
Achieving Agility in Software Maintenance

Ms. Vishakha

M.Tech.(IT), 4
th

 semester

University School of Information and Communication Technology

Guru Gobind Singh Indraprastha University

Sector-16 C, Dwarka, New Delhi-110075

Abstract: The purpose of this paper is to present the

understanding of the maintenance of the project. Many studies

shows that building a software is not as much time and money

consuming as maintaining it. Approximately ninty percent of

the software effort is maintenance. A light methodology is taken

to be considering so that we can make our effort use, less in

maintenance. One methodology is agile. In agile there are many

framework like,SCURM, XP, RATIONAL UNIFIED PROCESS

(RUP), KANBAN.

I. INTRODUCTION

Agility, for a software development organization, is the

power of software to choose and react expeditiously and

fittingly to various changes in its surround and to the

demands imposed by this surround. An agile process is one

that readily embraces and supports this degree of flexibility.

So, it is not simply about the size of the process or the speed

of delivery; it is mainly about flexibility. This term was

agreed during a big gathering when seventeen of the

developers of the “lightweight” approaches to software

development came together in a workshop in early 2001.

Previously, circumscribe of assorted groups have

independently developed methods and practices to act to the

changes they were experiencing in software processing and

development.

Maintenance:

 ISO/EIC 14764(1999) defines software maintenance as “A
software product that undergoes modification to code and
associated documentation due to a problem or need for
improvement “ and also IEEE standard 1219(1998) defines
software maintenance as “ the modification of software
product after delivery ,to correct faults ,to improve
performance or other attributes , or to adapt the product to a
modified environment”[1]

Factors effecting maintenance:

The amount of analysis/design in a maintenance effort is

measured by the amount of Function Points, a metric which is

proposed by Albrecht [3] as a measure for the size of a

system’s functionality. Coding/testing is measured by

counting the amount of source lines of code (SLOC) added.

The goal of the research was to identify environmental

factors influencing the amount of labor hours required for a

maintenance job .The most significant environmental factor

negatively influencing the amount of labor hours required

turned out to be the use of a structured design and analysis

methodology. Using a structured design may lead to benefits

in the long term. Other factors are high ability staff and

absence of application experience.

Three factors that affect amount and type of maintenance are

[2]

Functionality (strategic/important or not),

Development practice (automatically generated code or not),

and

Software complexity

Age

Complexity

Old Module does not contain more error than the newer one,

but require more effort to repair them. Shen et al. add

additional support for a relation between age and

maintenance by noting re pairing errors gets more expensive

the later they are found [4].

Yau et al. [5] explicitly mention „Understand program‟ as a

big part of the maintenance process, claiming the

understanding comprises three parts: complexity,

documentation, and self-descriptiveness. The latter refers to

how well the code is understandable on its own, i.e. without

of

supporting documents.

Problems during maintenance [6]:

1. Often the program is written by another person or group of

persons working in isolation from each other.

2. Often the change is done by other person who did not have

understood it clearly, resulting in deterioration of the

program’s original organization.

3. There is high staff turnover within the information

technology industry. Due to this many systems are

maintained by persons who are not the original authors.

These persons may not have proper knowledge about the

system. This may mean that these person often introduces

changes without aware of the impact of the changes- the

ripple effect. This problem may be worsened by the absence

of the documentation. Even where it exists, it may be out of

date or inadequate.

4. Some problems often get noticed when the system is in

use.

5. Systems are not designed of change.

 Thus cost of maintenance if often become close to the 40-

70% of the total cost of the software system.

Potential solution to the maintenance problem [7]

Budget and effort reallocation

In now- a- days suggested that more time and resources

should be invested in development and specification and

174

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050337

International Journal of Engineering Research & Technology (IJERT)

design of more maintainable system but not in unmanageable

system. The use of ISOP 9000, CMM and maintenance

standard are aimed at this issue.

If maintaining an existing system is more costly than the

original system than its better to replace it completely.

Complete replacement of the system is not good option.

Existing system in itself can be an asset to an organization in

terms of investment in technical knowledge and working

culture engendered.
Maintenance process involves the steps:[8]

In determining objectives we consider what to do:

1. Correct program errors.

2. Add new capabilities.

3. Optimization.

In program understanding we consider:

 1. How much it is Complex.

2. Documentation is it properly understandable or not.

3. Is itself descriptive or not.

In generate proposal:

1. We consider extensibility, whether the program support or

not.

Account of ripple effect:

1. Program modification not only changes that part, but also

affects the other part too. Ripple effect finds out the areas.

Finally we do testing of that part by doing Regression testing.

 Many studies shows that building a software is not as much

time and money consuming as maintaining it. Approximately

90% of the software effort is maintenance. A light

methodology is taken to be considering so that we can make

our effort use in maintenance. One methodology is agile. In

agile there are many framework like Scrum, XP, RATIONAL

UNIFIED PROCESS (RUP), KANBAN.

Maintenance type [9]:

There are 3 type of maintenance:

Corrective: elimination of error and poor performance

Adaptive: changes to comply with business law

Perfective: new requirement

Adaptive maintenance includes all efforts aimed at changing

the software to respond to a changing or changed

environment. Corrective maintenance comprises tasks to

correct discovered bugs, while preventive maintenance is

composed of modifications aiming to prevent any faults in

the future, i.e. find and fix bugs that have not yet been

discovered in the practical environment. Changing the

software in order to optimize its performance or

maintainability is referred to as perfective maintenance.

It is hard to describe size of software maintenance cycle, buts

lets imagine a typical maintenance work in these lines OR use

of agile practices: [16]

 Request from one or more order called demands

 These demand piles up and be put in a batch

 Analyst evaluate the demands, classify it and

express it in terms of impact on the application and

the daily work

 Team is small mainly two or three people

 Development is done internally , there is no contract

with others

 Implementation is conducting with little formality

In this type of maintenance the main process drivers is the

client or business team priority. There is no consideration like

build from scratch. Over the time there is new need, and the

challenge for the planner is that put together that is cost

effective for implementation and at the same time meets both

content and time priorities

The first to behave smartly in maintenance is form a backlog

of the requirements, intentional backlog that enables you to

work the batch planning elements. The smaller the work for

the requirements is more the work for maintenance higher the

work for process set up and works and rework. In worst case

scenario where there is no package or batch. We work on

individual basis means each demand is implemented on

individual basis, the planner is not able to combine request

and boost resources in the programming. . If the planning

manager able to assemble a package of the request, assigning

priorities to them and put them in a queue for

implementation than he would be able to retain a factor called

cadence. For a repetitive task, if the work demand is messy,

the team reaction will vary, and performance is unpredictable.

For making work cadence, first set a time period (fix a time

period). Therefore cadence and work walk hand in hand.

Thus in short we can say that making a backlog and then

prioritizing the requirements and then fixing the period that

we will be able to implement these requirement in this much

of time period called a sprint period will make the

maintenance work to work well and easier and smooth.

In the system that have been live for a long time also have in

maintenance from a long time. The team already knows how

to evaluate the impact of change. And best to release the

175

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050337

International Journal of Engineering Research & Technology (IJERT)

implementation of new release depends on factors like team

efficiency, user capacity to absorb new release business

demands and so forth. Team determines this time empirically

and adjusts resources and effort to meet demand in batch that

fits that timing. This learning process comes with

commitment and agreement made by planning manager with

the user area and organization administration.

Daily stand up meeting are done. On occasion, a

representative will be sent to the development team's stand-up

meeting to compare notes and find out what is going on in the

other project room. Developers have good idea of what is

going on so usually they are not convinced with this daily

meeting. Refactoring is applied to the codes generally there is

goal of fixing the bug without having much change to the

code. Generally maintenance team identify that what section

of code is poorly designed. If certain section of code is find to

have lots of defects than it should be prioritized first and

should be fixed first.

All these steps make the maintenance effort less.

What is agile methodology

Agile methodology is an alternative to the traditional

methodology .These are also alternative to waterfall

technique use for software development

English meaning of agile is:

 (Mentally quick) able to think rapidly an clearly

 Physically quick able to move your body quickly

and fluently

According to Barry Boehm” an outgrowth of rapid

prototyping and rapid development experience as well as the

resurgence of a philosophy that programming is a craft rather

than a industrial process.”

Alistair Cockburn is one of the initiators of

the agile movement in software development, he defines agile

as “agile implies being effective and manoeuvrable. An agile

process is both light and sufficient. The lightness is a mean of

staying manoeuvrable. The sufficiency is a matter of staying

in the game” [10]

Barry Boehm described agile methods as “an outgrowth of

rapid prototyping and rapid development experience as well

as the resurgence of a philosophy that programming is a craft

rather than an industrial process” [11]

Difference between traditional and the agile approach: [12]

1. Change in the later

stages in

requirements cannot

be possible

2. No communication

with the team

3. Document and

review meeting are

needed to solve an

issue

Changes can be done ,

respond to customer

request and changes

easier

High level of

communication and

interaction, meetings.

5minutes discussion can

solve the problems. Like

done in sprint meeting

4. Normal release

takes approximately

18 months to 20

months

5. Too slow to

provides fixes to

user

6. More time is spent

on design so that the

product will be

more maintainable.

The “what ifs” arise

earlier

7. It is work centric

8. Documentation is

substantial

9. Project life cycle is

guided by task

After 10 months the first

release is ready

Respond quickly to

customer feedback

No time for “what ifs”

It is people centric

Documentation is

minimal

Project life cycle is

guided by product

features

Characteristics of agile: [14]

• One of the most characteristics of agile is that it is

incremental in nature. Working software is developed and

available very quickly. In XP process it is 2 to 3 weeks and in

scrum in a moth but in traditional model it is available at the

last of whole model.

• Agile methods are people oriented rather than process

oriented and code oriented rather than documentation

oriented. This makes best way to communicate face to face

rather than though the documentation so makes the

understanding of the team with each other more good.

• Agile is good for small project rather than the big project.

Its design uncovers what you are developing right now. As

the change is inevitable so planning for future work is waste.

How it can be helpful in maintenance: [15]

Defects: A development method called TDD (Test-Driven

Development) is a method which says that do not implement

any functionality until a test for that functionality exists. This

development method is an integral part of the XP process.

This improves code quality and thus helps in maintainability

thus decrease code complexity and also decreases the defects

too. Fewer bugs lead to less maintenance effort. This

translates the maintenance work to corrective category.

Understanding: In Scrum, daily meetings are done. It is good

for the maintenance team if they are part of the Scrum team

otherwise it will be very difficult to points out what is exactly

need to do in maintenance. As there is less focus on the

documentation. Lack of documentation becomes more

difficult to the team member who is not intra part of team.

Changing design: agile quickly react to the change in

environment. Simple design and constant refactoring helps in

it, regularly change to the environment translates the

maintenance work to the adaptive category.

176

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050337

International Journal of Engineering Research & Technology (IJERT)

Age, Experience: agile development methods have no

influence on age of the system. Also does not influence how

much experienced people working.

XP:

Figure Extreme Programming (taken from (13))

XP breaks the project into the simple, self contained, one to

three week mini projects. XP emphasizes planning, analysis

and design throughout the life cycle. It includes a practice

called “continuous integration “where systems are integrated

and build every time a task is completed. XP view peoples,

rather than formal documentation, as a project most potent

element.

XP uses refactoring to simply software source code by

approximately by 40 % by removing dead code unused code

from the code

Whole team: team may consist of developer, tester, quality

assurance and analyst and customer representative (who

provide feedback). [18]

 Planning: for calculation of effort and cost

Release planning: The customer presents features that are

expected by him in the software. Developer reviews these

features and find out difficulty in achieving them. Based on

these constrains initial release is decided.

Iteration planning: The customer presents the features that

needed to develop till the next iteration. Based on feature

team estimate the time and cost that may be involved in it.

 Also each iteration helps in learning about the

product.

 Small releases: the customer give some features

,it is like a story , each story represents small

iteration that helps in putting new features, that takes

only few week to developed. The team releases the

running and tested software after each iteration

 Simple design: it shows functionality of the

system, XP emphasis on refactoring technique. XP

process requires all phases of software life cycle to

be carried by a pair of programmer, sharing one pc.

This helps in spending more time in finding solution

to the problems .less time on routine debugging.

 Pair programming: code is written by two

programmers on single machine. Thus a program is

reviewed by one other programmer at least. This

helps in better design, implementation and testing.

Switching of the work in programmer helps in

raising their skill and understanding of the system.

 Collective code ownership: Here codes owned

by entire team. In XP any developer can work on

code base any time thus code can be seen by many

people. This increase quality and decrease defects

 Sustainable pace: the team works in a constant

pace, the pace that can be sustained indefinitely. We

work in a way that productivity lasts.

 Customer tests: acceptance testing is done b the

customers.

The advantage of this XP method is that it speeds up the

development process. It gives the programmer Wright to fix

the problem as it comes. Coding standard is fixed globally, so

development team must sure that it uses that standard in

coding and design

 XP have some positive points :

 Reduces code complexity by stripping unused

code.

 Implements pattern that make it easier to

maintain test and understand the code

 Reduces code size by 40%

 Enables most of defects reduction.

 Eliminates code complexity

Promotes improvement of the test coverage quality

What is scrum[20]?

Agile mythology is really quite simple. Let’s concentrate on

scrum first which is most popular

Backlog:

 Process starts is product owner creating prioritizing backlog.

Creating backlog is most understandable part of this one. Too

many company trying to put lots of effort to build lots of

feature in their product but the fact is that too many of them

never will get used. Never work correctly or just they get

waste, don’t use ever. Backlog is actually a type of story that

tells who will b conducting the operation, what they will be

doing and why. This creates a help to the programming team

making a backlog means u are putting yours what you want

actually. Than product owner prioritize the list .the most

priority requirements are put at the top of stack a least one put

are at the bottom. We start working from top of the stack.

This list can change with each sprint or each iteration.

Sprint:

This backlog formed is actually helps in sprint planning.

Actually sprint is basic unit of time in this agile software

development in most cases it varies from 1 month to one

week. Project can have one too many sprint .we do sprint

planning meeting. The purpose of the meeting is that they

decide what amount of work to be done in the sprint period.

This is not a guessing game .velocity a term defined is

actually work done per sprint. A good team will never

commit more than its velocity. Good team will also recognize

the importance of the priority backlog. Good team will

177

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050337

International Journal of Engineering Research & Technology (IJERT)

always work in higher priority backlog to towards lower one.

Once sprint planning is done team actually start working.

Scrum meeting:

After the sprint planning scrum meeting is done. It is done on

daily basis and last for 15 to 20 minutes. In this the team

members tells each other what they have done and what will

have to complete before next sprint period. Actually, it is

about knowing of progress. What are the risks? What are the

impediments? This helps the team to share information so

that they can work according to their sprint commitment. This

short time meeting exposes risk .profanity of failure. This

helps the team to work more effectively

Scrum master:

Person plays special role in software management. He insures

the success of the project. He actually removes the

impediment coming. This lets the team to work smoothly.

This helps the team anyway. This helps in decision making.

During the last two days two meeting are to hold more one is

sprint review, another sprint retrogressive.

Client see here first working product, they give there

feedback so that further process can be improved by

including the feedback result. Thus aims to improve the

quality of the product

Sprint retrogressive:

This aims to improve team, not the product. This makes the

scrum completely different from the other framework. What

went well, what need to and identity area of improvement?

Why to use agile: [17]

Agile development methodology actually keeps the track of

the direction of the project. This is done by using sprint at

the end of which it a progress is shown or we can say a

potentially shippable product is formed.

Advantages of the agile:

 It provides backward scalability means in the

traditional waterfall model it is not easy to change

decision that were made in the early phase. As any

change in between will require, making the software

from starting. Whole product will get damage if made

any change in between. So we have to be stricter for the

requirement what we need in the very beginning. But in

agile requirement are stated than they are prioritizing and

then implemented. Each sprint period a product

shippable formed.

 The flexibility of error checking during any

phases makes agile methodology more popular. But in

the waterfall `model one check error very late. Means it

can be done only after the development of module

 Agile also allows changes according to the

customer’s requirements. As in the phase of sprint

review we take feedback from the customers. But

waterfall does not allows modification in midway

 Actually Agile works on inspect and adapt

phenomena. thus decreases both time and cost of the

software

Kanban (development):

 A methodology used for managing knowledge. Scrum has

some negative points that’s un-clear development task and

task switching and partially don’t work. Kaban overcomes

these inabilities. Let’s have a look on Kanban. The

development steps are [19]:

 onboard

 in progress

 and done

Work flow divided into the on deck, specify, critical design

review, execute, review, done. Kanban actually allows

visualizing the work flow. It means that anyone can know

what is going on. Thus allows high level of transparency to

all people. In this we focus on adding value to the customer.

They don’t add value is removed. These value added service

add quality into the software. In this one we put a limit on

work in progress as it is difficult the team member to control

many works at a time this means that in a sprint of two to

three week we put only two to three tasks at a time. And we

also put finite capacity to each level called manage flow.

Scrum delivers features one bucket at a time Kanban delivers

features in steady streams because of this scrum have several

partially complete task and the Kanban have one 100%

complete task

CONCLUSION AND FUTURE WORK:

This report based on the study of the maintenance and the

agile methodology and how it differs from the traditional

methodology. The objective is to help software engineers to

understand the key characteristics of these processes and

therefore select the most suitable process with respect to the

type of software projects they develop and to use agile

methodology in maintaining software. As the maintaining

software is more difficult than to build it, or even can cost

much more than the original software.

Future work may be to consider other agile methodology like

LSD etc.

REFERENCES:
[1,2,6,7,8] K.K. Aggarwal, Yogesh singh ,”software engineering”, 3

rd
 edition.

[3] Albrecht, A.J. and Gaffney, J.E. Software Function, Source Lines of Code, and

Development Effort Prediction - a Software Science Validation. Ieee

Transactions on Software Engineering, 9 (6). 639-648.

[4] Shen, V.Y., Yu, T.J., Thebaut, S.M. and Paulsen, L.R. Identifying Error-Prone
Software - an Empirical-Study. Ieee Transactions on Software Engineering,

11 (4). 317-324.

[9] http://www.vlegaci.com/can-agile-methods-work-for-software-maintenance-

part-1/

[10] Agile Documentation: A Pattern Guide to Producing Lightweight Documents

for Software Projects.

[11] Agile Processes in Software Engineering and Extreme Programming: 9Th
International Conference, XP 2008, Limerick, Ireland, June 10-1

 [12] S. Nerur and V. Balijepally, “Theoretical Re -fl ections on Agile

Development MethodologY,” Comm. ACM, vol. 50, no. 3, 2007, pp. 79–

83.

 S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of Migrating to

Agile Methodology,” Comm. ACM, vol. 48, no. 5, 2005, pp. 72–78.

 P. Schuh, Integrating Agile Development in the Real World, Charles River

Media, 2004. 4, 2008 : Proceeding
 Mikio Aoyama, “Agile Software Process Model”, IEEE Software, pp 454-

455s.

[13] Kieran conboy and Sharon coyle,”People over process: Key Challenges in

agile development” IEEE Software.

[14,15]http://referaat.cs.utwente.nl/conference/15/paper/7269/agile-software-

development-and-maintainability.pdf

[16]http://i-proving.com/wp

content/uploads/2008/04/shaw_paper_agile20071.pdf
[17] Roger Valade , “The Big Projects Always Fail: Taking an Enterprise

Agile”, Agile 2008 Conference.

[18]What is XP, Ron Jeffries,

http://www.xprogramming.com/xpmag/whatisxp.htm, extracted on

11/02/2006

[19] http://en.wikipedia.org/wiki/Kanban_(development)

 [20] http://www.youtube.com/watch?v=OJflDE6OaSc

178

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050337

International Journal of Engineering Research & Technology (IJERT)

