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Abstract - Selection of right parameters of acoustic 

emissions to train back-propagation multi-layer perceptron 

(MLP) neural network(ANN) is paramount for developing 

a model that can accurately predict impending failures in 

the materials. In our previous article titled “Failure 

prediction using Acoustic emissions and Artificial Neural 

Networks”, the ANN model was detailed to have been 

trained using amplitude-hit distribution data, along with 

augmented parameters such as Weibull distribution 

parameters along with the energy rate and hit rates. The 

trained ANN model developed using these parameters is 

identified to have predicted the impending failure in 

maraging steel specimens at proof loads as low as 50% with 

4.5% prediction error. Identifying appropriate signal 

parameters for training requires extensive experimentation 

and data analysis. In this article we detail the assessment of 

other signal parameters that were reviewed for Artificial 

Neural Network model’s training. 

Keywords—Acoustic Emissions, Artificial Neural Networks, 

Material failure prediction, Non-destructive techniques, Neural 

Network training  

I.  INTRODUCTION  

Rocket The use of maraging steel for rocket motor casings 
has gained prevalence due to its unique mechanical properties of 
dimensional stability during age hardening, superior fracture 
toughness and machinability with minimum distortion[1]. 
However, this material suffers from premature brittle fracture at 
stress levels lower than the designed levels due to presence of 
imperfections like voids in the crystal structure and defects 
introduced at the time of fabrication. Therefore, a fracture-based 
design approach along with heavy emphasis on quality control 
can allow for use of these materials in critical mechanical 
structures. To this end, our previous article illustrates how non-
destructive techniques like acoustic emissions and artificial 
neural networks can be used to accurately predict the impending 
failure in materials with high accuracy in prediction error[2]. 
The type of failure mechanism or the defect in the specimen is 
characterized by the kind of AE signal and its signal parameters. 
For an accurate prediction of impending failure, the neural 
network is required to be trained with relevant data for 
generating prediction equations that can classify the defect 
appropriately. As reported in our previous paper [2], AE 
amplitude distribution data is shown to contain specific 
information related to an accurate identification of failure 
mechanisms in materials [3]. Various failure mechanisms are  

 

reported to have characteristic humps or bands in amplitude 
distribution with distinctive differences between failure 
mechanisms for plastic deformation and crack propagation.  
Although signal parameter data such as amplitude/hit data is 
considered to accurately predict the impending failure and was 
reported to have 8.1% prediction accuracy, the neural network 
was found to have better accuracy when trained with certain 
augmented inputs such as data from other signal parameters such 
as AE energy rate, AE count rate, AE activity and AE hit rate. 
This article’s objective is to detail the data analysis of AE’s other 
signal parameters to develop the required augmented input to 
improve the accuracy of model’s predictive abilities.  

II. EXPERIMENTAL SETUP 

The experimental setup is as detailed in our previous 

article[2].  To summarize, the tensile testing acoustic emission 

signal data is collected from 17 maraging steel specimens 

varying in presence and/or type of defect. The data is then 

routed through a PAC AEWin system and MISTRAS signal 

acquisition and analysis software to pre-amplify, filter, and 

process the data into outputs containing the required AE signal 

features that are footprint of the defects in the specimen.  

 

 
Figure 1 Schematic Block Diagram of AE-Win System 

 

III. RESULTS AND DISCUSSION 

The tensile test data from Walter-Bai hydraulic tester is 

presented in Table 1[2]. It can be inferred that the presence 

and/or type of defect in the sample resulted in a difference of 

21% in the peak loads. Table 1 details the data from 17 test 

samples that were subjected to tensile loading up to failure 

using the test setup discussed in section 3. The behavior of the 

specimen, based on the underlying defect, can be characterized 

by the acoustic emission activity with straining of the 

material[4]. The AE signal parametric data such as amplitude, 

counts, energy rise time, duration provide information related 

to failure mechanism such as plastic or brittle failure[3]. And 

AE rate graphs like hit rate, energy rate, count rate and AE 
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amplitude distribution data can be used for an accurate 

prediction of material failure[5]. 

 
Table 1 Test Sample defect type, failure mode and Peak Load 

 

Specimen Type of Defect Type of failure 
observed 

Failure 
Load in 

KN 

Specimen 10 Weld Defect Defect failure 70.57 

Specimen 05 G-Notch Notch failure 74.79 

Specimen 23 70% G-Notch Notch failure 72.47 

Specimen 22 70% G-Notch Notch failure 75.30 

Specimen 03 50% G-Notch Notch failure 79.13 

Specimen 20 50% G-Notch Notch failure 79.14 

Specimen 06 F-Notch Notch failure 79.47 

Specimen 17 F-Notch Notch failure 80.91 

Specimen 14 E-Notch HAZ failure 84.85 

Specimen 24 None Weldment failure 79.84 

Specimen 07 None Weldment failure 80.27 

Specimen 01 None Weldment failure 80.56 

Specimen 13 None Weldment failure 80.81 

Specimen 11 None Weldment failure 75.80 

Specimen 04 None Weldment failure 81.43 

Specimen 18 None HAZ failure 81.54 

Specimen 08 None HAZ failure 82.79 

 

A. Neural Network Program AE Signal Parametric data 

analysis 

In the sections below, each of the data type is analyzed for its 

ability to train the neutral network model for accurately 

predicting the material failure different characteristics of failure 

mechanism or defect of the specimen correspond to different 

kinds of AE signals and their signal parameters. The neural 

network program is required to be adequately trained with 

relevant data for allowing it to generate prediction equations for 

an accurate defect classification and predict impending failure. 

 

1) Cumulative AE Activity 

 

Figure 2 represents cumulative AE activity vs strain 

interposed with stress-strain graph, with all of the four (4) 

graphs indicating sudden spurt of activity with changing stress-

strain graph’s linearity. This sudden growth in AE activity can 

be corelated with the start of yield of material[6]. It can also be 

noted that the highest AE activity is observed in defect free 

sample while the lowest in HAZ failure sample. While this data 

is adequate to indicate the onset of yield in the material but not 

suitable for predicting the material failure as the AE activity 

slope is fixed and due to the presence of noise data.  

 
Figure 2 Cumulative AE Activity and Stress-strain comparative plot 

 

2) AE Hit Rate 

 

The AE hit rate vs. strain data when plotted with stress-

strain data yields information related to onset of impending 

failure as indicated in Figure 3. The highest hit rate was 

observed in defect free sample and the lowest in HAZ 

failure sample. The instantaneous hit rate data is identified 

as suitable for being an augmented input to the neural 

network program for better prediction.  

 

 
Figure 3 AE Hit Rate and Stress-Strain comparative plot 

 

3) AE Energy Rate 

 

Similar to the trends observed with cumulative AE activity 

and hit rate, AE energy rate is observed to be highest in the 

defect free sample, while the lowest was in HAZ failure 

sample (see Figure 4). A clear change in linearity of the 

energy rate graphs is an effective indicator of impending 

failure. Therefore, instantaneous energy rates could be used 

as augmented input to the neural networks program for better 

prediction. 
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Figure 4 AE Energy Rate and Stress-Strain comparative plot 

4) AE Count Rate 

 

Similar to the AE energy rate, the change in linearity of AE 

count rate slope at around 90-120 counts per second is an 

effective indicator of change in slope of stress-strain curve and 

thus an impending failure. Also, the highest count rate is 

observed in defect free sample and lowest in HAZ failure 

sample similar to the trends observed with other data. Hence, 

the instantaneous count rates could also be used as an 

augmented input to the neural networks program for better 

prediction of impending material failure. 

 

 
Figure 5 AE Count Rate and Stress-Strain comparative plot 

 

5) AE Amplitude Distribution 

AE distribution data is considered to contain vital information 

related to defect growth, microstructural changes, grip noises 

etc. As seen in Figure 6, the emissions are highest for defect 

free sample and lowest for the sample with HAZ failure. Figure 

6 also indicates that all types of samples have characteristics of 

increase in emissions at the onset of yielding or plastic 

deformation. Therefore, this data type is considered to possess 

vital information regarding the behavior of material under stress 

loading. 

 
Figure 6 AE Amplitude Distribution and Stress-Strain comparative plot 

 

6) AE Counts 

Figure 7 represents AE counts vs strain interposed over 

stress-strain graph and is considered to have critical 

information regarding sample behavior under stress similar 

to amplitude distribution and count distribution data. 

However, it was identified that it couldn’t be effectively used 

in failure prediction due to the presence of a high number of 

low count hits related to noise. Also, high variation in the AE 

count values impacted effective training of neural network. 

Therefore, this data was used for qualitative assessment of 

the samples under load but not used for training the neural 

network for failure prediction. 

 

 
Figure 7 AE Count Distribution and Stress-Strain comparative plot 

 

7) Amplitude-Counts correlation plots 

The amplitude and counts data combination was recognized to 

allow for isolation of critical hits (amplitude > 60 dB and count 

>250) that carry critical information related to material failure 

process. High amplitude with low count and low amplitude with 

high count data does not characterize the material’s failure 
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process and hence the data filtration allows for plotting of 

significant information. Figure 8 shows combination plots of 

AE amplitude vs. strain interposed with stress-strain data and 

AE counts vs. strain data interposed with stress-strain data. As 

seen with other signal parameters, defect free sample has high 

number of critical hits ( amplitude > 60 dB and counts > 250) 

signifying a brittle failure at a lower peak load, while HAZ 

failure sample has low number of critical hits representing a soft 

failure. 

 

 

 
Figure 8  Filtered AE Data and Stress-Strain comparative plot 

 

8) Hit-amplitude distribution plots 

The overall damage state of the sample can be qualitatively 

assessed by using the distribution of hit amplitude data[7] and 

it is considered to provide most information regarding the 

damaged state of the test specimen. A shift of amplitude-hit data 

towards higher values signifies a higher quality part and 

conversely, a shift towards lower amplitude-hit data implies a 

lower quality part with stress concentration areas such as 

defects and voids. Figure 9 shows amplitude-hit distribution 

data, with defect free sample showing high hit- peak amplitude 

at 60 dB, and HAZ failure sample showing high hit-peak 

amplitude at 55 dB. 

 

 
Figure 9 Actual Amplitude Distribution Plots 

 

The hit-amplitude data when plotted using Weibull yields 3 

parameters to identify shape of the distribution (Ao, θ and b).  

Ao represents threshold amplitude, θ represents mean of 

amplitude distribution which represents ductility or 

brittleness of the specimen, and b represents skewness of 

distribution towards low or high stress events with high value 

of b representing high quality part. Once these Weibull 

parameters for the amplitude-hit distribution are identified, 

they were used as inputs for the neural network model for 

failure prediction. 

 

B. ANN training and model’s performance 

Based on the data analysis presented in the section above, 

two (2) neural network models were developed- one trained 

with just amplitude-hit distribution data, other trained with 

amplitude-distribution data along with augmented inputs 

such as AE count rate, hit rate and Weibull parameters. Of 

the 15 specimens (excluding 2 from the list due to slippage 

from grips), acoustic emission data from the testing of 7 

specimens was used to train the models, while the rest 8 

were used to test the trained models. The results indicated 

that the ANN model trained with augmented inputs such as 

Weibull parameters was able to reduce the impending 

failure prediction error from 8.1% to 4.5% at proof loads as 

low as 50% of peak load. 

 
Figure 10 Failure prediction performance of ANN Models 
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IV. CONCLUSION 

The acoustic emission data that was used to train the neural 

network model for failure prediction of maraging steels at low 

proof loads was determined to have a significant impact on the 

accuracy of the back-propagation multi-layer perceptron neural 

network. It was identified that the error in failure prediction was 

reduced by 45% when the neural network was trained with 

augmented inputs such as hit rate, energy rate, count rate and 

Weibull shape parameters of amplitude-hit distribution data 

compared to the one trained with just the amplitude-hit data.  

Thus, the analysis presented in this article signifies the 

importance of selection of right AE signal parameters for 

Neural network model training used to predict impending 

failures in materials used for critical structures such as rocket 

motor casings in satellites or missile systems. 
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