
Accelerating Fire Detection for Improving

Maintenance Opeartions in Hospitals

Dalal Al Enzi
PhD researcher- Mansoura University

Maintenance Engineer, Ministry of Health

Adan Hospital, Kuwait

Dr./ Ibraheem Mutawee
Prof of Project Management

Abstract— The article delves into the enhancement of fire

detection systems in Kuwaiti general hospitals through the

integration of advanced object detection techniques. Particularly,

the study focuses on the implementation of YOLOv3, an AI-

driven object detection algorithm, supported by parallel pooling

for optimized speed and accuracy. The research builds upon

valuable insights obtained from a survey on existing fire

alarming systems in hospitals, outlining the deficiencies in

response time, accuracy, and maintenance procedures. Through

the utilization of deep learning and image processing, the

optimization of fire detection to reduce response times

significantly and minimize false alarms has been achieved. By

leveraging the parallel architecture of computing systems and the

efficient processing capabilities of the YOLOv3 algorithm, the

study presents a systematic approach to addressing critical

challenges in fire detection within hospital environments.

Keywords— Fire Detection, YOLOv3, Parallel Computing,

Object Detection, Image Processing, AI Technologies, Hospital

Safety.

I. INTRODUCTION

The potential of fire alarming using artificial intelligence based

on neural networks is revolutionary. This technology can be

used to accurately detect and respond to fires, allow for more

precise predictions about the behaviour of fire, and ultimately

save lives and property. This essay will explore the

opportunities provided by fire alarming using artificial

intelligence based on neural networks and explain how it can

be implemented to effectively identify and respond to fires.

(Jin,2020)

In recent years, Artificial Intelligence (AI) based neural

networks have become increasingly popular for fire alarm

accuracy. This is due to their ability to effectively detect and

recognize objects and patterns in large datasets. The use of AI

technology in fire alarm systems has enabled these systems to

become more accurate and reliable. A Khan et al. (2022)

conducted a study to evaluate the impact of AI-based neural

networks on the accuracy of fire alarms. The study involved a

survey of fire alarm owners, an analysis of fire alarms’ false

positive and false negative rates, and a comparison of AI-based

neural networks to traditional fire alarm systems. The results of

the study showed that AI-based neural networks had a

significantly higher accuracy than traditional fire alarm

systems. The false positive rate was lower and the false

negative rate was higher for neural networks than for

traditional systems. Furthermore, the study found that AI-based

neural networks were more reliable in detecting actual fires and

were able to detect fires more quickly. These results

demonstrate that AI-based neural networks can provide an

effective and reliable solution for improving fire alarm

accuracy. (Ge, L,2020)

II. OBJECT DETECTION TECHNIQUES

Object Detection is one of the most famous and vastly

researched topics in the field of Computer Vision and Machine

Learning. It has attracted many researchers working in different

areas such as computer vision, robotics, medical imaging,

mechanical engineering, and telecommunications. Object

Detection is a methodology in Machine Learning focused on

localizing and recognizing distinct objects in images and

videos. The methodologies using those features in determining

objects, identifying, and labelling them has the following tree

of divisions as illustrated in fig 1.

Fig 1: Object detection techniques tree

III. SELECTING TECHNIQUES

The selection of the utilized algorithms in implementing the
system will be based on selecting one YOLO version and then
selecting processing technique.

A. Selecting YOLOv3 version

Selecting YOLOv3 algorithm for fire detection is based on its

unique characteristics and functionalities that offer exceptional

benefits for implementing an effective fire detection system.

The use of YOLOv3 is particularly advantageous due to its

real-time performance capabilities, allowing for swift responses

to potential fire incidents, which is crucial for timely

intervention. YOLOv3's precise object localization features,

facilitated by anchor boxes and multi-scale detections, enable

accurate identification of specific objects like flames and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

smoke, key indicators of fire outbreaks. This precision further

enhances the system's efficiency in recognizing and analysing

fire-related objects within images promptly. (Jin,2020)

The real-time performance capabilities of the YOLOv3

algorithm refer to its ability to process and analyse visual data

promptly and efficiently. In the context of fire detection

systems, real-time performance is vital as it enables immediate

responses to potential fire incidents. YOLOv3 can rapidly

identify objects of interest, such as flames or smoke, in images

or video feeds, ensuring that fire-related hazards are detected

and addressed without delay. This quick processing speed is

crucial in emergency situations where timely detection of fires

can mitigate risks and facilitate rapid intervention to minimize

damage or prevent further escalation of the fire. By operating

in real-time, YOLOv3 enhances the responsiveness and

effectiveness of fire detection systems, providing actionable

insights and alerts as soon as potential fire hazards are detected.

(Ge, L,2020)

The algorithm's robustness to object categories, thanks to its

integration of an extensive set of classes from datasets like

COCO, makes it adaptable to diverse visual characteristics

associated with fire detection. YOLOv3's efficient Darknet-53

architecture effectively extracts high-level features and

intricate spatial details. By handling localization and

classification simultaneously in a single pass, YOLOv3 ensures

fast and efficient fire detection.

Its openness as an open-source algorithm promotes flexibility,

customization, and integration into fire detection systems.

Through leveraging YOLOv3's real-time performance,

accurate object localization, robustness to object categories,

efficient architecture, and flexibility, researchers can develop

effective fire detection systems that analyse images in real-

time, aiding in the early detection and prevention of potential

fire incidents. (J. Redmon, 2016)

YOLOv3 model originally has been developed for making

various objects detection and will create a suitable fire

detections capabilities as will be illustrated in the following

sections due to the highly complex modelling of these systems,

some of the models have been taken as baselines to make them

fit the fire detection objective. To do so, one of the YOLOv3

models available in MATLAB has been treated as a baseline

and has been tailored to fit out the intended application. In this

research, YOLOv3 is adopted because the other YOLO family

is a series of end-to-end deep learning models planned and

designed for fast real-time object detection and the quick fires

detection is essential for the proposed technique. (Yanjia,2019)

In the MS COCO dataset, the comparison of Average Precision

(AP) and Frames Per Second (FPS) values for different object

detection algorithms like YOLOv3, YOLOv4, and SSD can

vary based on various factors. The shown relations in fig 1

bellow illustrates that relation for some detection algorithms:

Fig 1: Comparison from some YOLO versions

(Rakhimov,2021)

The higher value between AP and FPS depends on the

specific use case and requirements of the detection

system

• Higher AP: A higher Average Precision indicates

better accuracy in object detection, which is crucial for

precision-centric applications where detection

correctness is a top priority. Algorithms with higher AP

values offer superior object localization and class-

specific detection accuracy, ensuring reliable results

even in challenging scenarios.

• Higher FPS: On the other hand, a higher Frames Per

Second (FPS) reflects superior processing speed,

enabling faster detection and real-time performance for

applications where speed and efficiency are critical.

Algorithms with higher FPS values can process a larger

number of frames in a given time, making them ideal

for scenarios demanding rapid action and quick object

identification. (Rakhimov,2021)

The choice between a higher AP and FPS ultimately

depends on the specific requirements of the application. A

balance between accuracy (AP) and speed (FPS) is often

sought to achieve optimal performance in object detection

systems. In some cases, trading-off between these metrics

might be necessary based on the specific use case to

achieve the desired balance between accuracy and

efficiency and according to our object A system with higher

FPS can provide real-time monitoring and quick alerts in

case of potential fire incidents. The faster processing speed

allows for immediate responses, which can be crucial in

detecting fires early.

B. Selecting Pooling Techniques

pooling layers, refers to a technique used to down-sample the

feature maps generated by convolutional layers. The purpose of

pooling is to reduce the spatial dimensions of the input while

retaining important information.

Pooling is typically performed on feature maps derived from

convolutional layers, where each feature map consists of a grid

of values representing different features at different spatial

positions. The pooling operation aggregates the values within

local regions of the feature map to produce a lower-resolution

output.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

There are different pooling operations commonly used, such as

max pooling, average pooling, and LP pooling. Max pooling as

example divides the input feature map into non-overlapping

rectangular regions (usually 2x2 or 3x3) and takes the

maximum value within each region as the output for that

region. This down-samples the feature map by reducing its size

while retaining the strongest activation values.

(Mekhriddin,2016)

The pooling operation involves sliding the pooling window

(e.g., 3x3) across the feature map with a fixed stride (e.g., 3),

and at each position, taking the maximum value within the

window as the output. The pooling window moves across the

feature map, reducing its size by a factor determined by the

stride. One main disadvantage of the cascaded deep-learning

network of YOLOv3 is the increased inference time. The

network involves multiple smaller networks that process the

input image sequentially, resulting in slower detection times

compared to other object detection algorithms. (Absalom,

2020)

To avoid this disadvantage, parallel pooling can be used.

Parallel pooling involves splitting the input image into multiple

smaller regions and processing them simultaneously using

separate threads or parallel hardware accelerators. By

parallelizing the processing, the overall inference time can be

reduced significantly.

Another disadvantage of the cascaded network is the potential

loss of information between different stages of the network.

Each stage focuses on detecting different types of objects at

different scales, but this can result in the loss of contextual

information about the objects. For example, in the first stage,

small objects may be filtered out before the second stage,

which may affect the accuracy of detection. To mitigate this

disadvantage, parallel pooling can be used with intermediate

feature fusion. Instead of completely separating the stages,

features from different stages can be combined and fused,

allowing for better retention of context and more accurate

object detection. (Yanjia,2019)

C. Illustrating Selected Technique

Parallel pooling in YOLOv3 is the proposed improvement for

the existing detection techniques. It works as spatial pyramid

pooling as its uses of multiple pooling layers of different sizes

in parallel to capture features at various scales.

In YOLOv3, the feature extraction backbone (Darknet-53) is a

deep convolutional neural network that gradually reduces the

spatial dimensions of the input image while increasing the

number of channels. This process is achieved through a series

of convolutional and pooling layers so there is a single pooling

layer is used to reduce the spatial dimensions of the feature

map, resulting in a loss of fine-grained spatial information.

(Elgendy, M.2020)

The parallel pooling consists of several pooling layers with

different kernel sizes applied to the feature map. Each pooling

layer captures features at a particular scale. The output feature

maps of these pooling layers are then concatenated along the

channel dimension. By doing this, the model can capture

features at different scales and preserve fine-grained spatial

information. This is crucial for detecting objects of various

sizes in an image.

The concatenated feature map from the parallel pooling is then

further processed by subsequent convolutional layers and

finally passed through the detection layers to predict the

bounding boxes, class probabilities, and confidences for object

detection.
By incorporating parallel pooling into YOLOv3, we can
achieve the following improvements:

1. Faster Inference Time: Parallel pooling allows for
concurrent processing of different regions, resulting in a
significant reduction in inference time. This is particularly
beneficial when dealing with large input images or datasets.

2. Improved Utilization of Resources: Parallel pooling
effectively utilizes parallel processing capabilities, such as
multi-threading or parallel hardware accelerators like
GPUs. This maximizes the computational power available,
making the best use of hardware resources.

3. Enhanced Accuracy: By dividing the image into smaller
regions and processing them independently, parallel pooling
can help capture more localized and contextually relevant
information. This can improve the accuracy of object
detection, especially when dealing with objects of varying
sizes and aspect ratios.

4. Scalability: Parallel pooling allows for efficient scalability,
enabling the detection of objects across a wide range of
image sizes and resolutions. (Jin,2020)

It is worth noting that the implementation of parallel pooling in

YOLOv3 may require modifications in the network

architecture and training pipeline to support distributed

processing. Additionally, an efficient parallelization strategy

considering hardware and memory constraints should be

employed to ensure optimal performance which will be

illustrated after implementing and simulating the system in the

end of this chapter.

D. Deep Learning Integration

Deep learning plays a significant role in proposed fire detection
systems by utilizing advanced algorithms capable of learning
intricate patterns and features from image data. The models
implemented in deep learning are formed using a large number
of tagged data and neural network architectures that contain
various layers. In the context of proposed techniques, the
implementation process involves several key steps: (Ge, L,
2021)

1. Extracting Features Using Convolutional Neural
Networks (CNNs):

CNNs are integral in deep learning for image processing tasks.
Layers of the CNN extract features like edges, textures, and
shapes from the input images. This process forms the
foundation for identifying objects.

2. Implementing the YOLOv3 Architecture:

YOLOv3 consists of a series of convolutional layers, max-
pooling layers, and detection layers. Each layer serves a
specific function in feature extraction, down-sampling, and
bounding box prediction. Implementing this architecture in the
system enables accurate object detection.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

The YOLOv3 model predicts the class probabilities of objects
present in an image and estimates bounding boxes around these
objects. By assigning class labels and drawing bounding boxes,
the system can identify and localize instances of interest, like
fires and smoke.

4. Training and Fine-Tuning the Model:

The deep learning model is trained on a labeled dataset
containing images of fires and non-fire scenarios. Through
backpropagation and optimization techniques like stochastic
gradient descent, the model learns to classify objects
accurately. Additionally, fine-tuning the model on domain-
specific data enhances its ability to detect fire-related features
effectively. (Elgendy, M.2020)

5. Inference and Real-Time Object Detection:

During inference, the trained model processes new images in
real-time to detect fire-related objects based on learned
features. By feeding input images through the model, the
system can detect fires and issue timely alerts when potential
hazards are identified. It does not require a region proposal
network (RPN) and directly performs regression to detect
targets in the image as it includes 53 convolutional layers and
23 residual layers as shown in below which makes it as a
significant advancement in real-time object detection,
especially in the detection of critical objects. Consequently,
YOLOv3 can be used for detection system. (Redmon, 2018)

Fig 2: System's deep learning integration (Guerrieri,2021)

1 × 1, 3 × 3/2 and 3 × 3 convolution kernels of three sizes are

applied in the convolutional layers to sequentially extract

image features, ensuring the model has remarkable

classification and detection performances. The remaining

layers guarantee the convergence of the detection model.

In order to detect several areas of the same object at the same

time, parallel pooling fuses three feature maps of different

scales (52 × 52, 26 × 26 and 13 × 13) by three-time down

sampling.

IV. SYSTEM IMPLEMENTATION

The YOLOv3 architecture developed as part of this study has

been developed on top of SqueezeNet architecture. This

architecture is a lightweight CNN architecture that can

effectively handle the computational requirements and the size

of the model. The modified YOLOv3 architecture, apart from

being driven by SqueezeNet, has further been augmented by

two detection heads. These have been appended to the

architecture of the model.

The initial detection head captures the larger objects contained

in the fire dataset images. The second head has been developed

to capture small objects. The second head is twice as big as the

first head. Such a hierarchical model allows capturing the

features in the object space that allow effective detection of the

objects having different sizes and input images. To further

enable the localization of the object and predictions, the model

makes use of anchor boxes. Such boxes are predetermined

bounding boxes, which allow the network to analyse the

specific classes of the objects contained in the training part of

the data. Such boxes help train the model and analyse the

characteristics of the datasets.

Predicting the bounding box's width and height might make

sense, but that may lead to unstable gradients during training.

Instead, the proposed system for object detectors predicts log-

space transforms or offsets to pre-defined default bounding

boxes anchors.

Then, these transforms are applied to the anchor boxes to

obtain the prediction. The proposed system has three anchors,

which result in the prediction of three bounding boxes per cell

which are bounding box priors that were calculated on the

COCO dataset using k-means clustering. We are going to

predict the width and height of the box as offsets from cluster

centroids. The box's center coordinates relative to the location

of the filter application are predicted using a sigmoid function.

The following formula describes how the network output

transformed to obtain bounding box predictions:

 (1)

 (2)

The width and height of the predicted bounding box are
calculated thus

 (3)

 (4)

Here bx, by, bw, bh are the x, y center coordinates, width, and

height of our prediction. tx, ty, tw, th (xywh) is what the network

outputs. cx and cy are the top-left coordinates of the grid. pw and

ph are anchors dimensions for the box which can be illustrated

bellow in Fig. where the dimensions of the bounding box

predictions are obtained through a log-space transformation

applied to the network output. This transformation helps in

handling a wide range of object sizes effectively. The log-space

transformation involves taking the logarithm of the network

output. After the log-space transformation, the result is

multiplied by an anchor which are pre-defined boxes or priors

of different shapes and sizes as previously explained that act as

reference points for predicting bounding box dimensions. Each

anchor is associated with specific scale and aspect ratio

characteristics. (Guerrieri,2021)

By multiplying the log-space transformed output by the

appropriate anchor, the final dimensions of the bounding box

predictions are obtained. This step helps adjust the predictions

based on the anchor properties and results in more accurate

bounding box sizes and shapes.

3. Predicting Object Classes and Bounding Boxes:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Fig 3: The dimensions of the bounding box

Predictions, bw, and bh, are normalized by the height and width

of the image. (Training labels are chosen this way). So, if the

predictions bx and by for the box containing the dog are (0.3,

0.8), then the actual width and height on the 13 x 13 feature

map are (13∗0.3, 13∗0.8). During training, the ground truth

labels are also chosen in a normalized manner to match the

network's predictions.

For example, if the predictions for the bounding box containing

a dog are (0.3, 0.8), these values are normalized by the height

and width of the image. If the feature map size is 13x13, then

the actual width and height of the bounding box on this feature

map can be calculated by multiplying the predictions by the

feature map size. In this case, the actual width would be 13 *

0.3 = 3.9 and the actual height would be 13 * 0.8 = 10.4.

The parameters of ground truth box can be calculated

according to the following equations which

evaluates corresponding to the real values

of predicted parameters respectively then

the truth quantities of will be calculated

according to the following set of equations:

 (5)

 (6)

 (7)

 (8)

Then to calculate square error of coordinate prediction as one
part of loss function E2 as shown in the following equation:

(9)

The layered architecture of the model comprises many layers.

These include Convolutional layers for the extraction of

features and rectified Linear Unit (ReLU) activation functions

to capture the non-linearity in the data. Resizing layers have

been used to make adjustments to the spatial dimensions of the

feature maps. A depth concatenation layer has been added to

combine features extracted at different scales and stages of the

network. This overall architecture allows for capturing the

contextual information across the images.

The overall architecture adopted allows an optimized detection

of fire. By leveraging the strength of SqueezeNet, the

extraction capabilities of the modified YOLOv3 architecture

have been made highly efficient. The architecture of the

YOLOv3 adopted in this work has been depicted in fig 4

below:

Fig 4: YOLOv3 Architecture

The YOLOv3 architecture has been modified to incorporate a
sense of parallel pooling for improved performance and speed.
Parallel pooling helps accelerate the training process by
making a distribution of computations across multiple workers.
To incorporate such functionality, MATLAB’s parallel
computing toolbox has been utilized. Initially, the model starts
by making a check on the availability of parallel pools for
processing. Once the availability is flagged high, the parfor
loops have been employed to distribute the iterations across
multiple workers creating an overall scenario of concurrent
executions. The parallel pooling-based customization has
helped improve the speed of the process by the following
relation:

Where is the time for non-parallel executions, and

 is the execution time for the parallel version. Further
by adopting this approach, the scalability of the model has been
improved by effectively utilizing the additional available
resources. The model measures the degree of execution time
scales with an increased number of processors. The steps
involved in completing the model to work have been presented
in Fig.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Fig 5: YOLOv3 System Level Modelling

A. Accessing Open-Source Datasets

The dataset used for this study has been taken from image
datastore which contains a large repository of scenarios and
images. FiSmo-Images have been downloaded which contains
different instances of fire by employing various scenarios.
Specifically, Flickr-Fire data has been used that contains 984
images of various sizes and dimensions.

The images have been resized to 227x227x3 to retain a
standard size making them fit for the model and to have
reduced samples to avoid memory resources to runout.

B. Image Labeller for Annotations

To make the YOLO model learn object detection features, it is
imperative to make use of an image labeller to generate ground
truth information against each image. There are numerous
ways in which this can be achieved. For example, a commonly
used way is to employ colour thresholding, where the function
takes close to the fire regions. However, those are only
estimates and far from precise annotations. Therefore, in the
present case, the images have been equipped with bounding
boxes in the Image Labeller manually. The Image Labellers
have been introduced with a new label class called ‘Fire’, and
the rectangular boxes have been placed manually at the fire
regions. The complete set of information has been stored in a
.mat file which contains the path to the images, and the
coordination of one or multiple boxes where instances of fire
are existing. The activity has been performed on the complete
set of 984 images to be used as part of training and testing. The
layout of the imageLabeler has been depicted as below for this
particular implementation:

Fig 6: Image Labeler Layout

C. Preparing Data (Pre-processing and Split)

In step, the first part is to ensure that the ground truth
information provided to the model is correct. Since the missing
annotations in the Fire label can lead to errors later. To ensure
this, a check has been introduced that ensures that no image is
having an empty label. If this holds for any image, it has been
discarded. The second part is to divide images into training and
test datasets. The training dataset has been used for fitting the
model, and the test dataset has been used for testing the model.
To do so, 60 percent of the dataset has been used for training.
These data sets are later subjected to data augmentation as the
next step to improve the accuracy of the model.

D. Data Augmentation

In this step, the data has been augmented to introduce different

colours and angles to keep the model tolerant toward captured

angles. For instance, in real-world instances, an image may be

recorded with a slight tilt and shall be detectable by the model.

A data augmentation function has been employed that

transforms images by application of random flips at horizontal

levels, and to make scaling in the images by introducing

overlap. Additionally, various colour variations have been

introduced in the images, by making a variation in the contrast,

hue, saturation, and brightness. An example of the data

augmentation performed on the sample images has been

presented below:

Fig 7: Images Data Augmentation Example

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

E. Preparing YOLOv3 Model

This step is to prepare a YOLOv3 model and pass on the data
prepared above for the modeling. In this case, the first part is to
create a YOLOv3 object detector by calling MATLAB’s
inbuilt function. Preparing the detector involves passing
various arguments including the base network, class name,
detector boxes, and the size of images that the model shall
expect. The arguments presented in this case include the
following:

Table -1: YOLOv3 Object Detector

Parameters Values

basement Squeezenet

className ‘Fire’

anchor boxes Taken from Step 2

Image Size 227x227x3

The detector has later been subject to the pre-processed data as

returned from the data augmentation for the training.

The next part after creating a detector is to determine the

training parameters. These parameters can be selected based on

the hit-and-trial method or prior experience in similar datasets.

These parameters selected in the present case have been

depicted below:

Table -2: YOLOv3 Training Parameters

Parameters Values

Epochs 80

Batch Size 8

Learning Rate 1e-3

L2 Regularization 5e-4

Penalty Threshold 0.5

F. Training the Model

The training of the model involves the utilization of parallel
pooling in MATLAB to make quick processing. The loss
functions are used to measure the discrepancy between the
predicted bounding box outputs and the ground truth labels
during training. The loss functions help in optimizing the
model parameters by penalizing the differences between
predictions and ground truth, encouraging the model to make
more accurate predictions. There are several loss functions
used to train the model. The primary loss function is the sum of
the following components:

1. Localization Loss (bbox_loss): This loss measures the
difference between the predicted bounding box
coordinates (bx, by, bw, bh) and the ground truth
bounding box coordinates. The Mean Squared Error
(MSE) or a smooth L1 loss is used for this purpose.
To calculate this function, we calculate the difference
between the predicted bounding box coordinates (bx,
by, bw, bh) and the ground truth bounding box
coordinates. Applying Loss to measure the
discrepancy between the predicted and ground truth

values and finally sum up the losses for each
bounding box prediction. The equation of MSE is:

 (11)

2. Confidence Loss (obj_loss): This loss measures the
difference between the predicted objectness score
(indicating the presence or absence of an object) and
the ground truth objectness score. Binary cross-
entropy loss is commonly used for this component.

(12)

3. Class Loss (class_loss): This loss measures the
difference between the predicted class probabilities
and the ground truth class labels. It is typically
calculated using categorical cross-entropy loss.

(13)

The overall loss is the sum of these individual loss

components, weighted by certain coefficients to balance their

contributions. The specific values for these coefficients can

vary depending on the implementation and specific

requirements of the task.

During training, the goal is to minimize the overall loss value,

indicating that the model is making accurate predictions. The

optimization process adjusts the model's parameters through

backpropagation and gradient descent, aiming to reduce the

loss and improve the model's performance. The pools available

are determined as the first step, followed by performing

multiple operations as follows:
a. Determining the Gradient, State, and Loss

Information. This is determined by using a model
gradients function, and passing on the dataset and the
YOLOv3 detector as the parameters

b. The gradients determined are subjected to the L2
Regularization as established above

c. The proposed system learning parameters are updated,
and the corresponding loss and information are
displayed on the MATLAB workspace.

A sample of the training stage depicting the corresponding
outcomes has been presented in fig 8 bellow.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Fig 8: Samples from the Training Stage

V. RESULTS AND TESTING PHASE

Two types of tests have been conducted on the trained model.

In the first case, the images are passed on to the detector and

outcomes are analysed in the form of annotated boxes. These

images have been depicted below:

Fig 9: Fire Detections on the Images

In the second phase of testing, a video stream of data has been

passed through and the detector is made to analyse frames and

make annotated boxes in real time. The model successfully

detected the fire region as the video streams is driven. The

outcomes have been provided below:

Fig 10: Fire Detection in Frames.

In the experimental setup, a camera capturing 18 frames per

second provides images with varying resolutions of 720x400,

540x300, and 360x200 pixels. These images are fed into the

input layer of a neural network for processing. An important

focus of the study is the comparison of computational tasks

using parallel computing architectures. Leveraging parallel

computational methods is key to enhancing the efficiency of

computing systems, as it enables concurrent processing of tasks

for accelerated performance.

In image processing, a common approach involves sequentially

applying a series of standard processing operations to the input

data. While multi-core processors demonstrate parallel

processing by design, their performance excels in streaming

applications. To exploit parallelization efficiently, the

activation function and image filtering components of the

YOLOv3 parallel operation algorithm were optimized for

parallel processing. This optimization involved utilizing both

serial and parallel processing techniques on a computer

equipped with a quad-core processor, enabling tasks to be

executed simultaneously for faster and more efficient image

processing results.

VI. CONCLUSION

The successful implementation of the YOLOv3 algorithm,

augmented by parallel pooling for fire detection in Kuwaiti

hospitals, represents a significant advancement in enhancing

safety measures. By leveraging cutting-edge AI technologies

and integrating deep learning methodologies, the system has

been able to drastically reduce response times, enhance

accuracy, and minimize false alarms in fire detection processes.

The adoption of parallel computing techniques has not only

optimized the speed and performance of the system but has

also improved the scalability and efficiency of fire detection

mechanisms in hospital settings. Through a meticulous process

of data collection, model preparation, and training with real-

world image datasets, the YOLOv3-based system demonstrates

a remarkable capability to analyze and detect fire incidents in

real-time, fostering quick and effective responses to potential

hazards.

The successful combination of advanced object detection

algorithms, parallel pooling, and innovative AI technologies

underscores the critical role that modern computational

approaches play in ensuring the safety and security of hospital

environments. By addressing key challenges identified through

surveys and data analytics, the implemented system offers a

robust solution that automates fire alarming processes,

minimizes manual intervention, and enhances the overall

precision and reliability of fire detection mechanisms. Moving

forward, further refinements and optimizations based on

feedback and real-world testing will continue to elevate the

capabilities of the system, contributing to the ongoing

evolution of fire safety measures in Kuwaiti hospitals.

REFERENCES

[1] Chauhan, Rahul & Ghanshala, Kamal & Joshi, R.. (2018). Convolutional
Neural Network (CNN) for Image Detection and Recognition. 278-282.

10.1109/ICSCCC.2018.8703316.+P24N2:W24M2:W24L2:W24K2:W2

4J2:W24I2:W24H2:W25G2:W25F2:W25E2:W25H2:W25K2:W25M2:

W24O2:W24P2:W24

[2] Abdusalomov, Akmalbek & Mukhiddinov, Mukhriddin & Djuraev,

Oybek & Khamdamov, Utkir & Whangbo, Taeg. (2020). Automatic
Salient Object Extraction Based on Locally Adaptive Thresholding to

Applied Sciences. 10. 3350. Generate Tactile Graphics.
10.3390/app10103350.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

[3] Adhav, Prashant & Naik, Madhura & Tonge, Shravani & Choudhari,

Manali & Pawar, Prajakta. (2022). OBJECT DETECTION BASED ON
CONVOLUTIONAL NEURAL NETWORK. 4. 3922-3927.

Mekhriddin Rakhimov Fazliddinovich and Yalew Kidane

Tolcha, "Parallel Processing of Ray Tracing on GPU with Dynamic
Pipelining," International Journal of Signal Processing Systems, Vol. 4,

No. 3, pp. 209-213, June 2016. doi: 10.18178/ijsps.4.3.209-

213+P2:W24
[4] Elgendy, M. Deep Learning for Vision Systems; Simon and Schuster:

New York, NY, USA, 2020. [Google Scholar]

[5] Elgendy, M. Deep Learning for Vision Systems; Simon and Schuster:
New York, NY, USA, 2020. [Google Scholar]

[6] Ge, L.; Dan, D.; Li, H. An accurate and robust monitoring method of

full-bridge traffic load distribution based on YOLO-v3 machine
vision. Struct. Control. Health Monit. 2020, 27, e2636. [Google Scholar]

[CrossRef]

[7] Ge, L.; Dan, D.; Li, H. An accurate and robust monitoring method of
full-bridge traffic load distribution based on YOLO-v3 machine

vision. Struct. Control. Health Monit. 2020, 27, e2636. [Google Scholar]

[CrossRef]
[8] Guerrieri, Marco & Parla, Giuseppe. (2021). Deep Learning and

YOLOv3 Systems for Automatic Traffic Data Measurement by Moving

Car Observer Technique. Infrastructures. 6. 134.
10.3390/infrastructures6090134.

[9] Guerrieri, Marco & Parla, Giuseppe. (2021). Deep Learning and
YOLOv3 Systems for Automatic Traffic Data Measurement by Moving

Car Observer Technique. Infrastructures. 6. 134.

10.3390/infrastructures6090134.
[10] Jin, Z.; Zheng, Y. Research on application of improved YOLO V3

algorithm in road target detection. J. Phys. Conf. Ser. 2020, 1654,

012060. [Google Scholar]
[11] Jin, Z.; Zheng, Y. Research on application of improved YOLO V3

algorithm in road target detection. J. Phys. Conf. Ser. 2020, 1654,

012060. [Google Scholar]

[12] Karne, Ms & Karne, Radhakrishna & Vaigandla, Karthik & Arunkumar,

A. (2023). Convolutional Neural Networks for Object Detection and

Recognition. 3. 1-13. 10.55529/jaimlnn.32.1.13.
[13] Li, Bingzhen & Jiang, Wenzhi & Gu, Jiaojiao & Liu, Ke & Wu,

Yangyong. (2020). Research on Convolutional Neural Network in the

Field of Object Detection. 820-827.
10.1109/ICPICS50287.2020.9202194.

[14] Mekhriddin Rakhimov Fazliddinovich and Yalew Kidane Tolcha,
"Parallel Processing of Ray Tracing on GPU with Dynamic Pipelining,"

International Journal of Signal Processing Systems, Vol. 4, No. 3, pp.

209-213, June 2016. doi: 10.18178/ijsps.4.3.209-213
[15] Pan, Q.; Guo, Y.; Wang, Z. A scene classification algorithm of visual

robot based on Tiny Yolo v2. In Proceedings of the 2019 Chinese

Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp.
8544–8549. [Google Scholar]

[16] Pan, Q.; Guo, Y.; Wang, Z. A scene classification algorithm of visual

robot based on Tiny Yolo v2. In Proceedings of the 2019 Chinese
Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp.

8544–8549. [Google Scholar]

[17] Pinapatruni, Rohini & Rao, L & Lakshmi, P. (2020). CNN BASED
OBJECT DETECTION SYSTEM: A REAL TIME APPLICATION. 48-

50. 10.26480/cic.01.2020.48.50.

[18] Rakhimov, Mekhriddin & Elov, Jamshid & Khamdamov, Utkir &
Aminov, Shavkatjon & Javliev, Shakhzod. (2021). Parallel

Implementation of Real-Time Object Detection using OpenMP. 1-4.

10.1109/ICISCT52966.2021.9670146.
[19] Wang, L.; Yang, S.; Yang, S. Automatic thyroid nodule recognition and

diagnosis in ultrasound imaging with the YOLOv2 neural

network. World J. Surg. Oncol. 2019, 17, 12. [Google Scholar]
[CrossRef] [Green Version]

[20] Wang, L.; Yang, S.; Yang, S. Automatic thyroid nodule recognition and

diagnosis in ultrasound imaging with the YOLOv2 neural
network. World J. Surg. Oncol. 2019, 17, 12. [Google Scholar]

[CrossRef] [Green Version]
[21] Xu, J., Zhao, J., Wang, W., & Liu, M. (2013). Prediction of temperature

of tubular truss under fire using artificial neural networks. Fire Saf. J.,

56, 74–80
[22] Yolo v3 of Yolo Series. Available

online: https://blog.csdn.net/leviopku/article/details/82660381 (accessed

on 1 August 2021). (In Chinese).
[23] Yolo v3 of Yolo Series. Available

online: https://blog.csdn.net/leviopku/article/details/82660381 (accessed

on 1 August 2021). (In Chinese).

[24] Zhao, Liquan, and Shuaiyang Li. 2020. "Object Detection Algorithm

Based on Improved YOLOv3" Electronics 9, no. 3: 537.

https://doi.org/10.3390/electronics9030537
[25] Zhao, Liquan, and Shuaiyang Li. 2020. "Object Detection Algorithm

Based on Improved YOLOv3" Electronics 9, no. 3: 537.

https://doi.org/10.3390/electronics9030537.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030245
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

