
Accessing Encrypted Documents using Secure

Indices and Openid Connect in Cloud Storage

Chethana H R
MTech Student, Computer Science & Engg

Dr Ambedkar Institute of Technology

Bangalore, India

Suresha D
Assistant Professor, Computer Science & Engg

Dr Ambedkar Institute of Technology
Bangalore, India

Abstract— Cloud computing is a compilation of existing

techniques and technologies, packaged within a new

infrastructure paradigm that offers improved scalability,

elasticity, business agility, faster startup time, reduced

management costs, and just-in-time availability of resources.

Cloud storage is one of the fastest growing areas under cloud

services. Along with many advantages it also imposes serious

security issues. Unless dealt with security issues properly, we

cannot utilize the best of cloud storage. In this paper, we

propose the use of OpenId Connect which has OAuth

underpinned along with secure indices which is used for efficient

search. OpenId Connect provides an extra layer of

authentication along with OAuth functionalities.

Keywords— cloud storage, Dropbox, encryption, indices,

opened connect

I. INTRODUCTION

 Cloud storage is one of the most rapidly growing cloud

services. Today, there are many cloud-storage services, e.g.,

Google Drive, Amazon Simple Storage Service (S3),

Dropbox etc. With such a service, we can retrieve or revise

the latest versions of our files over the internet. Some of us

may use it as a networked storage, with which we can

synchronize our files across different computers at school,

work, or home. For example, S3 is part of the Amazon Web

Services, which Amazon claims to provide highly scalable,

reliable, secure, and inexpensive infrastructures to web

application developers and operators. Amazon stores data

across several large-scale data centers. Amazon provides

strong physical and logical security to these data centers.

Despite such great security measures as advertised by

Amazon, cloud-storage services still face serious security

challenges[1]. There is an increasing tendency that these

cloud storage servers suffer targeted attacks because they

hold users’ private information, some of which might be quite

valuable.

 As a result, recently several cloud-storage service

providers started to provide encryption protection to user files

in the cloud. For example, Dropbox not only stores user files

in encrypted form but also employs strict access control to

limit read permission to authorized users [4]. More

specifically, Dropbox claims to encrypt user files using AES-

256, the encryption standard used by many banks to secure

customer data. However, encryption of user files is performed

after the files are uploaded, and it is Dropbox, as opposed to

the user, who manages the encryption keys. In this case, one

might question the security, as dishonest insiders and

intruders who have compromised Dropbox’s system may still

be able to obtain the files in plaintext without their owners’

permission. Even if users are willing to trust service providers

like Dropbox, encryption does impose significant limits on

data use. For example, it is difficult, if not impossible, to

perform keyword search in encrypted files, and as a result,

users can no longer easily ask for files or documents

containing a set of specific keywords.

In “Design and Implementation of Multi-User Secure Indices

for encrypted cloud storage”[5], author has investigated on

the problem of multi-user secure indices for encrypted cloud

storage. In such a system, files are encrypted in the cloud, and

yet users with proper authorization can obtain those files

containing some user provided keywords. An interesting real-

world application of such a system is the web service of a job

bank, in which the storage server stores its resume database.

In this scenario, users fill in their resumes online before they

can get job matches from the job bank. The companies

(queriers) who want to hire some of these potential

employees can specify some general conditions not

pertaining to sensitive information of the applicants. If a

company is interested in some specific candidates, it sends

requests to retrieve the private information, and the

candidates can decide whether the company can view their

resume or not. Author has concentrated on architecture for

achieving multi-user secure indices for encrypted cloud

storage. Second, in addition to secure indexing, it also

provides efficient search among a large number of user

documents.

 In this paper, we have proposed an extension to the above

mentioned work. Author in [5], has made use of OAuth

Protocol. Here we are replacing OAuth with OpenId Connect.

OpenId connect is built on the top of OAuth and hence it's

more robust. OAuth is the protocol which is used only for the

authorization and open id connect is very similar to OAuth

but it combines the feature of OAuth also. OpenId connect

helps to extract basic profile information of querier, which

can be sent to Owner(uploader) for verification, before

granting the access to the querier.

II.

RELATED WORK

In [5], author has provided architecture for achieving
multi-user secure indices for encrypted cloud storage. In
addition to secure indexing, author has also provided design
for efficient search among a large number of user documents.
The architecture consists of three kinds of servers, namely,
proxy server, index server, and storage server, each of which
manages a unique aspect of the system. According to the
author, an attacker will need to compromise all three servers at

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090621

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

771

the same time can he or she obtain the stored files in plaintext
form.
There are 4 system components:

1. Client : There are 2 types of clients: Uploader and Querier.

Uploader is one who uploads the files and he is the owner of

the file that he uploads. Querier is one who requests for the

file.

2. Proxy Server : when files are uploaded, the proxy server

parses the files and hashes important keywords. The hashed

keywords are then sent to the index servers for building

secure indices. Each uploaded file is given an identifier and

should be encrypted before transmitted to the storage server.

The encryption could be done either by the uploader or the

proxy server with a randomly generated key. If the files are

encrypted by the proxy server, it can either send back the

encryption key to the uploader or encrypt it using the

uploader’s master key derived from his or her username and

password before storing the encrypted key on the proxy

server. The proxy server is implemented in a way that both

the encryption key and the uploader’s master key would be

deleted right after the uploading procedure. Therefore, even if

the proxy server is compromised, this mechanism limits the

damage to those users who are online.
 For the query procedure, the proxy server hashes the

keywords and sends the hashed values to the index servers to
do the search. The search results are then used to retrieve the
files containing keywords from the storage server. Before the
querier can actually read the searched files, the proxy server
asks the file owners (uploaders) for access grants.
3. Index server: The index server builds the indices that allow

efficient keyword search. The indices are based on hashed

values so the index servers do not have information about the

original keywords. The separation of the keys and the indices

as well as the long hashed keywords make it a lot more

difficult to gain any information from solely compromising

the index server. Furthermore, divided hashed keywords are

sent to different index servers separately in order to minimize

leakage of distribution information.

 Fig 1 : Input and Output of the system components in the workflows of

uploading File

4. Storage server: The storage server provides backing store

that actually store the encrypted files. In addition, it also

records metadata such as file names and last modification

timestamps.

 Fig. 1 & 2 illustrates the inputs to and outputs from the

three types of servers during the procedures of uploading files

and querying..

 OAuth open standard for authorizing has been used to

provide secure search over encrypted cloud storage. OAuth

provides a method for clients to access server resources on

behalf of a resource owner. It also provides a process for end

users to authorize third-party access to their server resources

without sharing their credentials (typically usernames and

passwords) using user-agent redirections.

There are four roles in the open authorization standard.

• A resource owner grants client access to protected

resources.

• A client wants to access the protected resources.

• An authorization server responds to the client requests by

granting an access token if the client is authorized.

• A resource server gets an access token from the client and

sends the corresponding protected resources to the client.
 As shown in Fig. 3, it is straightforward to fit the

scenario into OAuth 2.0, namely, the uploader acting as
resource owner, querier as client, proxy server as
authorization server, index server as proxy server’s back-end,
and storage server as resource server. Via the procedure of
OAuth, the querier can access the uploaded files on behalf of
the uploaders as long as he or she gets the authorization
grants from them.

 There are two major tasks executed by the proxy
server, one for the uploaders, the other for the queriers. Steps
followed by the proxy server for the uploaders are:

1) After receiving an uploaded file, the proxy server

generates a random key for encrypting the file.

2) Generate a unique ID for the file.

3) Find specific keys of attributes from the look-up table.

4) Parse the whole file and divide it by the fields word by

word, and hash the keywords by the corresponding keys of

attributes.

 Fig

2

: Input and Output of the system components in the workflows of

Querying

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090621

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

772

Fig 3 : Roles of various system components in OAuth 2.0

6) Encrypt the original file with the key generated in 1), and

record the metadata such as owner’s identity, and timestamp,

etc.

7) Transmit the encrypted file and its metadata to the storage

server.

8) Encrypt the key for encrypting the file with the owner’s

master key, and store it in the table.

9) Remove all the intermediate information, such as random

keys of files and keywords

 The steps followed by the proxy server for the queriers

are:

1) Find corresponding keys of attributes from the lookup

table.

2) Hash the queried keywords with the specific key, and

transmit the hashed values to the index server.

3) The index server transmits the search result (file ID) to the

proxy server if there are matched files.

4) Send the file ID to the storage server, and ask for the

encrypted file and its metadata.

5) Send an e-mail with the querier’s information as well as

the queried file ID to the file owner.

6) If the file owner allows the querier to access the file, then,

the file owner logs in the proxy server to decrypt the file.

7) Encrypt the file with a temporary key, and send a message

to the querier with the encrypted file.

8) The querier may read the file when logging in to the proxy

server again.

III. ANALYSIS

 As an extension to the above work, we can introduce

OpenId Connect in place of OAuth. OpenID Connect 1.0 is a

simple identity layer on top of the OAuth 2.0 protocol. It

allows Clients to verify the identity of the End-User based on

the authentication performed by an Authorization Server, as

well as to obtain basic profile information about the End-User

in an interoperable and REST-like manner.

 In general OpenId is all about authentication that is

proving that you are who you say you are and OAuth is all

about authorization that will allow access to data or functions

without requiring to have original authentication once again.

 According to the details mentioned in [2], OpenId

Connect specifies how identity providers and relying parties

can use OAuth 2 0 to communicate identity data to one

another. The spec adds identity details and inserts a number

of default values without having to fill in the blanks of many

OAuth implementation details. This makes OAuth

implementation easier comparatively. Also it can be easily

portable across different vendors. OpenID Connect Protocol

Suite and OAuth underpinnings are as shown in Fig 4.

 OpenId Connect obtains profile information through

which clients(Uploaders in this case) can verify the identity

of the querier based on the authentication performed by an

authorization server. This information helps uploaders to

grant access to the querier for the requested files. OAuth

provides a general method for third party applications to

obtain and use limited access to HTTP resources. It does not

give any standard methods to provide identity information or

any profile information. Without profile information OAuth

cannot perform authorization. So, in OAuth, every time, end

user need to provide his profile information for getting

authorization.

 OpenID Connect implements authentication as an

extension to the OAuth 2.0 authorization process. Use of this

extension is requested by Clients by including the openId

scope value in the Authorization Request. Information about

the authentication performed is returned in a JSON Web

Token (JWT) [JWT] called an ID Token. Using dynamic

registration, OpenId Connect obtains profile information

needed for openID provider. After receiving all credentials, it

performs authentication and returns the result in the form of

ID token.

 As mentioned in [3], there are 3 entities in OpenId

Connect system.

1. User: Acts like resource owner in OAuth

2. OIDC Server: Acts like authorization server and resource

server

3. OIDC client: Acts like Relying party(Client in OAuth)

 The 3 main extensions of OpenId Connect to OAuth that

are helpful in our scenario are as follows :

1. Authn request: Gathers user information

2. ID token objects: Provides information about

authentication events like authentication context and time

3. UserInfo: Supplies identity information about

authenticated users

 The specifications of OpenId Connect are described in [4].

The OpenID Connect protocol, in abstract, follows the

following steps.

1. The RP (Client) sends a request to the OpenID Provider

(OP).

2.The OP authenticates the End-User and obtains

authorization.

3. The OP responds with an ID Token and usually an Access

Token.

4. The RP(Relying Party) can send a request with the Access

Token to the UserInfo Endpoint.
5. The UserInfo Endpoint returns Claims about the End-User.

IV. CONCLUSION

 Since OpenID Connect provides an extra layer of

security and makes OAuth implementation easier it can be

implemented to various cloud storage servers which are using

OAuth at present.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090621

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

773

Fig 4 : OpenID Protocol Suite

 REFERENCES

[1]

Amazon, “Amazon S3, cloud computing storage for files,
images,

 videos,” http://aws.amazon.com/s3/.

[2]

http://windowsitpro.com/identity-management/what-are-oauth-
20-and-openid-connect.

[3]

http://www.slideshare.net/oliverpfaff/openid-connect-an-
emperor-or-just-new-cloths.

[4]

Dropbox, “How secure is Dropbox?”
https://www.dropbox.com/help/27/en.

[5]

Mao-Pang Lin∗, Wei-Chih Hong†, Chih-Hung Chen‡ and
Chen-Mou Cheng§ ∗Trend Micro, Taiwan, Design and
Implementation of Multi-user Secure Indices for Encrypted
Cloud Storage 2013, Eleventh Annual Conference on Privacy,
Security and Trust (PST).

[6]

http://openid.net/specs/openid-connect-core-
1_0.html#CodeFlowSteps.

Fig 5 : Steps followed by OpenID Connect

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090621

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

774

