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Abstract 

 
Artificial emotion is the basic pre-requisite for the 

intelligence in navigation of our Robot. Five basic 

emotions such as Fear, Angry, Disgust, Happiness 

and Sadness are used as the key-tool in modifying the 

navigation of the robot. These emotions are 

generated as a result of sensor’s input to the robot. 

Fear is incurred when the robot faces obstacles in its 

path and it limits its speed in such crowded 

environments and makes an alternative path-plan to 

avoid the collisions. Anger is incurred, when the 

robot faces a large number of obstacles, it limits its 

speed and tries to push the obstacles away. Disgust 

helps the robot in finding the alternate paths rather 

than using the same path for repetitive travels. The 

robot faces sadness when it reaches a goal after a 

long time, due to the obstacles in its path and hence 

the robot finds an alternate path during its next travel 

which gives happiness to the robot which in-turn 

improves the speed of the robot. Thus all the 

emotions are used to improve the robot’s 

performance in terms of speed and reducing the 

number of collision counts. 

Key words- Artificial emotions, Goals, Adaptive 

performance. 

 

 

1. Introduction 
 Emotions and reason have historically been regarded 

as independent process competing for control of the 

brain. This view largely stems from philosophies 

such as Cartesian dualism that have influenced 

Western thinking for centuries [1]. Such philosophies 

tend to view many emotions in a negative light, 

regarding them as base instincts that the rational 

mind should strive to overcome. Recent years have 

seen increasing acceptance of philosophies that 

challenge the strong division between mind and 

body[2],[13]. Psychological and neurobiological 

evidence links emotions to functions that were once 

considered purely cognitive, such as problem solving, 

learning, memory and perception[3]. This has led 

some authors to conclude that emotions are a pre-

requisite for intelligence [1]-[5],[12]. Other 

researchers argue that, even if emotions are not 

necessary for intelligence, they can be beneficial to 

adaptive behavior, the implementation of artificial 

emotions in robot Manuscript received is worth 

consideration[14]. As we define them, artificial 

emotions are not “real” emotions subjectively 

experienced by robots, nor are they superficial 

external responses intended to mimic human 

emotions. Rather, they are software mechanisms 

inspired by theories of biological emotions that 

enable a robot to appropriately respond to certain 

situations that arise during its  interactions with a 

dynamic environment. While artificial emotions can 

be applied to models that facilitate human-machine 

interaction[6],[9], We largely focus on the effects of 

emotions on general performance. In particular, 

artificial emotions can motivate a robot to reprioritize 

its goals, modulate its behavior parameters, and 

provide learning rewards. These interactions should 

improve a robot’s ability to adapt to conditions that 

exceed its original design constraints [2]. First, we 

outline an emotion-based hybrid reactive/deliberative 

robotic architecture that supports these functions. 

Next, we describe its implementation as a mobile 

robot navigation system[7],[8],[16]. Finally, we 

present the results of a series of experiments that 

quantitatively compare its performance with an 

emotionless counterpart. 

 

2. Biological Emotions 
   Architectures for autonomous agents and robots 

bear little resemblance to the cognitive architectures 

of biological brains. Therefore, it is generally not 

advantageous to attempt to model the full range of 

biological emotions or for artificial emotions to have 

as broad an influence over cognitive processes as 

their real-world counterparts. Neverthrless, certain 

insights can be gleaned from studies of biological 

emotions that may improve the performance of 

computational models.  

In the biological world, emotions are linked 

to both learned and innate processes. For example, 

humans and many animals have evolved an innate 

predisposition to fearing certain objects such as 

snakes[2]. While learning is required to associate a 
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particular object with the fear response, organisms 

that can more readily learn to fear appropriate 

environmental threats possess a survival advantage 

and therefore more likely to reproduce. 

Emotions interact with cognition at multiple 

architectural levels. This is confirmed by the 

existence of two distinct fear circuits in the brain. 

One passes fast reactive signals from the thalamus to 

the amygdale, allowing a humal or animal to quickly 

respond to immediate threats. The other consists of 

slower more refined signals received by the amygdale 

from the cortex, enabling an organism to 

appropriately act to facilitate long-term survival.  

 

3. Robotic Emotions 
 Research into robotic emotions can be 

divided into two domains [2]: 1. Social interaction- 

Emotions can enable robots to behave in a socially 

appropriate manner when interacting with humans. 2. 

Adaptation- Emotions are adaptive behaviours that 

can potentially improve a robot’s general 

performance. 

 Disregarding the functional benefits of 

emotions to robots, humans are accustomed to 

emotional interaction. Thus, there is significant 

demand for robots that can portray emotions when 

interacting with humans or appropriately respond to 

detected human emotions. Although some social 

robots utilize biologically inspired models of 

emotion, many researchers focus more on the 

appearance of robotic emotions or the subjective 

evaluations of humans who interact with the robots. 

While some authors have argued that artificial 

emotions can serve a useful role in robotics outside of 

the social domain, few completed implementations 

have been demonstrated. The majority of robots 

utilize emotions as adaptive behaviours are 

nevertheless applied in a social context, interacting 

with humans or other robots. Artificial emotions are 

commonly represents as discrete states that drive a 

robot’s actions[3]. The underlying control 

architecture is often purely reactive[3], so the 

interactions between emotions and deliberative 

planning have received a little attention. Few authors 

attempt to model the influence of emotions on 

learning [3] or the ability to learn to experience 

emotions appropriate to the situation. Quantitative 

results are scarce [2], and those that exist to tend to 

analyze the performance of an entire system; 

individual mechanisms or emotions are generally not 

decoupled. It is therefore likely that many reported 

performance differences are due to the actions of a 

small subset of the emotions or mechanisms 

implemented, with others serving no useful purpose. 

We represent emotions not as discrete logic states but 

as continuous modulations of the robot’s decisions 

and actions. These modulations are applied to a 

hybrid architecture that incorporates reactive control, 

deliberate planning and exploration capabilities. We 

utilize emotions to improve the adaptive capabilities 

of a single robot for a nonsocial task: navigation 

within unknown indoor environments.  

 

4. Architectural Description 
 Biological emotions contain both innate and 

learned components, and they interact with multiple 

levels of cognitive processes. We model these varied 

interactions within a hybrid reactive/deliberative 

architecture. Higher levels of the architecture have a 

supervisory role, providing loose goals that can be 

obeyed or ignored by lower level processes as the 

situation dictates. Emotions interact with all levels of 

the hierarchy. Reactive emotions are fast hardcoded 

stimulus/response patterns tightly coupled to 

perception and action systems. Deliberative emotions 

are slow learned associations that affect decisions 

made by high-level planning systems[2].  

Not all decisions and actions in the 

biological world are influenced by emotions. 

Furthermore, cognitive functions that can  benefit 

from emotions do not necessarily require emotions to 

perform at a basic level. Similarly, our architecture is 

not driven solely by emotions. Each of its major 

functions can operate in the absence of an emotional 

influence. In our model, artificial emotions are 

second-order processes that bias decisions and 

actions to better suit the context of a situation. 

Five basic emotions are represented in our 

architecture as distinct stimulus/response patterns 

(Table 1). They are not intended to be exact 

facsimiles of human emotions with the same names. 

Rather, they simply approximate some of the 

functions of biological emotions that are useful in the 

context of robotics. 

Table 1. Stimulus and response for the 

emotions used 

Emotion Stimulus Response 

Fear When an 

obstacle is 

found in the 

path 

Reduce the speed 

and avoid collisions 

Anger When more 

obstacles in the 

path 

Reduce the obstacle 

radius and finds path 

to avoid them 

Disgust Explore 

environment to 

improve world 

knowledge 

Finds the shortest 

path to reach the 

target 

3192

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110913



Sadness Goal is reached 

with less 

satisfaction due 

to more 

obstacles/collisi

ons in the path 

During next travels, 

it uses alternate path 

rather than using the 

same path 

Happiness Goal is reached 

in time 

Provides positive 

reinforcement to 

successful 

behaviours 

 

4.1.  Reactive Emotions  
      The intensity value of a reactive emotion is 

dependent on the probability that its associated 

stimulus will occur. Each emotion employs a 

different appraisal function to estimate this 

probability using local sensor data. Reactive 

appraisals are also subject to localized biases from 

deliberative emotions. The resulting intensity value is 

damped, allowing an emotion to persist for some time 

after its stimulus has abated. Our architecture does 

not represent competing drives as discrete behaviors. 

Instead, multiple drives are integrated into each 

control layer, enabling the robot to favor one 

response without completely disregarding another. 

Reactive emotions are expressed as control parameter 

modulations. These modulations smoothly change the 

robot’s bias toward certain drives without explicitly 

controlling its behaviors. 

 

4.2.  Deliberative Emotions 
Deliberative emotions are also derived from 

stimulus probability estimates. However, deliberative 

appraisal functions utilize local features and global 

representations to associate emotional intensities with 

specific objects in the environment. The deliberative 

emotions associated with an object bias the robot’s 

plans regarding that object. Like control, planning is 

generally a continuous process, and multiple goals 

can simultaneously be pursued. Certain decisions are 

binary, however Biasing such a decision means 

increasing or decreasing the probability that the robot 

will perform a particular action. 

  A task specific implementation of our architecture is 

shown in the following figure 1. 

 
Figure 1. Basic architecture. 

5. Emotion-Modulated Reactive Control 
 The reactive controller employs a two-stage 

optimization to loosely follow planned paths while 

avoiding obstacles. First, heading angel 𝜃 is selected 

for the robot, utilizing an obstacle avoidance 

approach similar to the vector field histogram 

algorithm[2]. This approach involves the following 

optimization problem for a discrete list of directions 

𝜃𝑐: 

   𝜃 = arg maxθϵ(−π,π) W1   

𝑎1 𝜃𝑐 
𝑑1(𝜃𝑐)

𝑖(𝜃𝑐)
           

Angular error function  a1(𝜃𝑐) favors directions that 

are closer to the goal direction. Obstacle avoidance 

function d1(𝜃c) prefers directions with more distant 

obstacles. Angular inertia function i1(𝜃c) gives 

preference to smaller changes in direction, preventing 

the robot from oscillating between multiple directions 

that are otherwise equally favorable. Directional 

weight vector W1 is a row vector comprising three 

unit interval elements that control the relative 

strength of each competing objective. The robot is 

roughly circular, so for simplicity, it is represented as 

a object, and each obstacle is enlarged by radius r0. 

The obstacle aversion drive thus becomes 

increasingly dominant as r0 increses.  

 Next, linear velocity ∪ and angular velocity 

𝜔 are selected in a way that move the robot in the 

intended direction at an appropriate speed[2]. The 

method employed is similar to velocity space 

approaches such as the curvature-velocity and 

dynamic window algorithms.  
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5.1 Reactive Fear 
The robot’s maximum speed can be 

modulated in a context-dependant manner. The robot 

detects no nearby obstacles in the open area, so its 

reactive fear intensity value is close to zero, but the 

fear increases when it travels a narrow path or near 

any obstacles, as a result the velocity of the robot is 

decreased, thereby reducing the probability of 

collision.  

 

5.2 Reactive Anger 
Reactive anger intensity increases when the 

robot’s progress toward the goal is likely to be 

obstructed by frequent obstacles. Detection of an 

obstructed state involves the summation of the 

robot’s velocity vectors over time t. Obstacle radius 

linearly decreases over a certain limit as the reactive 

anger intensity increases.  

 With the obstacle radius correctly modulated 

by reactive anger the robot initially avoids contact 

with the obstacles, but the resulting repetitive motion 

is soon recognized as an obstructed state. This causes 

reactive anger intensity to quickly increase, reducing 

the obstacle radius until the robot can push the 

obstacles out of the way, once free of obstacles, the 

reactive anger value rapidly decays, increasing the 

robot’s aversion to a safer level, allowing it to 

navigate normally[2].  

 

6. Emotion-Modulated Path Planning 
 The path planning is performed by the A

* 

heuristic which is a best-first graph search method 

that prioritizes nodes by the estimated quality of their 

associated paths. In standard A* path planning 

methods, nodes are assigned either an occupied or 

unoccupied status, and all unoccupied nodes are 

equally weighted. However, if no unobstructed paths 

exist, the planning algorithm gracefully fails by 

choosing the best of the unfavorable options 

available. The reactive controller generally prevents 

the robot from colliding with obstacles, even if it is 

instructed to pass through them, and it can sometimes 

reactively navigate through nodes that the planner 

regards as occupied. Replanning is triggered when 

the robot’s reactive fear anf anger intensities exceed 

the predefined thresholds[3]. Another variable that 

can trigger replanning is the robot’s “pseudoreactive” 

disgust intensity, obtained from the mean sensor-map 

mismatch. 

 

6.1.  Deliberative Fear and Anger 
If a collision sensor is triggered, deliberative 

fear intensities grow in nodes within rectilinear 

distance of the node where the collision occurs; 

otherwise, they decay at a certain rate. If deliberative 

fear increases in nodes, surrounding the point of 

collision. This results in a strong negative bias to 

their cost, causing the robot to immediately plan a 

path elsewhere. Thus, the robot sustains a smaller 

number of collisions each time it encounters a 

dynamic obstacle, and it more quickly completes the 

task.  

Fear is clearly advantageous in the example 

presented. However, there are situations in which it 

can become hindrance. For example, if the  robot 

incurs a collision in a doorway that is the only exit 

from a room, it will become “afraid” of the doorway, 

preventing it from leaving the room. This problem is 

addressed by utilizing deliberative anger to suppress 

emotions such as fear when they obstruct  the robot’s 

progress toward a goal. Overall, these results 

demonstrate that deliberative fear can improve the 

robot’s performance in certain situations and 

deliberative anger can counteract some of its adverse 

effect[2].  

 

6.2.  Deliberative Disgust 
When deliberative disgust is disabled the 

robot travels back and forth along the same path. 

However, if deliberative disgust is activated, a 

negative bias is applied to nodes that the robot has 

explored, increasing the probability that the robot 

will instead plan a path through unexplored nodes. So 

it covers a large portion of the map before arriving as 

its goal. The robot’s task is to explore the 

environment, dynamically updating its internal map 

as it navigates to a specified location and then 

returns. If performance is judged in terms of quantity 

of world knowledge obtained, disgust greatly 

improves the robot’s performance. 

 

6.3.  Happiness and Sadness 
For simplicity, sadness is modeled as the 

negative state of happiness. Upon completion (or 

timeout) of a navigation instruction, the instruction is 

assigned success rating. The success rating is 

currently dependent on the normalized ratio of path 

time to path distance. The utility of 

happiness/sadness as a learning mechanism is 

demonstrated in a known static environment where 

the robot is instructed to repeatedly travel between 

two points. After one passage through the narrow 

corridor, the robot determines that the time taken was 

unacceptably long for the distance covered. The 

happiness/sadness values of nodes traversed 

throughout the instruction are therefore largely 

negative (indicating sadness), resulting in a strong 

negative bias to their cost during future planning [2]. 

Thus, if performance is to be judged in terms of task 

completion speed, happiness and sadness do improve 

the robot’s performance. 
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7. Implementation 
Octagonal shaped robot with IR sensors 

placed in all its sides are used to implement the 

concept. PIC microcontroller is used to design the 

program.  

 
Figure 2. Implementation 

8. Conclusion 
         Thus, When all these emotions are grouped 

together the robot’s overall performance has a 

significant increase when compared to the one 

without these emotions. The collision counts 

decreases a lot due to the fear and anger emotions, 

Exploration coverage and mean velocity has a 

significant increase due to the Disgust, Happiness 

and Sadness. And the chances for the robot to reach 

the destination also increased significantly.  

These emotions can also be used in remote 

robots that are used in Military purpose for bomb 

defusals and other such robots that navigate by 

themselves. In future, it can also be implemented in 

Smart cars for a driverless system. 
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