

Abstract— XML has become the standard way for representing

and transforming data over the World Wide Web. The problem

with XML documents is that they have a very high ratio of

redundancy, which makes these documents demanding large storage

capacity and high network band-width for transmission. Because of

their extensive use, XML document could be retrieved according to

queries by users. The aim of this paper is to present the design of a

system named “Adaptive Compression Techniques and Efficient

Query Evaluation for XML Databases” which has the ability of

compressing the XML document and retrieving the required

information from the compressed version with less decompression

required according to queries.

The system first compressed the XML document by proposed

algorithm. The compressed file is divided into different relational

databases doing so there is no need to decompress the complete

file for retrieving the results of any query. Only the required

information is decompressed and submitted to the user. The average

compression ratio of the designed compressor is considered

competitive compared to other queriable XML compressors. Based

on several experiments, the query processor part had the ability to

answer different kinds of queries ranging from simple exact match

queries to complex ones that require retrieving information from

several compressed XML documents.

I. INTRODUCTION

Extensible Markup Language (XML) [XML 1.0 (Second

Edition) W3C Recommendation, October (2000)] is

proposed as a standardized data format designed for

specifying and exchanging data on the Web. With the

proliferation of mobile devices, such as palmtop computers,

as a means of communication in recent years, it is reasonable

to expect that in the foreseeable future, a massive amount

of XML data will be generated and exchanged between

applications in order to perform dynamic computations over

the Web. However, XML is by nature verbose, since terseness

in XML markup is not considered a pressing issue from the

design perspective [7]. In practice, XML documents are usually

large in size as they often contain much redundant data. The

size problem hinders the adoption of XML since it

substantially increases the costs of data processing, data storage,

and data exchanges over the Web. As the common generic text

compressors, such as Gzip], Bzip2, WinZip, PKZIP, or

MPEG-7 (BiM) , are not able to produce usable XML

compressed data, many XML specific compression

technologies have been recently proposed. The essential idea

of these technologies is that, by utilizing the exposed

structure information in the input XML document during the

compression process, they pursue two important goals at the

same time. First, they aim at achieving a good compression

ratio and time compared to the generic text compressors

mentioned above. Second, they aim at generating a

compressed XML document that is able to support efficient

evaluation of queries over the data. In the survey of

XML-conscious compressors it has been found that the

existing technologies indeed trade between these two goals.

For example, XMill [H. Liefke et al] needs to perform a full

decompression prior to processing queries over compressed

documents, resulting in a heavy burden on system resources

such as CPU processing time and memory consumption. At the

other extreme, some technologies can avoid XML data

decompression in some cases, but unfortunately only at

the expense of the compression performance. For example,

XGrind [P.M.Tolani et al] adopts a homomorphic

transformation strategy to transform XML data into a

specialized compressed format and support direct querying on

compressed data, but only at the expense of the compression

ratio; thus the XML size problem is not satisfactorily resolved.

In regard to the importance of achieving a good level of

performance in both compression and querying, it has been

found that the current research work on XML compression

does not adequately analyze the related features.

II. PROPOSED XML COMPRESSION METHODOLOGY

The XML Compressor supports compression of XML

documents. The compression is based on tokenizing the

XML tags. The assumption is that any XML document has a

repeated number of tags and so tokenizing these tags gives

a considerable amount of compression. Therefore the

compression achieved depends on the type of input

document; the larger the tags and the lesser the text content,

then the better the compression. The goal of compression is to

reduce the size of the XML document without losing the

structural and hierarchical information of the DOM tree. The

compressed stream contains all the "useful" information to

create the DOM tree back. The compressed stream can also be

generated from the SAX events. XML Parser for Java can

also compress XML documents. Using the compression

feature, an in memory DOM tree or the SAX events generated

from an XML document are compressed to generate a binary

compressed output. The compressed stream generated from

DOM and SAX are compatible, that is, the compressed

stream generated from SAX can be used to generate the DOM

tree and vice versa.

III. XML SERIALIZATION AND COMPRESSION

An XML document is compressed into a stream by means of

the serialization of an in-memory DOM tree. When a large

XML document is parsed and a DOM tree is created in

memory corresponding to it, it may be difficult to satisfy

memory requirements and this can affect performance. The

XML document is compressed into a stream and stored in an

in-memory DOM tree. This can be expanded at a later time

into a DOM tree without performing validation on the XML

Adaptive Compression Techniques and Efficient

Query Evaluation for XML Databases
V.S. Gulhane

Dr. M.S. Ali

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

data stored in the compressed stream. The compressed stream

can be treated as a serialized stream, but the information in

the stream is more controlled and managed, compared to

the compression implemented by Java's default serialization.

There are two kinds of XML compressed streams:

DOM based compression: The in-memory DOM tree,

corresponding to a parsed XML document, is serialized,

and a compressed XML output stream is generated. This

serialized stream regenerates the DOM tree when read back.

SAX based compression: The compressed stream is

generated when an XML file is parsed using a SAX parser.

SAX events generated by the SAX parser are handled by the

SAX compression utility, which handles the SAX events

to generate a compressed stream. In addition to the above

methodology the implemented proposed compression

methodology compresses XML documents and works as

follows:

XML Compression

Input: XML File

Output: Compressed XML File

Begin
1. Open XML file.

2. Store Current time instance.

3. If Compressor is enabled

3.1 Parse the complete XML file with SAX parser

3.2 Compress the file by removing comments, extra spaces

and line breaks while preserving the content from the

CDATA lock.

3.3 Remove XML Comments

3.4 Remove multiple whitespace characters

3.5 Remove inter-tag whitespace characters

3.6 Remove unnecessary tag attributes such as quotes

3.7 Simplify existing doctype

3.8 Remove optional attributes from script tag

3.9 Remove optional attributes from style tag

3.10 Remove optional attributes from link tag

3.11 Remove optional attributes from form tag

3.12 Remove optional attributes from input tag

3.13 Remove values from Boolean tag attributes

3.14 Remove java script from inline event handlers

3.15 Replace http:// with // inside tag attributes

3.16 Replace https:// with // inside tag attributes

3.17 Preserve original line breaks

3.18 Remove spaces around provided tags

3.19 Compress inline css.

3.20 Compress inline java script

4. Create and Store the resulting Compressed XML file in

current working directory.

5. Get Current time instance and subtract it from the previously

stored time instance to compute the total compression time

required.

6. Compute the Compression ratio by considering the sizes of

Original and Compressed files.

End

Figure 1: XML Compression Algorithm

With default settings your compressed layout should be

100% identical to the original in all browsers (only

characters that are completely safe to remove are removed).

Optional settings (that should be safe in 99% cases) would

give you extra savings. Optionally all unnecessary quotes can

be removed from tag attributes (attributes that consist from a

single word: <div id="example"> would become <div

id=example>). This usually gives around 3% page size

decrease at no performance cost but might break strict

validation so this option is disabled by default. About extra

3% page size can be saved by removing inter-tag spaces. It is

fairly safe to turn this option on unless you rely on spaces

for page formatting. Even if you do, you can always

preserve required spaces with or . This option

has no performance impact.

The following figure 2 shows the complete architecture of

Propose implemented research methodology

Figure 2: Complete Architecture of Proposed Implemented

Research Methodology

In the proposed methodology initially all the XML

documents are compressed using XML SAX parser. The

graphical user interface is designed from where user can select

their XML or HTML documents that he/she want to

compress. The compressed XML and HTML file will be

created in the current working directory with name

Compressed XML.xml and Compressed HTML.html as per

the file that has been selected by the user. Figure 3 shows the

screenshot of HTML compressor where Image Acquisition

Toolbox.html file is compressed. The original size of file was

69114 bytes. After compression the size of file is 49474 bytes.

The total time required for compression is 234 ms. Figure 4

shows the screenshot where extracting frames from

video.html is compressed. The original size of the file was

41762 bytes. After compression the size of file is 36645

bytes. The total time required for compression is 140 ms.

Figure 3: Compression of Image Acquisition Toolbox.html

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

Figure 4: Compression of extracting frames from video.html

IV. EXPERIMENTAL DESIGN AND SETUP

We compare the performance of our approach with that of the

following four compressors :

(1) gzip, which is a widely used generic text compressor,

(2) XMill, which is a well-known XML-conscious

compressor, and

(3) XGrind, which is a well known XML-conscious

compressor that supports querying of compressed XMLdata.

(4) XCQ - Querriable compressor.

All the experiments were run on a notebook computer .To

evaluate the performance of the compressors, we used five

datasets that are commonly used in XML research (see the

experiments in [W. Y. Lam, W. Ng, may 2003et al, Liefke, H.

& Suciu, D. 2000. XMill) SwissProt, DBLP,ebay, yahoo, and

Shakespeare.We now briefly introduce each dataset.

1. Ebay,yahoo : It consists of many XML documents that

are used in online shopping processes through different

e-shopping and auction web sites. These documents are

converted from database systems and they contain many

empty elements with neither data nor sub-elements inside them

2. Swissprot is the complete description of the DNA sequence

is described in the XML document

3. DBLP is a collection of the XML documents freely

available in the DBLP archive . that illustrates different

papers published in proceeding of conferences and

journals in the field of computer science.

4. Shakespeare is a collection of the plays of William

Shakespeare in XML [AlHamadani, Baydaa (2011) et al].

The first four datasets given above are regarded as

data-centric as the XML documents have a very regular

structure, whereas the last one is regarded as document

centric as the XML documents have a less regular structure

Figure 5 shows the screenshot of the XML Compressor

where shakespear.xml is compressed. The original size of

file was 7894787 bytes. After compression the file size is

3947393 bytes. The time required for compression is 3047 ms

Figure 5: Compression of shakespear.xml

Figure 6 shows the screenshot of the XML Compressor where

SwissProt.xml is compressed. The original size of file was

94460066 bytes. After compression the file size is 84775077

bytes. The time required for compression is 25359 ms.

Figure 6: Compression of SwissProt.xml

Figure 7 shows the screenshot of the XML Compressor

where dblp.xml is compressed. The original size of file

was 92301286 bytes. After compression the file size is

644495524 bytes. The time required for compression is 25547

ms.

Figure 7: Compression of dblp.xml

Figure 8 shows the screenshot of the XML Compressor

where yahoo.xml is compressed. The original size of file

was 25327 bytes. After compression the file size is 22694

bytes. The time required for compression is 125 ms.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

Figure 8: Compression of yahoo.xml

Figure 9 shows the screenshot of the XML compressor

where ebay.xml is compressed. The original size of file was

35469 bytes. After compression the file size is 34281 bytes.

The time required for compression is 141 ms.

Figure 9: Compression of ebay.xml

The following graph 1 shows the computed values of CR1,

CR2 and the compression time required for the implemented

methodology.

Graph 1: Comparison of CR1, CR2 and Compression time on

various datasets.

V. COMPRESSION PERFORMANCE

We now present an empirical study of our XML compressor

performance with respect to compression ratio, compression

time. All the numerical data used to construct the graphs can

be found in the graph in(W. Y. Lam, W. Ng, et al)

A. Compression Ratio :

The compression ratios are calculated for above discussed

results by using the following equation. There are two

different expressions that are commonly used to define the

Compression Ratio (CR) of a compressed XML document.

CR1 = bits/byte

CR2 = X 100

The first compression ratio, denoted CR1, expresses the

number of bits required to represent a byte. Using CR1 a

better performing compressor achieves a relatively lower

value. On the other hand, the second compression ratio,

denotedCR2, expresses the fraction of the input document

eliminated. Using CR2, a better performing compressor

achieves a relatively higher value.

B. Compression Time :

Following Graph 2 shows the compression time (expressed in

seconds) required by the compressors to compress the XML

documents. From the observation it is clear that for our

approach, we are getting better compression time as

compared to other queribale XML compressor. It is clear that

gzip out performs the other compressors in this experiment.

XMill had a slightly longer compression time than gzip, and

XCQ in turn had a slightly longer compression time than

XMill. Our approach has slightly more compression time

than Xmill but lesser compression time than a quriable XCQ

and Xgrind. The time overhead can be explained by the fact

that both XMill and XCQ introduce a pre-compression phase

for re-structuring the XML documents to help the main

compression process. The grouping by enclosing tag

heuristic runs faster than the grouping method used in XCQ

and thus XMill runs slightly faster than XCQ. It should be

noted, however, that the data grouping result generated by

XMill may not be as precise as our PPG data streams. This

complicates the search for related data values of an XML

fragment in the separated data containers in a compressed

file. In addition, the compression buffer window size in

XMill is set at 8 MB, which is optimized solely for better

compression [H. Liefke and D. Suciu. XMill et al]. Such a

large chunk of compressed data is costly in full or partial

decompression. On the other hand, the compression time

required by XGrind is generally much longer than that

required by gzip, XMill, XCQ and our proposed approach.

XGrind uses Huffman coding and thus needs an extra parse

of the input XML document to collect statistics for a better

compression ratio, resulting in almost double the

0
10
20
30
40
50
60

Im
ag

e
…

Ex
tr

ac
ti

n
g …

Sh
ak

es
p

ea
re

Sw
is

sP
o

rt

D
B

LP

Ya
h

o
o

Eb
ay

CR1

CR2

Compression
Time

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

compression time required in a generic compressor

Graph 2 : Compression time for different data sets for

different techniques.

C. Implemented Research Methodology

As discussed in previous the compressed XML file is converted

into relational database. The complete architecture is shown in

figure 2. There are some disadvantages and limitations of

intermediate representation of compressed data before

decompression for other existing compression techniques. In the

implemented methodology as per the compressed XML file it

is divided and represented by the RDB. By doing so the results

are provided in faster way without any restrictions on memory

and size of data. Any type of query is supported in this

technique. The type of query is not restricted to aggregation

queries.

Figure 10: Representation of article information in RDB

extracted from compressed dblp file.

The queries are executed on the intermediate RDB

representation and relevant results of query are returned and

again represented in the form of decompressed XML.

Consider the dblp dataset. It is divided into various

intermediate RDB representations after compression. These

RDB consists of information about articles, international

proceedings, phd thesis, master thesis. This information is

represented in separate RDB. This information is

extracted from the compressed XML file. Because of these

representations the user query evaluation will be faster. One

more advantage is during decompression. It is not needed to

decompress the whole dataset. The partial decompression of

the compressed dataset is achieved by using this methodology.

The above figure 10 shows the RDB representation of article

records extracted from the compressed XML dataset.

Figure 11: Representation of international proceedings

information in RDB extracted from compressed dblp file.

It can be observed that it contains the information regarding

author, title, journal, volume and publication year of article.

So any user query can be fired on this representation and the

relevant results will be returned to the user. It supports any type

of query it will not be restricted to only one type of query. It is

also observed that this representation consist of more than

9000 records. So there will not be any restriction on total

number of records as it is in earlier techniques.

Figure11 shows the representation of international

proceedings information extracted from the compressed dblp

dataset. As shown it consists of information regarding author,

title and publication year of proceedings. It consists of more

than 8000 records.

The following figure 12 shows the algorithm for XML to

RDB conversion process. Initially node list is created by

using SAX parser. This node list consists of nodes these are

nothing but the sub tags in the main tag. Consider while

retrieving the article information from the dblp dataset the

article tag is the root node. The node items belonging to the

article tag are nothing but its child tags. So the node list will

consists of items namely author, title, journal,volume and

year. After generating the node list the values of each node

item will be extracted from the XML document and it will be

placed in the separate field in the RDB.

Input: XML File

Outpt: RDB

Begin

1. Open an XML file.

2.Establish the connection with RDB using JDBC ODBC

drivers and created DSN.

3. Generate node list for root node tag.

4. For each node item in node list repeat the following steps

4.1 Extract the values of node items from the XML

document.

 4.2 Insert these values in their respective fields in the RDB

 4.3 Update RDB

5. Close the connection with RDB.

End

Figure 12: Algorithm for XML to RDB conversion.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

D. Querying Compressed XML and Query

Evaluation Proposed Methodology

As discussed in previous section, proposed XML

compression methodology converts the compressed

XML into its relational database representation. This

approach provides an advantage of executing any type of

query as well as decompression time will be less as there

are multiple relational database representations for single

compressed XML file. Due to these representations the

query search space is reduced and relevant results are

returned as a result of decompression by using the concept

of partial decompression. The following figure 13 shows an

algorithm used for partial decompression of compressed

XML data.

Input: Compressed XML Relational Database

Representations Output: Partially Decompressed XML Data

Begin

1. Create an instance of Document Builder factory.

2. Create Document Builder.

3. Create new document.

4. Create root element.

5. Establish database connectivity.

6. Retrieve the relevant records as per user query and store it

in result set.

7. Retrieve the metadata from the result for knowing the total

number columns in the table.

8. For each column create an element tag and enclose data

within tag.

9. Parse this complete data using DOM.

10. Send the DOM data to XML file.

End

Figure 13: Algorithm for partial decompression.

 Query Performance:

The performance of the proposed implemented methodology

is measured by using various performance metrics. From the

query perspective, proposed implemented methodology is

compared with XGrind and Native approach on the basis of

query response times. These metrics are defined below:

Query Response Time (QRT): Total time required to execute

the query.

Query Speedup Factor (QSF): Normalizes the query

response time of Native and XGrind with respect to proposed

methodology, that is,

As indicated in above algorithm the user query is executed on

the compressed XML’s relational database representation.

The query results are provided in terms of partially

decompressed XML document. For example, In case of article

queries the partial decompression result is provided in

‘partialart.xml’ file. The implemented proposed methodology

is evaluated on the basis of query response time, query

speedup factor and the decompression time. The following

table 1 shows the query performance measure in terms of

query response time and query speedup factor.

Table 1: Query performance

It can be observed from the above table great speedup

factor is achieved by using the proposed implemented

methodology. Following table 2 shows the comparison of

proposed methodology with Xmill and gzip on the basis

decompression time. DT indicates the decompression

time.

Table 2: Decompression Times

The time require for decompression is very less in case of

the proposed implemented methodology as compared to

Xmill and gzip.

VI. CONCLUSION

 we recognize that the size problem already hinders the

adoption of xml, since in practice, it subsequently increases

the cost of data processing, data storage and data exchange

over the web .We have presented here our approach for

compression of XML database . As there is a tradeoff

among compression time and compression ratio, we tried to

address compression time issue and effective query

evaluation which is having comparatively better result.

With the experimental evaluation we come to the conclusion

that our compression time is better with some of the querible

XML compressor and query response time is better than

XGrind and native . And of course there is further room for

the improvement in compression ratio and compression time.

VII. REFERENCES

1] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu, and
A.Pugliese. Efficient Query Evaluation over Compressed XML Data.

Proceedings of EDBT (2004).

2] A.Arion, A. Bonifati, G. Costa, S. D'Aguanno, I.

Manolescu, and A. Pugliese. XQueC: Pushing Queries to

Compressed XML Data. Proceedings of the 29
th

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

6www.ijert.org

International Conference on Very Large Data Bases

(VLDB'03), (2003).

3] Al-Hamadani, B. T., Alwan, R. F., Lu, J. & Yip, J. 2009.

Vague Content and Structure (VCAS) Retrieval for XML

Electronic Healthcare Records (EHR). Proceeding of the

2009 International Conference on Internet Computing, USA.

P: 241-246.

4] Al Hamadani, Baydaa (2011) Retrieving Information from

Compressed XML Documents According to Vague Queries.

Doctoral thesis, University of Huddersfield.

5] Augeri, C. J., Bulutoglu, D. A., Mullins, B. E.,

Baldwin, R.O. & Leemon C. Baird, I. (2007). An analysis

of XML compression efficiency. Proceedings of the 2007

workshop on Experimental computer science, ACM, San

Diego, California.

6] Clarke J (2004) The Expat XML parser. Extensible Markup

Language (XML) 1.0 (Second Edition) W3C,

Recommendation, October (2000)

 http://www.w3.org/TR/REC-xml/.

7] G. Antoshenkov. Dictionary-Based Order-Preserving

String Compression. VLDB Journal 6, page 26-39, (1997).

Gerlicher, A. R. S. (2007), Developing Collaborative XML

Editing Systems, PhD thesis, University of the Arts London,

London.

8] Groppe, J.(2008), SPEEDING UP XML QUERYING,

PhD thesis,Zugl Lübeck University, Berlin.

H. Liefke and D. Suciu. XMill: An Efficient Compressor for

XML Data. Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 153-164 (2000).

9] Harrusi, S., Averbuch, A. & Yehudai, A. 2006. XML

Syntax Conscious Compression.Proceedings of the Data

Compression Conference (DCC’06),

http://www.w3.org/TR/xquery.

10] J. Cheng and W. Ng. XQzip: Querying Compressed

XML Using Structural Indexing. Proceedings of EDBT

(2004).

11] J. Clark. XML Path Language (XPath), (1999).

http://www.w3.org/TR/xpath.

12] J. Gailly and M. Adler. gzip 1.2.4. http://www.gzip.org/.

13] J. K. Min, M. J. Park, and C. W. Chung. XPRESS: A

Queriable Compression for XML Data. Proceedings of the

ACM SIGMOD International Conference on Management of

Data (2003).

14] J.M.Martinez.MPEG-7Overview(version9). http://www.

chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm.

15] Liefke, H. & Suciu, D. 2000. XMill: an Efficient

Compressor for XML Data. ACM.

16] Mark nelson, Prinipal of data compression, pub 1999.

Moro, M. M., Ale, P., Vagena, Z. & Tsotras, V. J. 2008.

XML Structural Summaries. PVLDB '08, Auckland, New

Zealand.

17] Ng, W., Lam, W.-Y. & Cheng, J. (2006) Comparative

Analysis of XML Compression Technologies. World Wide

Web: Internet and Web Information Systems, Vol. 9,

Pages 5-33

18] Norbert, F. & Kai, G. (2004) XIRQL: An XML query

language based on information retrieval concepts. ACM

Trans. Inf. Syst., 22, 313-356.

19] P. M. Tolani and J. R. Haritsa. XGRIND: A Query-

friendly XML Compressor. IEEE Proceedings of the 18th

International Conference on Data Engineering (2002).

pkzip. http://www.pkware.com/.

20] S. Boag et al. XQuery 1.0: An XML Query Language,

Nov. (2002).

21] Smith S. Nair XML compression techniques: A survey.

Department of Computer Science ,University of Iowa, USA

22] T. M. Cover and J. A. Thomas. Elements of Information

Theory. Wiley-Interscience, John Wiley &S ons, Inc., New

York, (1991). The bzip2 and libbzip2 official home page.

http://sources.redhat.com/bzip2/.

23] Violleau, T. (2001) Java Technology and XML.

ORACLE.

24] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene. XCQ:

XML Compression and Querying System. Poster

 Proceedings, 12th International World-Wide Web

 Conference (WWW2003), May (2003). Winzip.

http://www.winzip.com/.

First Author Vijay S. Gulhane, M.E. in computer Science and

Engineering , having more 30+ publication in international journal ,Area of

research is XML database compression techniques and is a research scholar

in SGB Amravati university , Amravati.

Second Author Dr. M.S.Ali M.Tech., Ph.D., Recognized research guide
with 100+publication in international journal ,Ex chairman IETE Amravati

Centre, Ex- Chairman BOS CSE, SGB Amravati University, Amravati with

25+ years experience in Academics.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

7www.ijert.org

