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Abstract— In this manuscript, we proposed a novel pipelined 

architecture for low-power and low-area adaptive FIR filter 

based on distributed arithmetic (DA) and LMS algorithm. DA 

is bit-serial computational process and uses parallel look-up 

table (LUTs) apprise and equivalent implementation of 

filtering and weight-update operations to appliance high 

throughput filter rates irrespective of the filter length. The full 

adder based conditional signed carry save accumulation for 

DA-based inner product computation is replaced and design by 

using 10 transistor full adder based carry save accumulation of 

shift accumulation, with the intention of the proposed design, 

which can reduce the area complexity and power consumption. 

The least-mean-square (LMS) algorithm adaptation is 

functioned to update the weight and abate the mean square 

error between the assessed and chosen output. The weight 

increment block based adder/subtractor cells is swapped by 

carry save adder in order to reduce area difficulty. It 

comprises of multiplexors, smaller LUT, and practically half 

the number of transistors compared to the present DA-based 

design.  

 

 Index Terms: Adaptive Filter, Distributed Arithmetic (DA), 

Finite Impulse Response (FIR), Least Mean Square (LMS) 

Algorithm, Lookup table (LUT). 

 

I.  INTRODUCTION   

 Adaptive filters find extensive use in many signal 

processing applications such as channel equalization, echo 

cancellation, noise cancellation [1]. The finite impulse 

response (FIR) filters whose weights are updated by the 

famous Widrow-Hoff least mean square (LMS) algorithm is 

the most popularly used adaptive filter not only due to its 

simplicity but also due to its satisfactory convergence 

performance [5]. The direct form configuration on the 

onward path of the FIR filter results in a long critical path 

due to an inner product computation to obtain a filter output. 

Consequently, it is required to reduce the critical path of the 

structure if the input signal has high sampling rate. By 

reducing the critical path of the structure, thereby, the 

critical path could not exceed the sampling period. 

Distributed arithmetic (DA) is so named because it 

performed arithmetic operation. DA is bit serial computation 

in nature and it eliminates the need for hardware multipliers  

 

 

 

and is capable of implementing large order filters with very 

high throughput. A lot of study has been done to implement 

the DA based adaptive FIR filter for area efficient design, 

the multiplier-less distributed arithmetic (DA) based 

technique has achieved plenteous popularity for its high 

throughput, but it results are increased in cost-effective, area 

and time efficient computing structures [8]. DA based 

hardware efficient adaptive FIR filter inner product has been 

suggested by Allred et al. [2] using two separate lookup 

tables (LUTs) Filtering lookup table and Auxiliary lookup 

table for filtering and weight updating module. Later, Guo 

and DeBrunner [3], [4] have improved the design structure 

in [2] by using only one lookup table instead of two LUTs 

for both filter and weight updating module. On the other 

hand, the design process in [2], [3], [4] and [8] require more 

cycles for lookup table (LUT) update for each new sample, 

hence it do not support high sampling rate. Meher and Park 

have improved the design with low adaptation delay for 

high speed DA based adaptive filter [6]. In a recent paper, 

Meher and Park proposed a new DA based adaptive filter 

architecture for low power, low area and high throughput 

with very low adaptation delay [7]. 

This brief proposes an adaptive FIR filter using distributed 

arithmetic for area efficient design. High Throughput is 

achieved by using a parallel lookup table update and 

equivalent implementation of filtering and weight-updating 

operations. The conditional signed carry saved accumulation 

for DA-based inner product computation is designed by 

using 10 transistor full adder based carry saved 

accumulation of shift accumulation. The use of the proposed 

design helps to reduce the area complexity and power 

consumption.  

In the next section, a brief study of the least mean square 

(LMS) adaptive algorithm, followed by the description of 

the proposed DA based technique filter in Section 3. The 

structure of the proposed adaptive filter and description of 

the proposed DA based adaptive FIR filter in Section 4. 

Results and Conclusions are given in Section 5 and 6. 

II. REVIEW OF LMS ADAPTIVE ALGORITHM 

The LMS algorithm computes a filter output and an error 

value that is equal to the difference between the current 
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filter output and the desired response for every clock cycle. 

In every training cycle, the estimated error is then used to 

update the filter weights. The weights of LMS adaptive filter 

during the nth iteration is updated according to the 

following equations [6]:  

 

𝑤 𝑛 + 1 = 𝑤 𝑛 + µ .  𝑒 𝑛                               (1a) 

 

Where 

 

𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛                                               (1b) 

 

𝑦 𝑛 = 𝑤𝑞𝑇   𝑛  . 𝑥 𝑛                                            (1c) 

 

The input vector 𝑥 𝑛  and the weight vector 𝑤 𝑛  at the nth 

training iteration are respected given by 

 

𝑥 𝑛 =  𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝑁 + 1  𝑇    (2𝑎)   

                                                                                                                                  
         

𝑤 𝑛 =  𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝑁−1 𝑁  𝑇              (2𝑏)    
                                          

𝑑 𝑛  is the desired response, and 𝑦 𝑛  is the filter output of 

the 𝑛𝑡ℎ iteration. 𝑒 𝑛  denotes the error value generated 

during the 𝑛𝑡ℎ iteration, which is used to update the 

weights, µ is the convergence factor, and N is the filter 

length. 

In the case of filter designs, the feedback error 𝑒 𝑛  

becomes available after certain number of cycles, called the 

―adaptation delay‖. The pipelined architectures therefore use 

the delayed error 𝑒 𝑛 − 𝑚  for updating the current weight 

instead of the most recent error, where 𝑚 is the adaptation 

delay. The weight update equation of such delayed LMS 

adaptive filter is given by  

 

 

𝑤 𝑛 + 1 = 𝑤 𝑛 + µ .  𝑒 𝑛 − 𝑚  . 𝑥 𝑛 − 𝑚    
                                                                          (3a) 

III.   PROPOSED DA-BASED APPROACH FOR INNER 

PRODUCT COMPUTATION                  

In each cycle, the LMS adaptive filter needs to perform an 

inner-product computation which contributes to the most of 

the critical path. Let the inner product computation of (1c) 

be given by 

𝑦 =  𝑟𝑘  .  𝑠𝑘
𝑁−1
𝑘=0                                                   (4) 

Where 𝑟𝑘
 
and 𝑠𝑘  for  0 ≤ 𝑘 ≤ 𝑁 − 1 form the N – point 

vectors corresponding to the current weights and most 

recent 𝑁 − 1 input respectively. Let us assume 𝐿 be the bit 

width of the weight, every component of the vector weight 

may be expressed in 2’s complement representation 

𝑟𝑘 = −𝑟𝑘0 +  𝑟𝑘𝑙  .  2−𝑙𝐿−1
𝑙=1

                                                    
(5) 

Where 𝑤𝑘𝑙  denotes the 𝑙𝑡ℎ bit of 𝑟𝑘 . Substituting (5), we can 

write (4) in an expanded form 

𝑦 = − 𝑠𝑘  .  𝑟𝑘0
𝑁−1
𝑘=0 +  𝑠𝑘

𝑁−1
𝑘=0  .   𝑟𝑘𝑙  .  2−𝑙𝐿−1

𝑙=1                                                                       

                                                                                                                     
(6) 

To convert the sum-of-product form of (4) into a distributed 

form, the order of summations over the indices 𝑘 and 𝑙 in 

(6) can be interchanged to have 

𝑦 = − 𝑠𝑘  .  𝑟𝑘0
𝑁−1
𝑘=0 +  2−𝑙𝐿−1

𝑙=0  .   𝑠𝑘  .  𝑟𝑘𝑙
𝑁−1
𝑘=0                                      

              

                                                                          (7) 

and the inner product given by (7) can be computed as 

𝑦 =   2−𝑙  .  𝑦𝑙
𝐿−1
𝑙−1  −  𝑦0

 
, 

 𝑦𝑙 =   𝑠𝑘  .  𝑟𝑘𝑙
𝑁−1
𝑘=0

                                             

                                                                                                                          
(8) 

Meanwhile any element of the N-point bit sequence 
 𝑟𝑘𝑙  𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 𝑁 − 1  can either be 1 or 0, the partial 

sum 𝑦𝑙  for 𝑙 = 0, 1,…,𝐿 − 1 can have 2𝑁  possible values. If 

the entire 2𝑁  possible values sum 𝑦𝑙  are precomputed and 

stored in a LUT, the partial sum 𝑦𝑙  can be read out from the 

LUT using the bit sequence  𝑟𝑘𝑙   as address bits for 

computing the inner product. 

 
 

Figure 1: DA-based implementation of four point inner product 

 

 
 

Figure 2: Carry save implementation of shift accumulation 
 

The inner product of (8) can therefore be calculated in 𝐿 

cycles of carry save implementation of shift accumulation, 

followed by LUT-read operations corresponding to 𝐿 

number of bit slices  𝑟𝑘𝑙   for 0 ≤ 𝑙 ≤ 𝐿 − 1, as shown in 

Fig. 1. Since the carry save implementation of shift 

accumulation in Fig. 2 required more area and power 

consumption. 

 
              

Figure 3: 10T 1-Bit Full Adder 

 

The carry save implementation of shift accumulation based 

full adder is design by using 10 transistor one bit-full adder 

[9] as shown in Fig. 4. The bit slices of vector 𝑟 are fed one 

after the next in the LSB to the MSB order to the carry save 
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accumulator. Finally, the sum and carry output of the carry 

save accumulator is obtained after 𝐿 clock cycle are required 

to be added by a final adder. The content of the 𝑘𝑡ℎ LUT 

location can be expressed as 

𝑐𝑘 =   𝑥𝑗  .  𝑘𝑗
𝑁−1
𝑗=0                                                 (9) 

where 𝑘𝑗
 

is the  𝑗 + 1 th bit of the 𝑁 - bit binary 

representation of integer 𝑘 for 0 ≤ 𝑘 ≤ 2𝑁 − 1 can be 

precomputed and stored in RAM based LUT of 2𝑁  words. 

However, instead of storing 2𝑁  words in LUT, we store 

(2𝑁 − 1) words in a DA table of (2𝑁 − 1) registers.  

 

 
Figure 5: Distributed arithmetic table 

 

 
Figure 6: Proposed structure of DA-based LMS adaptive filter length 

𝑁 = 4 

 

DA table for N=4 is shown in Fig. 5. DA table contains only 

15 registers to store the precalculated sums of input words. 

In DA table, seven new values of 𝑐𝑘
 
are computed by seven 

adders in parallel. 

 

IV.   PROPOSED STRUCTURE OF ADAPTIVE FIR FILTER 

 
Figure 7: Proposed structure of DA-based LMS adaptive filter of length N=16 

 

A straight-forward DA-based implementation of inner product 

requires LUT of very large size. For that reason, the 

computation of the inner products of large orders needs to be 

decomposed [4] into small adaptive filtering blocks as shown 

in Fig. 6 and large order adaptive filters shown in Fig. 7. 

The structure of DA-based adaptive filter of length N=4 

comprises of a four-point inner-product block and a weight-

increment block along with additional circuits for the 

computation of error value 𝑒 𝑛  and control word 𝑡 for the 

barrel shifters. The four-point inner-product block [shown in 

Fig. 1] contains a DA table consisting of an array of 15 

registers as shown in Fig. 5 which stores the partial inner 

products 𝑦𝑙   for 0 < 𝑙 ≤ 15 and a 16:1 multiplexor to select 

the content of one of those registers from the DA table. Bit 

slices of weights A =  𝑤3𝑙𝑤2𝑙𝑤1𝑙𝑤0𝑙  for 0 ≤ 𝑙 ≤ 𝐿 − 1 are 
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fed to the MUX as control in LSB –to- MSB order, and the 

output of the MUX is fed to the carry save accumulator using 

10T full adder as shown in Fig. 4. After 𝐿 bit cycles, the carry 

save accumulator shift accumulates all the partial inner 

products and generates a sum and carry output word of size 

(𝐿+2) bit each. The carry and sum words are shifted added 

with an input carry ―1‖ to generate filter output which is 

subsequently subtracted from the desired output 𝑑 𝑛  to 

obtain the error 𝑒 𝑛 . 

 

 
 

Figure 8: Structure of the weight-increment block for 𝑁 = 4 

 
if r6=1 then t= “000”; 

else if r5 = 1 then t= “001”; 

else if r4 = 1 then t= “010”; 

else if r3 = 1 then t= “011”; 

else if r2 = 1 then t= “100”; 

else if r1 = 1 then t= “101”; 

else if r0 = 1 then t= “110”; 

 

 
Figure 9: Logic used for generation of control word 𝑡 for the barrel shifter for 

𝐿 = 8 
 

As in the case in [4], all the bits of the error except the most 

significant bit (MSB) one are ignored (8
th

 Bit). The remaining 

bits are magnitude of the error, the magnitude of the computed 

error is decoded to generate the control word 𝑡 for the barrel 

shifter. The logic used for the generation of control word 𝑡 for 

the barrel shifter is shown in Fig. 9. The number of shifts 𝑡 in 

that case is increased by 𝑖 locations accordingly to reduce the 

hardware complexity. The weight increment unit as shown in 

Fig. 8 for 𝑁 = 4 comprises of 4 barrel shifters and four carry 

save adder cells. The barrel shifter shifts the different input 

values 𝑥𝑘  for 𝑘 = 0, 1, 2… 𝑁 − 1 by appropriate number of 

locations. The barrel shifter yields the desired increments are 

fed to the carry save adder with the sign bit from the error 

value. The sign bit of the error is used as the control for the 

2:1 MUX to select any one of the sum or carry output from the 

Carry save adder. The output of the MUX is fed to the Byte-

parallel to Bit-serial converter to convert 8 bit data into 1 bit 

data. The output waveform of DA-based adaptive FIR filter 

(N=16) as shown in Fig. 10.  

 

 
 

Figure 10: DA-based LMS adaptive FIR filter of length N=4 

V.   RESULTS 

Thus the existing and proposed designs in [7] and [8] are 

implemented in Xilinx 14.1 using verilog code. Along with 

area and power of corresponding design are measured using 

Tanner 15.1 EDA in 250nm CMOS technology.     
 

Table 1: Implementation Results Using Xilinx 14.1 and Tanner 15.1 

 

Designs Filter 

Length  

Area 

(sq.µs) 

Power 

(mW) 

Existing N = 16 18264 9.41 

Proposed N = 16 14520 6.40 

VI.   CONCLUSION 

In this script, an adaptive FIR filter using distributed 

arithmetic (DA) for area efficient design is implemented. High 

throughput is drastically enriched by parallel (LUTs) update 

and equivalent implementation of filtering and weight-update 

operations. The proposed carry save accumulation using 10 

transistor full adder schemes of signed partial inner products 

for the computation of the filter output and also modified in 

weight increment block. By this way it utilizes low area, low 

power consumption and the throughput of the filter rates 

increases irrespective of the filter length.  
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