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Abstract— The article delves into the enhancement of fire 

detection systems in Kuwaiti general hospitals through the 

integration of advanced object detection techniques. Particularly, 

the study focuses on the implementation of YOLOv3, an AI-

driven object detection algorithm, supported by parallel pooling 

for optimized speed and accuracy. The research builds upon 

valuable insights obtained from a survey on existing fire 

alarming systems in hospitals, outlining the deficiencies in 

response time, accuracy, and maintenance procedures. Through 

the utilization of deep learning and image processing, the 

optimization of fire detection to reduce response times 

significantly and minimize false alarms has been achieved. By 

leveraging the parallel architecture of computing systems and the 

efficient processing capabilities of the YOLOv3 algorithm, the 

study presents a systematic approach to addressing critical 

challenges in fire detection within hospital environments. 
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I. INTRODUCTION

The potential of fire alarming using artificial intelligence based 

on neural networks is revolutionary. This technology can be 

used to accurately detect and respond to fires, allow for more 

precise predictions about the behaviour of fire, and ultimately 

save lives and property. This essay will explore the 

opportunities provided by fire alarming using artificial 

intelligence based on neural networks and explain how it can 

be implemented to effectively identify and respond to fires. 

(Jin,2020) 

In recent years, Artificial Intelligence (AI) based neural 

networks have become increasingly popular for fire alarm 

accuracy. This is due to their ability to effectively detect and 

recognize objects and patterns in large datasets. The use of AI 

technology in fire alarm systems has enabled these systems to 

become more accurate and reliable. A Khan et al. (2022) 

conducted a study to evaluate the impact of AI-based neural 

networks on the accuracy of fire alarms. The study involved a 

survey of fire alarm owners, an analysis of fire alarms’ false 

positive and false negative rates, and a comparison of AI-based 

neural networks to traditional fire alarm systems. The results of 

the study showed that AI-based neural networks had a 

significantly higher accuracy than traditional fire alarm 

systems. The false positive rate was lower and the false 

negative rate was higher for neural networks than for 

traditional systems. Furthermore, the study found that AI-based 

neural networks were more reliable in detecting actual fires and 

were able to detect fires more quickly. These results 

demonstrate that AI-based neural networks can provide an 

effective and reliable solution for improving fire alarm 

accuracy. (Ge, L,2020) 

II. OBJECT DETECTION TECHNIQUES

Object Detection is one of the most famous and vastly 

researched topics in the field of Computer Vision and Machine 

Learning. It has attracted many researchers working in different 

areas such as computer vision, robotics, medical imaging, 

mechanical engineering, and telecommunications. Object 

Detection is a methodology in Machine Learning focused on 

localizing and recognizing distinct objects in images and 

videos. The methodologies using those features in determining 

objects, identifying, and labelling them has the following tree 

of divisions as illustrated in fig 1.  

Fig 1: Object detection techniques tree 

III. SELECTING TECHNIQUES

The selection of the utilized algorithms in implementing the 
system will be based on selecting one YOLO version and then 
selecting processing technique. 

A. Selecting YOLOv3 version

Selecting YOLOv3 algorithm for fire detection is based on its

unique characteristics and functionalities that offer exceptional

benefits for implementing an effective fire detection system.

The use of YOLOv3 is particularly advantageous due to its

real-time performance capabilities, allowing for swift responses

to potential fire incidents, which is crucial for timely

intervention. YOLOv3's precise object localization features,

facilitated by anchor boxes and multi-scale detections, enable

accurate identification of specific objects like flames and
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smoke, key indicators of fire outbreaks. This precision further 

enhances the system's efficiency in recognizing and analysing 

fire-related objects within images promptly. (Jin,2020) 

The real-time performance capabilities of the YOLOv3 

algorithm refer to its ability to process and analyse visual data 

promptly and efficiently. In the context of fire detection 

systems, real-time performance is vital as it enables immediate 

responses to potential fire incidents. YOLOv3 can rapidly 

identify objects of interest, such as flames or smoke, in images 

or video feeds, ensuring that fire-related hazards are detected 

and addressed without delay. This quick processing speed is 

crucial in emergency situations where timely detection of fires 

can mitigate risks and facilitate rapid intervention to minimize 

damage or prevent further escalation of the fire. By operating 

in real-time, YOLOv3 enhances the responsiveness and 

effectiveness of fire detection systems, providing actionable 

insights and alerts as soon as potential fire hazards are detected. 

(Ge, L,2020) 

The algorithm's robustness to object categories, thanks to its 

integration of an extensive set of classes from datasets like 

COCO, makes it adaptable to diverse visual characteristics 

associated with fire detection. YOLOv3's efficient Darknet-53 

architecture effectively extracts high-level features and 

intricate spatial details. By handling localization and 

classification simultaneously in a single pass, YOLOv3 ensures 

fast and efficient fire detection. 

Its openness as an open-source algorithm promotes flexibility, 

customization, and integration into fire detection systems. 

Through leveraging YOLOv3's real-time performance, 

accurate object localization, robustness to object categories, 

efficient architecture, and flexibility, researchers can develop 

effective fire detection systems that analyse images in real-

time, aiding in the early detection and prevention of potential 

fire incidents. (J. Redmon, 2016) 

YOLOv3 model originally has been developed for making 

various objects detection and will create a suitable fire 

detections capabilities as will be illustrated in the following 

sections due to the highly complex modelling of these systems, 

some of the models have been taken as baselines to make them 

fit the fire detection objective. To do so, one of the YOLOv3 

models available in MATLAB has been treated as a baseline 

and has been tailored to fit out the intended application.  In this 

research, YOLOv3 is adopted because the other YOLO family 

is a series of end-to-end deep learning models planned and 

designed for fast real-time object detection and the quick fires 

detection is essential for the proposed technique. (Yanjia,2019) 

In the MS COCO dataset, the comparison of Average Precision 

(AP) and Frames Per Second (FPS) values for different object 

detection algorithms like YOLOv3, YOLOv4, and SSD can 

vary based on various factors. The shown relations in fig 1 

bellow illustrates that relation for some detection algorithms: 

Fig 1: Comparison from some YOLO versions 

(Rakhimov,2021) 

The higher value between AP and FPS depends on the 

specific use case and requirements of the detection 

system 

• Higher AP: A higher Average Precision indicates

better accuracy in object detection, which is crucial for

precision-centric applications where detection

correctness is a top priority. Algorithms with higher AP

values offer superior object localization and class-

specific detection accuracy, ensuring reliable results

even in challenging scenarios.

• Higher FPS: On the other hand, a higher Frames Per

Second (FPS) reflects superior processing speed,

enabling faster detection and real-time performance for

applications where speed and efficiency are critical.

Algorithms with higher FPS values can process a larger

number of frames in a given time, making them ideal

for scenarios demanding rapid action and quick object

identification. (Rakhimov,2021)

The choice between a higher AP and FPS ultimately 

depends on the specific requirements of the application. A 

balance between accuracy (AP) and speed (FPS) is often 

sought to achieve optimal performance in object detection 

systems. In some cases, trading-off between these metrics 

might be necessary based on the specific use case to 

achieve the desired balance between accuracy and 

efficiency and according to our object A system with higher 

FPS can provide real-time monitoring and quick alerts in 

case of potential fire incidents. The faster processing speed 

allows for immediate responses, which can be crucial in 

detecting fires early. 

B. Selecting Pooling Techniques

pooling layers, refers to a technique used to down-sample the 

feature maps generated by convolutional layers. The purpose of 

pooling is to reduce the spatial dimensions of the input while 

retaining important information. 

Pooling is typically performed on feature maps derived from 

convolutional layers, where each feature map consists of a grid 

of values representing different features at different spatial 

positions. The pooling operation aggregates the values within 

local regions of the feature map to produce a lower-resolution 

output. 
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There are different pooling operations commonly used, such as 

max pooling, average pooling, and LP pooling. Max pooling as 

example divides the input feature map into non-overlapping 

rectangular regions (usually 2x2 or 3x3) and takes the 

maximum value within each region as the output for that 

region. This down-samples the feature map by reducing its size 

while retaining the strongest activation values. 

(Mekhriddin,2016) 

The pooling operation involves sliding the pooling window 

(e.g., 3x3) across the feature map with a fixed stride (e.g., 3), 

and at each position, taking the maximum value within the 

window as the output. The pooling window moves across the 

feature map, reducing its size by a factor determined by the 

stride. One main disadvantage of the cascaded deep-learning 

network of YOLOv3 is the increased inference time. The 

network involves multiple smaller networks that process the 

input image sequentially, resulting in slower detection times 

compared to other object detection algorithms. (Absalom, 

2020) 

To avoid this disadvantage, parallel pooling can be used. 

Parallel pooling involves splitting the input image into multiple 

smaller regions and processing them simultaneously using 

separate threads or parallel hardware accelerators. By 

parallelizing the processing, the overall inference time can be 

reduced significantly. 

Another disadvantage of the cascaded network is the potential 

loss of information between different stages of the network. 

Each stage focuses on detecting different types of objects at 

different scales, but this can result in the loss of contextual 

information about the objects. For example, in the first stage, 

small objects may be filtered out before the second stage, 

which may affect the accuracy of detection. To mitigate this 

disadvantage, parallel pooling can be used with intermediate 

feature fusion. Instead of completely separating the stages, 

features from different stages can be combined and fused, 

allowing for better retention of context and more accurate 

object detection. (Yanjia,2019) 

C. Illustrating Selected Technique

Parallel pooling in YOLOv3 is the proposed improvement for 

the existing detection techniques. It works as spatial pyramid 

pooling as its uses of multiple pooling layers of different sizes 

in parallel to capture features at various scales. 

In YOLOv3, the feature extraction backbone (Darknet-53) is a 

deep convolutional neural network that gradually reduces the 

spatial dimensions of the input image while increasing the 

number of channels. This process is achieved through a series 

of convolutional and pooling layers so there is a single pooling 

layer is used to reduce the spatial dimensions of the feature 

map, resulting in a loss of fine-grained spatial information. 

(Elgendy, M.2020) 

The parallel pooling consists of several pooling layers with 

different kernel sizes applied to the feature map. Each pooling 

layer captures features at a particular scale. The output feature 

maps of these pooling layers are then concatenated along the 

channel dimension. By doing this, the model can capture 

features at different scales and preserve fine-grained spatial 

information. This is crucial for detecting objects of various 

sizes in an image. 

The concatenated feature map from the parallel pooling is then 

further processed by subsequent convolutional layers and 

finally passed through the detection layers to predict the 

bounding boxes, class probabilities, and confidences for object 

detection.  
By incorporating parallel pooling into YOLOv3, we   can 
achieve the following improvements: 

1. Faster Inference Time: Parallel pooling allows for
concurrent processing of different regions, resulting in a
significant reduction in inference time. This is particularly
beneficial when dealing with large input images or datasets.

2. Improved Utilization of Resources: Parallel pooling
effectively utilizes parallel processing capabilities, such as
multi-threading or parallel hardware accelerators like
GPUs. This maximizes the computational power available,
making the best use of hardware resources.

3. Enhanced Accuracy: By dividing the image into smaller
regions and processing them independently, parallel pooling
can help capture more localized and contextually relevant
information. This can improve the accuracy of object
detection, especially when dealing with objects of varying
sizes and aspect ratios.

4. Scalability: Parallel pooling allows for efficient scalability,
enabling the detection of objects across a wide range of
image sizes and resolutions. (Jin,2020)

It is worth noting that the implementation of parallel pooling in 

YOLOv3 may require modifications in the network 

architecture and training pipeline to support distributed 

processing. Additionally, an efficient parallelization strategy 

considering hardware and memory constraints should be 

employed to ensure optimal performance which will be 

illustrated after implementing and simulating the system in the 

end of this chapter. 

D. Deep Learning Integration

Deep learning plays a significant role in proposed fire detection 
systems by utilizing advanced algorithms capable of learning 
intricate patterns and features from image data. The models 
implemented in deep learning are formed using a large number 
of tagged data and neural network architectures that contain 
various layers. In the context of proposed techniques, the 
implementation process involves several key steps: (Ge, L, 
2021) 

1. Extracting Features Using Convolutional Neural
Networks (CNNs):

CNNs are integral in deep learning for image processing tasks. 
Layers of the CNN extract features like edges, textures, and 
shapes from the input images. This process forms the 
foundation for identifying objects. 

2. Implementing the YOLOv3 Architecture:

YOLOv3 consists of a series of convolutional layers, max-
pooling layers, and detection layers. Each layer serves a 
specific function in feature extraction, down-sampling, and 
bounding box prediction. Implementing this architecture in the 
system enables accurate object detection. 
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The YOLOv3 model predicts the class probabilities of objects 
present in an image and estimates bounding boxes around these 
objects. By assigning class labels and drawing bounding boxes, 
the system can identify and localize instances of interest, like 
fires and smoke. 

4. Training and Fine-Tuning the Model:

The deep learning model is trained on a labeled dataset 
containing images of fires and non-fire scenarios. Through 
backpropagation and optimization techniques like stochastic 
gradient descent, the model learns to classify objects 
accurately. Additionally, fine-tuning the model on domain-
specific data enhances its ability to detect fire-related features 
effectively. (Elgendy, M.2020) 

5. Inference and Real-Time Object Detection:

During inference, the trained model processes new images in 
real-time to detect fire-related objects based on learned 
features. By feeding input images through the model, the 
system can detect fires and issue timely alerts when potential 
hazards are identified. It does not require a region proposal 
network (RPN) and directly performs regression to detect 
targets in the image as it includes 53 convolutional layers and 
23 residual layers as shown in below which makes it as a 
significant advancement in real-time object detection, 
especially in the detection of critical objects. Consequently, 
YOLOv3 can be used for detection system. (Redmon, 2018) 

Fig 2: System's deep learning integration (Guerrieri,2021) 

1 × 1, 3 × 3/2 and 3 × 3 convolution kernels of three sizes are 

applied in the convolutional layers to sequentially extract 

image features, ensuring the model has remarkable 

classification and detection performances. The remaining 

layers guarantee the convergence of the detection model. 

In order to detect several areas of the same object at the same 

time, parallel pooling fuses three feature maps of different 

scales (52 × 52, 26 × 26 and 13 × 13) by three-time down 

sampling. 

IV. SYSTEM IMPLEMENTATION

The YOLOv3 architecture developed as part of this study has 

been developed on top of SqueezeNet architecture. This 

architecture is a lightweight CNN architecture that can 

effectively handle the computational requirements and the size 

of the model. The modified YOLOv3 architecture, apart from 

being driven by SqueezeNet, has further been augmented by 

two detection heads. These have been appended to the 

architecture of the model.  

The initial detection head captures the larger objects contained 

in the fire dataset images. The second head has been developed 

to capture small objects. The second head is twice as big as the 

first head. Such a hierarchical model allows capturing the 

features in the object space that allow effective detection of the 

objects having different sizes and input images. To further 

enable the localization of the object and predictions, the model 

makes use of anchor boxes. Such boxes are predetermined 

bounding boxes, which allow the network to analyse the 

specific classes of the objects contained in the training part of 

the data. Such boxes help train the model and analyse the 

characteristics of the datasets.  

Predicting the bounding box's width and height might make 

sense, but that may lead to unstable gradients during training. 

Instead, the proposed system for object detectors predicts log-

space transforms or offsets to pre-defined default bounding 

boxes anchors. 

Then, these transforms are applied to the anchor boxes to 

obtain the prediction. The proposed system has three anchors, 

which result in the prediction of three bounding boxes per cell 

which are bounding box priors that were calculated on the 

COCO dataset using k-means clustering. We are going to 

predict the width and height of the box as offsets from cluster 

centroids. The box's center coordinates relative to the location 

of the filter application are predicted using a sigmoid function. 

The following formula describes how the network output 

transformed to obtain bounding box predictions: 

 (1) 

 (2) 

The width and height of the predicted bounding box are 
calculated thus 

 (3) 

 (4) 

Here bx, by, bw, bh are the x, y center coordinates, width, and 

height of our prediction. tx, ty, tw, th (xywh) is what the network 

outputs. cx and cy are the top-left coordinates of the grid. pw and 

ph are anchors dimensions for the box which can be illustrated 

bellow in Fig. where the dimensions of the bounding box 

predictions are obtained through a log-space transformation 

applied to the network output. This transformation helps in 

handling a wide range of object sizes effectively. The log-space 

transformation involves taking the logarithm of the network 

output. After the log-space transformation, the result is 

multiplied by an anchor which are pre-defined boxes or priors 

of different shapes and sizes as previously explained that act as 

reference points for predicting bounding box dimensions. Each 

anchor is associated with specific scale and aspect ratio 

characteristics. (Guerrieri,2021) 

By multiplying the log-space transformed output by the 

appropriate anchor, the final dimensions of the bounding box 

predictions are obtained. This step helps adjust the predictions 

based on the anchor properties and results in more accurate 

bounding box sizes and shapes. 

3. Predicting Object Classes and Bounding Boxes:
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Fig 3: The dimensions of the bounding box 

Predictions, bw, and bh, are normalized by the height and width 

of the image. (Training labels are chosen this way). So, if the 

predictions bx and by for the box containing the dog are (0.3, 

0.8), then the actual width and height on the 13 x 13 feature 

map are (13∗0.3, 13∗0.8). During training, the ground truth 

labels are also chosen in a normalized manner to match the 

network's predictions.  

For example, if the predictions for the bounding box containing 

a dog are (0.3, 0.8), these values are normalized by the height 

and width of the image. If the feature map size is 13x13, then 

the actual width and height of the bounding box on this feature 

map can be calculated by multiplying the predictions by the 

feature map size. In this case, the actual width would be 13 * 

0.3 = 3.9 and the actual height would be 13 * 0.8 = 10.4. 

The parameters of ground truth box can be calculated 

according to the following equations which 

evaluates corresponding to the real values 

of predicted parameters  respectively then 

the truth quantities of will be calculated 

according to the following set of equations: 

 (5) 

 (6) 

 (7) 

 (8) 

Then to calculate square error of coordinate prediction as one 
part of loss function E2 as shown in the following equation: 

(9) 

The layered architecture of the model comprises many layers. 

These include Convolutional layers for the extraction of 

features and rectified Linear Unit (ReLU) activation functions 

to capture the non-linearity in the data. Resizing layers have 

been used to make adjustments to the spatial dimensions of the 

feature maps. A depth concatenation layer has been added to 

combine features extracted at different scales and stages of the 

network. This overall architecture allows for capturing the 

contextual information across the images.  

The overall architecture adopted allows an optimized detection 

of fire. By leveraging the strength of SqueezeNet, the 

extraction capabilities of the modified YOLOv3 architecture 

have been made highly efficient. The architecture of the 

YOLOv3 adopted in this work has been depicted in fig 4 

below: 

Fig 4: YOLOv3 Architecture 

The YOLOv3 architecture has been modified to incorporate a 
sense of parallel pooling for improved performance and speed. 
Parallel pooling helps accelerate the training process by 
making a distribution of computations across multiple workers. 
To incorporate such functionality, MATLAB’s parallel 
computing toolbox has been utilized. Initially, the model starts 
by making a check on the availability of parallel pools for 
processing. Once the availability is flagged high, the parfor 
loops have been employed to distribute the iterations across 
multiple workers creating an overall scenario of concurrent 
executions. The parallel pooling-based customization has 
helped improve the speed of the process by the following 
relation: 

Where  is the time for non-parallel executions, and 

 is the execution time for the parallel version. Further 
by adopting this approach, the scalability of the model has been 
improved by effectively utilizing the additional available 
resources. The model measures the degree of execution time 
scales with an increased number of processors.  The steps 
involved in completing the model to work have been presented 
in Fig.  
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Fig 5: YOLOv3 System Level Modelling 

A. Accessing Open-Source Datasets

The dataset used for this study has been taken from image 
datastore which contains a large repository of scenarios and 
images. FiSmo-Images have been downloaded which contains 
different instances of fire by employing various scenarios. 
Specifically, Flickr-Fire data has been used that contains 984 
images of various sizes and dimensions.  

The images have been resized to 227x227x3 to retain a 
standard size making them fit for the model and to have 
reduced samples to avoid memory resources to runout.  

B. Image Labeller for Annotations

To make the YOLO model learn object detection features, it is 
imperative to make use of an image labeller to generate ground 
truth information against each image. There are numerous 
ways in which this can be achieved. For example, a commonly 
used way is to employ colour thresholding, where the function 
takes close to the fire regions. However, those are only 
estimates and far from precise annotations. Therefore, in the 
present case, the images have been equipped with bounding 
boxes in the Image Labeller manually. The Image Labellers 
have been introduced with a new label class called ‘Fire’, and 
the rectangular boxes have been placed manually at the fire 
regions. The complete set of information has been stored in a 
.mat file which contains the path to the images, and the 
coordination of one or multiple boxes where instances of fire 
are existing. The activity has been performed on the complete 
set of 984 images to be used as part of training and testing. The 
layout of the imageLabeler has been depicted as below for this 
particular implementation: 

Fig 6: Image Labeler Layout 

C. Preparing Data (Pre-processing and Split)

In step, the first part is to ensure that the ground truth 
information provided to the model is correct. Since the missing 
annotations in the Fire label can lead to errors later. To ensure 
this, a check has been introduced that ensures that no image is 
having an empty label. If this holds for any image, it has been 
discarded. The second part is to divide images into training and 
test datasets. The training dataset has been used for fitting the 
model, and the test dataset has been used for testing the model. 
To do so, 60 percent of the dataset has been used for training. 
These data sets are later subjected to data augmentation as the 
next step to improve the accuracy of the model. 

D. Data Augmentation

In this step, the data has been augmented to introduce different 

colours and angles to keep the model tolerant toward captured 

angles. For instance, in real-world instances, an image may be 

recorded with a slight tilt and shall be detectable by the model.  

A data augmentation function has been employed that 

transforms images by application of random flips at horizontal 

levels, and to make scaling in the images by introducing 

overlap. Additionally, various colour variations have been 

introduced in the images, by making a variation in the contrast, 

hue, saturation, and brightness. An example of the data 

augmentation performed on the sample images has been 

presented below: 

Fig 7: Images Data Augmentation Example 
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E. Preparing YOLOv3 Model

This step is to prepare a YOLOv3 model and pass on the data 
prepared above for the modeling. In this case, the first part is to 
create a YOLOv3 object detector by calling MATLAB’s 
inbuilt function. Preparing the detector involves passing 
various arguments including the base network, class name, 
detector boxes, and the size of images that the model shall 
expect. The arguments presented in this case include the 
following: 

Table -1: YOLOv3 Object Detector 

Parameters Values 

basement Squeezenet 

className ‘Fire’ 

anchor boxes Taken from Step 2 

Image Size 227x227x3 

The detector has later been subject to the pre-processed data as 

returned from the data augmentation for the training.  

The next part after creating a detector is to determine the 

training parameters. These parameters can be selected based on 

the hit-and-trial method or prior experience in similar datasets. 

These parameters selected in the present case have been 

depicted below: 

Table -2: YOLOv3 Training Parameters 

Parameters Values 

Epochs 80 

Batch Size 8 

Learning Rate 1e-3 

L2 Regularization 5e-4 

Penalty Threshold 0.5 

F. Training the Model

The training of the model involves the utilization of parallel 
pooling in MATLAB to make quick processing. The loss 
functions are used to measure the discrepancy between the 
predicted bounding box outputs and the ground truth labels 
during training. The loss functions help in optimizing the 
model parameters by penalizing the differences between 
predictions and ground truth, encouraging the model to make 
more accurate predictions. There are several loss functions 
used to train the model. The primary loss function is the sum of 
the following components: 

1. Localization Loss (bbox_loss): This loss measures the
difference between the predicted bounding box
coordinates (bx, by, bw, bh) and the ground truth
bounding box coordinates. The Mean Squared Error
(MSE) or a smooth L1 loss is used for this purpose.
To calculate this function, we calculate the difference
between the predicted bounding box coordinates (bx,
by, bw, bh) and the ground truth bounding box
coordinates. Applying Loss to measure the
discrepancy between the predicted and ground truth

values and finally sum up the losses for each 
bounding box prediction. The equation of MSE is: 

 (11) 

2. Confidence Loss (obj_loss): This loss measures the
difference between the predicted objectness score
(indicating the presence or absence of an object) and
the ground truth objectness score. Binary cross-
entropy loss is commonly used for this component.

(12) 

3. Class Loss (class_loss): This loss measures the
difference between the predicted class probabilities
and the ground truth class labels. It is typically
calculated using categorical cross-entropy loss.

(13) 

The overall loss is the sum of these individual loss 

components, weighted by certain coefficients to balance their 

contributions. The specific values for these coefficients can 

vary depending on the implementation and specific 

requirements of the task. 

During training, the goal is to minimize the overall loss value, 

indicating that the model is making accurate predictions. The 

optimization process adjusts the model's parameters through 

backpropagation and gradient descent, aiming to reduce the 

loss and improve the model's performance. The pools available 

are determined as the first step, followed by performing 

multiple operations as follows: 
a. Determining the Gradient, State, and Loss

Information. This is determined by using a model
gradients function, and passing on the dataset and the
YOLOv3 detector as the parameters

b. The gradients determined are subjected to the L2
Regularization as established above

c. The proposed system learning parameters are updated,
and the corresponding loss and information are
displayed on the MATLAB workspace.

A sample of the training stage depicting the corresponding 
outcomes has been presented in fig 8 bellow. 
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Fig 8: Samples from the Training Stage 

V. RESULTS AND TESTING PHASE

Two types of tests have been conducted on the trained model. 

In the first case, the images are passed on to the detector and 

outcomes are analysed in the form of annotated boxes. These 

images have been depicted below: 

Fig 9: Fire Detections on the Images 

In the second phase of testing, a video stream of data has been 

passed through and the detector is made to analyse frames and 

make annotated boxes in real time. The model successfully 

detected the fire region as the video streams is driven. The 

outcomes have been provided below: 

Fig 10: Fire Detection in Frames. 

In the experimental setup, a camera capturing 18 frames per 

second provides images with varying resolutions of 720x400, 

540x300, and 360x200 pixels. These images are fed into the 

input layer of a neural network for processing. An important 

focus of the study is the comparison of computational tasks 

using parallel computing architectures. Leveraging parallel 

computational methods is key to enhancing the efficiency of 

computing systems, as it enables concurrent processing of tasks 

for accelerated performance. 

In image processing, a common approach involves sequentially 

applying a series of standard processing operations to the input 

data. While multi-core processors demonstrate parallel 

processing by design, their performance excels in streaming 

applications. To exploit parallelization efficiently, the 

activation function and image filtering components of the 

YOLOv3 parallel operation algorithm were optimized for 

parallel processing. This optimization involved utilizing both 

serial and parallel processing techniques on a computer 

equipped with a quad-core processor, enabling tasks to be 

executed simultaneously for faster and more efficient image 

processing results. 

VI. CONCLUSION

The successful implementation of the YOLOv3 algorithm, 

augmented by parallel pooling for fire detection in Kuwaiti 

hospitals, represents a significant advancement in enhancing 

safety measures. By leveraging cutting-edge AI technologies 

and integrating deep learning methodologies, the system has 

been able to drastically reduce response times, enhance 

accuracy, and minimize false alarms in fire detection processes. 

The adoption of parallel computing techniques has not only 

optimized the speed and performance of the system but has 

also improved the scalability and efficiency of fire detection 

mechanisms in hospital settings. Through a meticulous process 

of data collection, model preparation, and training with real-

world image datasets, the YOLOv3-based system demonstrates 

a remarkable capability to analyze and detect fire incidents in 

real-time, fostering quick and effective responses to potential 

hazards. 

The successful combination of advanced object detection 

algorithms, parallel pooling, and innovative AI technologies 

underscores the critical role that modern computational 

approaches play in ensuring the safety and security of hospital 

environments. By addressing key challenges identified through 

surveys and data analytics, the implemented system offers a 

robust solution that automates fire alarming processes, 

minimizes manual intervention, and enhances the overall 

precision and reliability of fire detection mechanisms. Moving 

forward, further refinements and optimizations based on 

feedback and real-world testing will continue to elevate the 

capabilities of the system, contributing to the ongoing 

evolution of fire safety measures in Kuwaiti hospitals. 
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