assumed
to be noncommutative, it is not possible anymore to consider the dual groupbN . Recently, this problem found a satisfactory solution with my papers [4; 5; 7].
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Here are some interesting examples of these groups. Let G5 be the real group
consisting of all matrices of the form0BBBBBBBBBBB@

1 �x1 x21
2 x4 0 0 0 0

0 1 �x1 x3 0 0 0 0
0 0 1 x2 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 x2
x22
2 x5 � x 1x

2
2

2
0 0 0 0 0 1 x2 �x3 � x1x2
0 0 0 0 0 0 1 �x1
0 0 0 0 0 0 0 1

1CCCCCCCCCCCA
(1)

G5 (is called the Cartan group G5 or the generalized Dido problem), where
(x5; x4; x3; x2; x1) 2 R5. Let K = R5 be the group with law

(x5; x4; x3; x2; x1)(y5; y4; y3; y2; y1)

= (x5 + y5 +
1

2
x1y

2
2 � x2y3 + x1x2y2; x4 + y4 +

1

2
x21y2 � x1y3; y3 + x3 � x1y2; x2 + y2; x1 + y1)

for any (x5; x4; x3; x2; x1) 2 R5 and (y5; y4; y3; y2; y1) 2 R5: The inverse of an
element (x5; x4; x3; x2; x1) is

(x5; x4; x3; x2; x1)
�1

= (�x5 �
x1
2
x22 � x2x3;�x4 �

x21
2
x2 � x1x3;�x3 � x1x2;�x2;�x1) (2)

Dixmier had proved in [2; p:331] that there is a group isomorphism between
G5 and K: Thanks to this isomorphism, the group K can be shown as a semi-
direct product R3 n

�2
R n
�1
R of the real vector groups R, R and R3 see [4], where

�2 is the group homomorphism �2 : R! Aut(R3); which is de�ned by

�2(x2 )(y5; y4; y3) = (y5 � x2y3; y4; y3) (3)

and �1 is the group homomorphism �1 : R! Aut(R3 n
�2
R); which is given by

�1(x1 )(y5; y4; y3; y2) = (y5 +
x1
2
y22 ; y4 +

x21
2
y2 � x1y3; y3 � x1y2; y2) (4)

where Aut(R3) (resp:Aut(R3 n
�2
R)) is the group of all automorphisms of (R3)

(resp:(R3 n
�2
R)): Let N be the real group consisting of all matrices of the form

0BB@
1 x1 x3 x6
0 1 x2 x5
0 0 1 x4
0 0 0 1

1CCA (5)
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where (x6; x5; x4; x3; x2; x1) 2 R6 . The group can be identi�ed with the group
(R3 o

�2
R2 ) o

�1
R be the semidirect product of the real vector groups R, R2 and

R3, where �2 is the group homomorphism �2 : R2 ! Aut(R3); which is de�ned
by

�2(x3; x2 )(y6; y5; y4) = (y6 + x3y4; y5 + x2y4; y4) (6)

and �1 is the group homomorphism �1 : R! Aut(R3 o
�2
R2); which is given by

�1(x1 )(y6; y5; y4; y3; y2) = (y6 + x1y5; y5; y4; y3 + x1y2; y2) (7)

where Aut(R3) (resp:Aut(R3 o
�2
R2)) is the group of all automorphisms of (R3)

(resp:(R3 n
�2
R2)); see [4]: and the inverse of an element

(x6; x5; x4; x3; x2; x1) = (�x6�x3x4�x1x5�x1x2x4;�x5�x2x4;�x4;�x3�x1x2;�x2;�x1)
(8)

1.2. Using the technique in [4; 6; 7] as a guideline, our goal in this paper is
to generalize the classical Fourier transform on 3� step nilpotent Lie groups, to
obtain the following results
I- Plancherel formula on these groups theorem 2:1
II- Theorems 3:1 and 3:2 for the division of distributions, and classi�cation

of all left ideals of Banach algebra L1(N) theorem 4:1 and corollary 4:2
The point I wish to make in this paper that the Fourier transform is ex-

actly the classical Fourier transform on Rn. Therefore, I do hope this paper
will be intended to draw the attention of Analysts and Algebraist to this new
way. Due to the analogues structure of two groups, it su¢ ces to study the non
commutative Fourier analysis on one of the them, for example N:

2 Plancherel Formula on N:

2.1. In the following we supply R9 a new structure of group by de�ning on
R9 = R3 � R2 � R2�R� R a new multiplication as:

X:Y = (x6; x5; x4; x3; x2; t3; t2; x1; t1)(y6; y5; y4; y3; y2; s3; s2; y1; s1)

= ((x6; x5; x4; x3; x2; t3; t2)(�1(t1)(y6; y5; y4; y3; y2; s3; s2); y1 + x1; s1 + t1)

= ((x6; x5; x4; x3)�2(t3; t2)(y6 + t1y5; y5; y4; y3; s3 + t1s2; s2); x2 + y2; y1 + x1; s1 + t1)

= ((x6; x5; x4) + (y6 + t1y5 + t3y4; y5 + t2y4; y4); x3 + y3; s3 + t1s2;

s2 + t2; x2 + y2; y1 + x1; s1 + t1)

= (x6 + y6 + t1y5 + t3y4; x5 + y5 + t2y4; x4 + y4; x3 + y3; t3 + s3 + t1s2;

y2 + x2; s2 + t2; y1 + x1; s1 + t1) (9)

for all (X;Y ) 2 R9 � R9 : In this case the group N can be identi�ed with the
closed subgroup R3�f0go

�1
R2� f0g o

�1
R of R9 andM with the closed subgroup

R3 � R2 � f0g�R� f0g = R6 of L:
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2.2. Let C1(N) be the space of C1- functions on N: Let U be the com-
plexi�ed universal enveloping algebra of the real Lie algebra n of N ; which is
canonically isomorphic to the algebra of all distributions on N supported by
the identity element 0 of N . If v 2 U , then we can associate a right invariant
di¤erential operator (ID) on N by:

(ID')(X) = v � '(X) =
Z
N

'(Y �1X)v(Y )dY (10)

for any ' 2 C1(G); where dY = dydy3dy2dy1 is the Haar measure on N which
is the Lebesgue measure on R6, Y = (y; y3; y2; y1), X = (x; x3; x2; x1); y =
(y6; y5; y4); x = (x6; x5; x4) and � denotes the convolution product on G : The
mapping v ! IDv is an algebra isomorphism of U onto the algebra of all
invariant di¤erential operators on N . For more details see [9]:
Let M = R3�R2�R be the vector group of N which is the direct product

of R3;R2 and R. we denote also by U the complexi�ed universal enveloping
algebra of the real Lie algebra m of M: For every � 2 U , we can associate a
di¤erential operator CD on M as follows

CDf(X) =  �c �(X) = � �c  (X) =
Z
M

 (X � Y )�(Y )dY (11)

for any  2 C1(M); X 2M;Y 2M: where �c signify the convolution product
on the real vector group M: The mapping � 7! CD� is an algebra isomorphism
of U onto the algebra of all invariant di¤erential operators (with constant coef-
�cients)on M:

As in [4], we will de�ne the Fourier transform on N . Therefore let S(N)
be the Schwartz space of N which can be considered as the Schwartz space of
S(M); and let S 0(N) be the space of all tempered distributions on N:We denote
by L1(N) the Banach algebra that consists of all complex valued functions on
the group N , which are integrable with respect to the Haar measure of N and
multiplication is de�ned by convolution on N , and we denote by L2(N) the
Hilbert space of N .
De�nition 2.1. For every f 2 C1(N), one can de�ne function ef 2 C1(R9)

as follows:

ef(x; x3; x2; t3; t2; x1; t1) = f((�1(x1)(�2(x3; x2)(x); t3 + x3; t2 + x2)); t1) (12)

for all (x; x3; x2; t3; t2; x1; t1) 2 R9; where x = (x6; x5; x4) 2 R3:
It results from this de�nition that the function ef is invariant in the following

sense:

ef((�1(h)(�2(r; k)(x); x3 � r; x2 � k; t3 + r; t2 + k)); x1 � h; t1 + h)
= ef(x; x3; x2; t3; t2; x1; t1) (13)
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for any (x; x3; x2; t3; t2; x1; t1) 2 R9, h 2 R and (r; k) 2 R2, where x =
(x6; x5; x4) 2 R3. So every function 	(x; x3; x2; x1) on N extends uniquely
as an invariant function e	(x; x3; x2; t3; t2; x1; t1) on R9.
Theorem 2.1. For every function F 2 C1(L) invariant in sense (13) and

for every u 2 U , we have

u � F (x; x3; x2; t3; t2; x1; t1) = u �c F (x; x3; x2; t3; t2; x1; t1) (14)

for every (x; x3; x2; t3; t2; x1; t1) 2 L, where � signi�es the convolution product
on G with respect the variables (x; t3; t2; t1) and �csigni�es the commutative
convolution product on B with respect the variables (x; x3; x2; x1):
Proof : In fact we have

u � F (x; x3; x2; t3; t2; x1; t1)

=

Z
G

F
�
(y; y3; y2; s)

�1(X;x3; x2; t3; t2; x1; t1)
�
u(y; y3; y2; s)dydy3dy2ds

=

Z
G

F
�
(�1(s

�1)(y; y3; y2)
�1;�s)(x; x3; x2; t3; t2; x1; t1)

�
u(y; y3; y2; s)dydy3dy2ds

=

Z
G

F [(�1(s
�1)((�2(y3; y2)

�1((�y) + (x))); x3; x2; t3 � y3; t2 � y2); x1; t1 � s)]

u(y; y3; y2; s)dydy3dy2ds

Since F is invariant in sense (13); then for every (x; x3; x2; t3; t2; x1; t1) 2 L we
get

PuF (x; x3; x2; t3; t2; x1; t1) = u � F (x; x3; x2; t3; t2; x1; t1)

=

Z
G

F [(�1(s
�1)(�2(y3; y2)

�1(�y + x); x3; x2; t3 � y3; t2 � y2); x1; t1 � s)]

u(y; y3; y2; s)dydy3dy2ds

=

Z
G

F [x� y; x3 � y3; x2 � y2; t3; t2; x1 � s; t]u(y; y3; y2; s)dydy3dy2ds

= u �c F (x; x3; x2; t3; t2; x1; t1) = QuF (x; x3; x2; t3; t2; x1; t1)

where Pu andQu are the invariant di¤erential operators onG andB respectively.

De�nition 2.2. If f 2 S(N), we de�ne the Fourier transform of f as
follows

F f(�; �3; �2; �1) =

Z
N

f(X;x1)e
� i h(�;�3;�2;�1);(X;x1)idXdx1 (15)

where X = (x; x3; x2) 2 R5; � = (�6; �5; �4) and dX = dxdx3dx2
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De�nition 2.3. If f 2 S(N), we de�ne the Fourier transform of its
invariant ef as follows

F ef(�; �3; �2; 0; 0; �1; 0)
=

Z
R9

ef(X; t3; t2; x1; t1)e� i h(�;�3;�2;�1);(X;x1)ie� i h(�;�;�);(t3;t2;t1)i

dXdx1dt3dt2dt1d�d�d� (16)

where h(�; �; �); (t3; t2; t1)i = �t3 + �t2 + �t1
Lemma 2.1 For every u 2 S(N), and f 2 S(N); we haveZ

R3

F(u � ef)(�; �3; �2; �; �; �1; �)d�d�d�
=

Z
R3

F(u)(F ef)(�; �3; �2; �; �; �1; �)d�d�d�
= F( ef)(�; �3; �2; 0; 0; �1; 0)F(u)(�; �3; �2; �1)

and Z
R3

F(_u � ef)(�; �3; �2; �; �; �1; �)d�d�d�
= F( ef)(�; �3; �2; 0; 0; �1; 0)F(u)(�; �3; �2; �1) (17)

for any (�; �3; �2; �1; �; �; �) 2 R9, where
_
u(y; y3; y2; s) = u(y; y3; y2; s)�1:

Proof: By (17) we haveZ
R3

F(u � ef)(�; �3; �2; �; �; �1; �)d�d�d�
=

Z
R3

F(u �c ef)(�; �3; �2; �; �; �1; �)d�d�d�
=

Z
R3

F(u)(F ef)(�; �3; �2; �; �; �1; �)d�d�d�
= F( ef)(�; �3; �2; 0; 0; �1; 0)F(u)(�; �3; �2; �1)

So

F(_u � ef)(�; �3; �2; 0; 0; �1; 0) = F(_u �c ef)(�; �3; �2; 0; 0; �1; 0)
= F( ef)(�; �3; �2; 0; 0; �1; 0)F(u)(�; �3; �2; �1)

Theorem 2.1 (Plancherel formula). For any f 2 L1(N)\ L2(N); we
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get

f �
e_
f(0; 0; 0; 0; 0; 0; 0; 0; 0) =

Z
N

jf(x; x3; x2; x1)j2 dxdx3dx2dx1

=

Z
R6

jFf(�; �3; �2; �1)j
2
d�d�3d�2d�1 (18)

where e_
f(x; x3; x2; t3; t2; x1; t1) =

_
f((�1(x1)(�2(x3; x2)(x)); t3; t2); x1 + t1)

= f((�1(x1)(�2(x3; x2)(x)); t3; t2); x1 + t1)
�1) (19)

Proof : If f 2 S(N). Then we have

f �
e_
f(0; 0; 0; 0; 0; 0; 0; 0; 0))

=

Z
N

e_
f
�
(x; x3; x2; x1)

�1(0; 0; 0; 0; 0; 0; 0; 0; 0)
�
f(x; x3; x2; x1)dxdx3dx2dx1

=

Z
N

e_
f
�
�1(x

�1
1 )((x; x3; x2)

�1(0; 0; 0; 0; 0; 0; 0; 0)); 0� x1
�
f(x; x3; x2; x1)dxdx3dx2dx1

=

Z
N

e_
f
�
(�(x�11 )((�2(x3; x2)

�1((�x) + (0; 0; 0))); 0; 0; 0� x3; 0� x2); 0;�x1
�

f(x; x3; x2; x1)dxdx3dx2dx1

=

Z
N

b_
f
�
(�(x�11 )(�2(x3; x2)

�1(�x)); 0; 0;�x3;�x2); 0;�x1
�
f(x; x3; x2; x1)dxdx3dx2dx1

=

Z
N

e_
f
�
(�(x�11 )(�2(x3; x2)

�1(�x));�x3 � x2);�x1
�
f(x6; x5; x4; x3; x2; x1)dxdx3dx2dx1

=

Z
N

_
f
�
(x; x3x2; x1)

�1� f(x; x3; x2; x1)dxdx3dx2dx1
=

Z
N

f(x; x3; x2; x1)f(x; x3; x2; x1)dxdx3dx2dx1 =

Z
R6

jf(x; x3; x2; x1)j2 dxdx3dx2dx1
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Now equation (17), give us

f �
e_
f(0; 0; 0; 0; 0; 0; 0; 0; 0)

=

Z
R9

F(f �
e_
f)(�; �3; �2; �; �; �1; �)d�d�3d�2d�1d�d�d�

=

Z
R9

F(f ?c
e_
f)(�; �3; �2; �; �; �1; �)d�d�3d�2d�1d�d�d�

=

Z
R6

F [
e_
f ](�; �3; �2; 0; 0; �1; 0)F(f) (�; �3; �2; �1)d�d�3d�2d�1

=

Z
R18

e_
f(y; y3; y2; 0; 0; y1; 0)e

� i h�,Y if (x; x3; x2; x1)e
� i h�,Xi

dydy3dy2dy1dxdx3dx2dx1d�d�3d�2d�1

=

Z
R18

_
f((�(y1)(�2(y3; y2)(y)); y3; y2); y1)e

� i h�,Y if (x; x3; x2; x1)e
� i h�,Xi

dydy3dy2dy1dxdx3dx2dx1d�d�3d�2d�1

=

Z
R18

f(�y;�y3;�y2;�y1)e� i h(�;�3;�2;�1),(y;y3;y2;y1)if (x; x3; x2; x1)e
� i h(�;�3;�2;�1),(x;x3;x2;x1)i

dydy3dy2dy1dxdx3dx2dx1d�d�3d�2d�1

=

Z
R6

F(f) (�; �3; �2; �1)F(f) (�; �3; �2; �1)d�d�3d�2d�1

=

Z
R6

jFf(�; �3; �2; �1)j
2
d�d�3d�2d�1 =

Z
N

jf(x; x3; x2; x1)j2 dxdx3dx2dx1

which is the Plancheral�s formula on N:
Corollary 2. 1. In equation (18); replace the second f by g we obtain the

Parseval formula on NZ
N

f(x; x3; x2; x1)g(x; x3; x2; x1)dxdx3dx2dx1

=

Z
R6

Ff(�; �3; �2; �1)Fg(�; �3; �2; �1)d�d�3d�2d�1

3 Division of Distributions on N .

If we consider the group N as a subgroup of L, then ef 2 S(N) for x1; x2 and
x3 are �xed, and if we consider M as a subgroup of R9; then ef 2 S(M) for
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t1; t2 and t3 �xed. This being so; denote by SE(R9) the space of all functions
�(x; x3; x2; t3; t2; x1; t1) 2 C1(R9) such that �(x; x3; x2; t3; t2; x1; t1) 2 S(N)
for x1; x2 and x3 are �xed, and �(x; x3; x2; t3; t2; x1; t1) 2 S(M) for t1; t2and t3
�xed. We equip SE(R9) with the natural topology de�ned by the seminormas:

�! sup
(x;x3;x2;x1)2M

jQ(x; x3; x2; t3; t2; x1; t1)P (D)�(x; x3; x2; t3; t2; x1; t1)j t3; t 2; t1 fixed

�! sup
(x;t3;t2;t1)2N

jR(x; x3; x2; t3; t2; x1; t1)S(D)�(x; x3; x2; t3; t2; x1; t1)j x3; x2; x1 fixed

(20)
where P; Q; R and S run over the family of all complex polynomials in 9
variables. Let SIE(L) be the subspace of all functions  2 SE(R9); which are
invariant in sense (13), then we have the following result.

Lemma 3. 1. Let u 2 U and CDu be the invariant di¤erential operator on
the group M; which is associated to u; acts on the variables (x; x3; x2; x1) 2M;
then we have
(i) The mapping f 7! ef is a topological isomorphism of S(N) onto SIE(R9).
(ii) The mapping � 7! CDu� is a topological isomorphism of SIE(R9) onto

its image
Proof : (i) In fact � is continuous and the restriction mapping � 7! R�

on N is continuous from SIE(R9) into S(N) that satis�es R� �= IdS(N) and
� �R = IdSIE(R9); where IdS(N) (resp. IdSIE(R9)) is the identity mapping of
S(N) (resp. SIE(R9)) and N is considered as a subgroup of R9:
To prove(ii) we refer to [12; P:313�315] and his famous result that is: "Any

invariant di¤erential operator on M; is a topological isomorphism of S(M)
onto its image" From this result, we obtain that

CDu : SE(R9)! SE(R9) (21)

is a topological isomorphism and its restriction on SIE(R9) is a topological iso-
morphism of SIE(R9) onto its image. Hence the theorem is proved.
In the following we will prove that every invariant di¤erential operator on N

has a tempered fundamental solution. As in the introduction, we will consider
the two invariant di¤erential operators IDu and CDu, the �rst on the group
N = R3 � f0g � R2� f0g �R; and the second on the abelian vector group
M = R3 � R2 � f0g�R� f0g: Our main result is:
Theorem 3.1. Every nonzero invariant di¤erential operator on N has a

tempered fundamental solution
Proof : For every function  2 C1(R9) invariant in sensen (13) and for every

u 2 U , we have

u �  (x; x3; x2; t3; t2; x1; t1) = u �c  (x; x3; x2; t3; t2; x1; t1) (22)

for every (x; x3; x2; t3; t2; x1; t1) 2 L, where � signi�es the convolution product
on N with respect the variables (x; t3; t2; t1) and �csigni�es the commutative
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convolution product on M with respect the variables (x; x3; x2; x1): In fact we
have

IDu �  (x; x3; x2; t3; t2; x1; t1)

=

Z
N

 
�
(y; y3; y2; s)

�1(X;x3; x2; t3; t2; x1; t1)
�
u(y; y3; y2; s)dydy3dy2ds

=

Z
N

 
�
(�1(s

�1)(y; y3; y2)
�1;�s)(x; x3; x2; t3; t2; x1; t1)

�
u(y; y3; y2; s)dydy3dy2ds

=

Z
N

 [(�1(s
�1)((�2(y3; y2)

�1((�y) + (x))); x3; x2; t3 � y3; t2 � y2); x1); t1 � s]

u(y; y3; y2; s)dydy3dy2ds

=

Z
N

 [((�1(s
�1)(�2(y3; y2)

�1(�y + x); x3; x2; t3 � y3; t2 � y2); x1); t1 � s)]

u(y; y3; y2; s)dydy3dy2ds

=

Z
M

 [x� y; x3 � y3; x2 � y2; t3; t2; x1 � s; t]u(y; y3; y2; s)dydy3dy2ds

= u �c  (x; x3; x2; t3; t2; x1; t1) = CDu (x; x3; x2; t3; t2; x1; t1) (23)

for all (x; x3; x2; t3; t2; x1; t1) 2 R9: By Lemma 2:1; the mapping  7! CDu is a
topological isomorphism of SIE(R9) onto its image, then the mapping  7! IDu 
is a topological isomorphism of SIE(R9) onto its image. Since

R(IDu )(x; x3; x2; t3; t2; x1; t1) = IDu(R )(x; x3; x2; t3; t2; x1; t1) (24)

so the following diagram is commutative:

SIE(R9) IDu

��!
PuSIE(R9)

�"# R # R

S(N) IDu

��!
PuS(N)

Hence the mapping  7! IDu is a topological isomorphism of S(N) onto
its image. So the transpose tIDu of IDu is a continuous mapping of S 0(N)
onto S 0(N): This means that for every tempered distribution T on N there is a
tempered distribution E on N such that

IDuF = T (25)

Indeed the Dirac measure � belongs to S 0(N):fundamental solution on N for
any element u 2 U .
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As in [6] we show how Atiyah method [1]; can be generalized for our group
N to obtain a tempered solution by the following theorem.
Theorem 3.2. Every invariant di¤erential operator on N which is not

identically 0 has a tempered fundamental solution.
Proof : For each complex number s with positive real part, we can de�ne a

distribution T s on L by:

hT s; fi =
Z
R6

h
jF(u)(�; �3; �2; �1)j

2
is
F f(�; �3; �2; �1)d�d�3d�2d�1 (26)

for each f 2 S(R9); where � = (�6; �5; �4) and d� = d�6d�5d�4: By Atiyah
theorem [1], the function s 7! T s has a meromorphic continuation in the whole
complex plan, which is analytic at s = 0 and its value at this point is the Dirac
measure on the group N : Now we can de�ne another distribution fT s as follows.DfT s; fE =

D
T s; efE

=

Z
R9

h
jF(u)(�; �3; �2; �1)j

2
is
F( ef)(�; �3; �2; 0; 0; �1; 0)d�d�3d�2d�1(27)

for any f 2 S(R9) and s is a complex number, with real(s) is positive: Note
that the distribution fT s is invariant in sense (13), so we have�

^
u � _u �c T s; f

�
=
D
u � _u �c T s; ef)E = DT s; u �c _

uc � ef)E
=

Z
L

h
jF(u)(�; �3; �2; �1)j

2
is+1

F( ef))(�; �3; �2; 0; 0; �1; 0)d�d�3d�2d�1
where

_
u(y; y3; y2; y1) = u(y; y3; y2; s)�1 and

u �c f(x; x3; x2; x1)

=

Z
G

f(x� y; x3 � y3; x2 � y2; x1 � y1)u(�y;�y3;�y2;�y1)dydy3dy2dy1

is the commutative convolution product on M: By Lemma 2:1, we get:�
^

u � _u �c T s; f
�

=

Z
R9

����F(_u)(�; �3; �2; �1)���2�s+1 F( ef)(�; �3; �2; 0; 0; �1; 0)d�d�3d�2d�1
Hence

^
u � _u �c T s = fT s (28)
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In view of the invariance (13), the restriction of the distributions
^

u � _u �c T s =
]T s+1 on the sub-group R3 � f0g o

�2
R2� f0g o

�1
R ' N are nothing but the

distributions
u � _u �c T s = T s+1: (29)

The distribution T s can be expanded a round s = �1 in the form

T s =
1X

j=�6
�j(s+ 1)

j (30)

where each �j is a distribution on N . But u � _u �c T s = T s+1 can not have a
pole at s = �1 (since T 0 = �N ) and so we must have:

u � _u �c �j = 0 for j < 0

u � _u �c �0 = �N (31)

Whence the theorem.

4 Ideals Algebra L1(N).

We refer here to [5] for the characterization all left ideals in the Banach algebra
L1(N):

Lemma 4.1. (i)The mapping � from L̂1(N)jM to L̂1(N)jN de�ned bye�jM (x; x3; x2; 0; 0; x1; 0) ! �(e�jM )(x; 0; 0; x3; x2; 0; x1)

= e�jN (x; 0; 0; x3; x2; 0; x1) (32)

is a topological isomorphism
(ii) For every w 2 L1(N) and � 2 L1(N); we obtain

�(w �c e�jM )(x; 0; 0; x3; x2; 0; x1) = w � e�jN (x; 0; 0; x3; x2; 0; x1)
= w � �(x; x3; x2; x1) (33)

where x = (x6; x5; x4); y = (y6; y5; y4); and

(w �c e�jM )(x; x3; x2; 0; 0; x1; 0)
=

Z
M

e� [x� y; x3 � y3; x2 � y2; 0; 0; x1 � y1; 0]w(y; y3; y2; y1)
dydy3dy2dy1 ; � 2 L1(N) (34)

Proof : (i) The mapping � is continuous and has an inverse ��1 given bye�jN (x; 0; 0; x3; x2; 0; x1) ! ��1(e�jN )(x; x3; x2; 0; 0; x1; 0)

= e�jN (x; x3; x2; 0; 0; x1; 0) (35)
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(ii) It is enough to see for every � 2 L1(N)

�(w �c e�jM )(x; 0; 0; x3; x2; 0; x1)
=

Z
M

e�jM [x� y;�y3;�y2; x3; x2;�y1; x1]w(y; y3; y2; 0; y1)
dydy3dy2dy1Z
M

e�jM [x� y;�y2; x3; x2;�y1; x1]w(y; y3; y2; 0; y1)
dydy3dy2dy1

=

Z
N

�[�1(x
�1)(�2(y3; y2)

�1(x� y); x3 � y3; x2 � y2); x1 � y1]

w(x; y3; y2; s)dydy3dy2dy1

= w � �(x; x3; x2; x1); � 2 L1(N) (36)

If I is a subalgebra of L1(N); we denote by eI its image by the mapping s.
Let J = eI jM : Our main result is:
Theorem 4.1. Let I be a subalgebra of L1(N); then the following conditions

are equivalents.
(i) J = eI jM is an ideal in the Banach algebra L1(M):
(ii) I is a left ideal in the Banach algebra L1(N):
Proof: (i) implies (ii) Let I be a subspace of the space L1(M) such that

J = eIjM is an ideal in L1(M); then we have:

w �c eI jM (x; x3; x2; 0; 0; x1; 0) � eI jM (x; x3; x2; 0; 0; x1; 0) (37)

for any w 2 L1(M) and (x; x3; x2; x1) 2M , where

w �c eI jM (x; x3; x2; 0; 0; x1; 0)
=

( R
M

e� [x� y; x2 � y2; 0; 0; x1 � y1; 0]w(y; y3; y2; y1)
dydy3dy2dy1; � 2 L1(N)

)

It shows that

w �c e� jM (x; x3; x2; 0; 0; x1; 0) 2 eI jM (x; x3; x2; 0; 0; x1; 0) (38)

for any e� 2 eI: Then we get
�(w �c e�jM )(x; 0; 0; x3; x2; 0; x1)

= u � eF (x; 0; 0; x3; x2; 0; x1) 2 �(eI jM )(x; 0; 0; x3; x2; 0; x1)
= eI jN (x; 0; 0; x3; x2; 0; x1) = I(x; x3; x2; x1) (39)

It is clear that (ii) implies (i):
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Corollary 4.1. Let I be a subalgebra of the space L1(N) and eI its image
by the mapping s such that J = eIjM is an ideal in L1(N); then the following
conditions are veri�ed.
(i) J is a closed ideal in the algebra L1(M) if and only if I is a left closed

ideal in the algebra L1(N):
(ii) J is a maximal ideal in the algebra L1(M) if and only if I is a left

maximal ideal in the algebra L1(N):
(iii) J is a prime ideal in the algebra L1(M) if and only if I is a left prime

ideal in the algebra L1(N):
(iv) J is a dense ideal in the algebra L1(M) if and only if I is a left dense

ideal in the algebra L1(N):
The proof of this corollary results immediately from theorem 4:1

5 Conclusion.

5.1. The Fourier transform has a natural generalization to our groups and
many of the classical results can be extended. In fact our results obtained in
this paper show the beauty of the natural extension of the Fourier transform
to the non commutative and non compact Lie groups. Its powerful can be seen
also through the following astonishing results.
Let H be the 3�dimensional Heisenberg group consisting of all matrices of

the form

H =

0BB@
1 x1 0 x6
0 1 0 x5
0 0 1 0
0 0 0 1

1CCA (40)

It is easy to show that the group H is a normal subgroup of the group N:
The most interesting result that can be deduced from my work [4;8] for this
group is: "Any invariant di¤erential operator on H is globally solvable".
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