
 Adaptive FIR Filter based on Distributed

Arithmetic and LMS Algorithm for Low-Area and

Low-Power

Abstract— In this manuscript, we proposed a novel pipelined

architecture for low-power and low-area adaptive FIR filter

based on distributed arithmetic (DA) and LMS algorithm. DA

is bit-serial computational process and uses parallel look-up

table (LUTs) apprise and equivalent implementation of

filtering and weight-update operations to appliance high

throughput filter rates irrespective of the filter length. The full

adder based conditional signed carry save accumulation for

DA-based inner product computation is replaced and design by

using 10 transistor full adder based carry save accumulation of

shift accumulation, with the intention of the proposed design,

which can reduce the area complexity and power consumption.

The least-mean-square (LMS) algorithm adaptation is

functioned to update the weight and abate the mean square

error between the assessed and chosen output. The weight

increment block based adder/subtractor cells is swapped by

carry save adder in order to reduce area difficulty. It

comprises of multiplexors, smaller LUT, and practically half

the number of transistors compared to the present DA-based

design.

 Index Terms: Adaptive Filter, Distributed Arithmetic (DA),

Finite Impulse Response (FIR), Least Mean Square (LMS)

Algorithm, Lookup table (LUT).

I. INTRODUCTION

 Adaptive filters find extensive use in many signal

processing applications such as channel equalization, echo

cancellation, noise cancellation [1]. The finite impulse

response (FIR) filters whose weights are updated by the

famous Widrow-Hoff least mean square (LMS) algorithm is

the most popularly used adaptive filter not only due to its

simplicity but also due to its satisfactory convergence

performance [5]. The direct form configuration on the

onward path of the FIR filter results in a long critical path

due to an inner product computation to obtain a filter output.

Consequently, it is required to reduce the critical path of the

structure if the input signal has high sampling rate. By

reducing the critical path of the structure, thereby, the

critical path could not exceed the sampling period.

Distributed arithmetic (DA) is so named because it

performed arithmetic operation. DA is bit serial computation

in nature and it eliminates the need for hardware multipliers

and is capable of implementing large order filters with very

high throughput. A lot of study has been done to implement

the DA based adaptive FIR filter for area efficient design,

the multiplier-less distributed arithmetic (DA) based

technique has achieved plenteous popularity for its high

throughput, but it results are increased in cost-effective, area

and time efficient computing structures [8]. DA based

hardware efficient adaptive FIR filter inner product has been

suggested by Allred et al. [2] using two separate lookup

tables (LUTs) Filtering lookup table and Auxiliary lookup

table for filtering and weight updating module. Later, Guo

and DeBrunner [3], [4] have improved the design structure

in [2] by using only one lookup table instead of two LUTs

for both filter and weight updating module. On the other

hand, the design process in [2], [3], [4] and [8] require more

cycles for lookup table (LUT) update for each new sample,

hence it do not support high sampling rate. Meher and Park

have improved the design with low adaptation delay for

high speed DA based adaptive filter [6]. In a recent paper,

Meher and Park proposed a new DA based adaptive filter

architecture for low power, low area and high throughput

with very low adaptation delay [7].

This brief proposes an adaptive FIR filter using distributed

arithmetic for area efficient design. High Throughput is

achieved by using a parallel lookup table update and

equivalent implementation of filtering and weight-updating

operations. The conditional signed carry saved accumulation

for DA-based inner product computation is designed by

using 10 transistor full adder based carry saved

accumulation of shift accumulation. The use of the proposed

design helps to reduce the area complexity and power

consumption.

In the next section, a brief study of the least mean square

(LMS) adaptive algorithm, followed by the description of

the proposed DA based technique filter in Section 3. The

structure of the proposed adaptive filter and description of

the proposed DA based adaptive FIR filter in Section 4.

Results and Conclusions are given in Section 5 and 6.

II. REVIEW OF LMS ADAPTIVE ALGORITHM

The LMS algorithm computes a filter output and an error

value that is equal to the difference between the current

K. Jebin Roy
M.E. VLSI Design

Anand Institute of Higher Technology

Affiliated to Anna University,

Chennai – 603103, India

R. Ramya
M.Tech. VLSI Design,

Sathyabama University,

Accredited by NAAC,

Chennai – 600119, India

1680

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20906

filter output and the desired response for every clock cycle.

In every training cycle, the estimated error is then used to

update the filter weights. The weights of LMS adaptive filter

during the nth iteration is updated according to the

following equations [6]:

𝑤 𝑛 + 1 = 𝑤 𝑛 + µ . 𝑒 𝑛 (1a)

Where

𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛 (1b)

𝑦 𝑛 = 𝑤𝑞𝑇 𝑛 . 𝑥 𝑛 (1c)

The input vector 𝑥 𝑛 and the weight vector 𝑤 𝑛 at the nth

training iteration are respected given by

𝑥 𝑛 = 𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝑁 + 1 𝑇 (2𝑎)

𝑤 𝑛 = 𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝑁−1 𝑁 𝑇 (2𝑏)

𝑑 𝑛 is the desired response, and 𝑦 𝑛 is the filter output of

the 𝑛𝑡ℎ iteration. 𝑒 𝑛 denotes the error value generated

during the 𝑛𝑡ℎ iteration, which is used to update the

weights, µ is the convergence factor, and N is the filter

length.

In the case of filter designs, the feedback error 𝑒 𝑛

becomes available after certain number of cycles, called the

―adaptation delay‖. The pipelined architectures therefore use

the delayed error 𝑒 𝑛 − 𝑚 for updating the current weight

instead of the most recent error, where 𝑚 is the adaptation

delay. The weight update equation of such delayed LMS

adaptive filter is given by

𝑤 𝑛 + 1 = 𝑤 𝑛 + µ . 𝑒 𝑛 − 𝑚 . 𝑥 𝑛 − 𝑚
 (3a)

III. PROPOSED DA-BASED APPROACH FOR INNER

PRODUCT COMPUTATION

In each cycle, the LMS adaptive filter needs to perform an

inner-product computation which contributes to the most of

the critical path. Let the inner product computation of (1c)

be given by

𝑦 = 𝑟𝑘 . 𝑠𝑘
𝑁−1
𝑘=0 (4)

Where 𝑟𝑘

and 𝑠𝑘 for 0 ≤ 𝑘 ≤ 𝑁 − 1 form the N – point

vectors corresponding to the current weights and most

recent 𝑁 − 1 input respectively. Let us assume 𝐿 be the bit

width of the weight, every component of the vector weight

may be expressed in 2’s complement representation

𝑟𝑘 = −𝑟𝑘0 + 𝑟𝑘𝑙 . 2−𝑙𝐿−1
𝑙=1

(5)

Where 𝑤𝑘𝑙 denotes the 𝑙𝑡ℎ bit of 𝑟𝑘 . Substituting (5), we can

write (4) in an expanded form

𝑦 = − 𝑠𝑘 . 𝑟𝑘0
𝑁−1
𝑘=0 + 𝑠𝑘

𝑁−1
𝑘=0 . 𝑟𝑘𝑙 . 2−𝑙𝐿−1

𝑙=1

(6)

To convert the sum-of-product form of (4) into a distributed

form, the order of summations over the indices 𝑘 and 𝑙 in

(6) can be interchanged to have

𝑦 = − 𝑠𝑘 . 𝑟𝑘0
𝑁−1
𝑘=0 + 2−𝑙𝐿−1

𝑙=0 . 𝑠𝑘 . 𝑟𝑘𝑙
𝑁−1
𝑘=0

 (7)

and the inner product given by (7) can be computed as

𝑦 = 2−𝑙 . 𝑦𝑙
𝐿−1
𝑙−1 − 𝑦0

,

 𝑦𝑙 = 𝑠𝑘 . 𝑟𝑘𝑙
𝑁−1
𝑘=0

(8)

Meanwhile any element of the N-point bit sequence
 𝑟𝑘𝑙 𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 𝑁 − 1 can either be 1 or 0, the partial

sum 𝑦𝑙 for 𝑙 = 0, 1,…,𝐿 − 1 can have 2𝑁 possible values. If

the entire 2𝑁 possible values sum 𝑦𝑙 are precomputed and

stored in a LUT, the partial sum 𝑦𝑙 can be read out from the

LUT using the bit sequence 𝑟𝑘𝑙 as address bits for

computing the inner product.

Figure 1: DA-based implementation of four point inner product

Figure 2: Carry save implementation of shift accumulation

The inner product of (8) can therefore be calculated in 𝐿

cycles of carry save implementation of shift accumulation,

followed by LUT-read operations corresponding to 𝐿

number of bit slices 𝑟𝑘𝑙 for 0 ≤ 𝑙 ≤ 𝐿 − 1, as shown in

Fig. 1. Since the carry save implementation of shift

accumulation in Fig. 2 required more area and power

consumption.

Figure 3: 10T 1-Bit Full Adder

The carry save implementation of shift accumulation based

full adder is design by using 10 transistor one bit-full adder

[9] as shown in Fig. 4. The bit slices of vector 𝑟 are fed one

after the next in the LSB to the MSB order to the carry save

1681

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20906

accumulator. Finally, the sum and carry output of the carry

save accumulator is obtained after 𝐿 clock cycle are required

to be added by a final adder. The content of the 𝑘𝑡ℎ LUT

location can be expressed as

𝑐𝑘 = 𝑥𝑗 . 𝑘𝑗
𝑁−1
𝑗=0 (9)

where 𝑘𝑗

is the 𝑗 + 1 th bit of the 𝑁 - bit binary

representation of integer 𝑘 for 0 ≤ 𝑘 ≤ 2𝑁 − 1 can be

precomputed and stored in RAM based LUT of 2𝑁 words.

However, instead of storing 2𝑁 words in LUT, we store

(2𝑁 − 1) words in a DA table of (2𝑁 − 1) registers.

Figure 5: Distributed arithmetic table

Figure 6: Proposed structure of DA-based LMS adaptive filter length

𝑁 = 4

DA table for N=4 is shown in Fig. 5. DA table contains only

15 registers to store the precalculated sums of input words.

In DA table, seven new values of 𝑐𝑘

are computed by seven

adders in parallel.

IV. PROPOSED STRUCTURE OF ADAPTIVE FIR FILTER

Figure 7: Proposed structure of DA-based LMS adaptive filter of length N=16

A straight-forward DA-based implementation of inner product

requires LUT of very large size. For that reason, the

computation of the inner products of large orders needs to be

decomposed [4] into small adaptive filtering blocks as shown

in Fig. 6 and large order adaptive filters shown in Fig. 7.

The structure of DA-based adaptive filter of length N=4

comprises of a four-point inner-product block and a weight-

increment block along with additional circuits for the

computation of error value 𝑒 𝑛 and control word 𝑡 for the

barrel shifters. The four-point inner-product block [shown in

Fig. 1] contains a DA table consisting of an array of 15

registers as shown in Fig. 5 which stores the partial inner

products 𝑦𝑙 for 0 < 𝑙 ≤ 15 and a 16:1 multiplexor to select

the content of one of those registers from the DA table. Bit

slices of weights A = 𝑤3𝑙𝑤2𝑙𝑤1𝑙𝑤0𝑙 for 0 ≤ 𝑙 ≤ 𝐿 − 1 are

1682

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20906

fed to the MUX as control in LSB –to- MSB order, and the

output of the MUX is fed to the carry save accumulator using

10T full adder as shown in Fig. 4. After 𝐿 bit cycles, the carry

save accumulator shift accumulates all the partial inner

products and generates a sum and carry output word of size

(𝐿+2) bit each. The carry and sum words are shifted added

with an input carry ―1‖ to generate filter output which is

subsequently subtracted from the desired output 𝑑 𝑛 to

obtain the error 𝑒 𝑛 .

Figure 8: Structure of the weight-increment block for 𝑁 = 4

if r6=1 then t= “000”;

else if r5 = 1 then t= “001”;

else if r4 = 1 then t= “010”;

else if r3 = 1 then t= “011”;

else if r2 = 1 then t= “100”;

else if r1 = 1 then t= “101”;

else if r0 = 1 then t= “110”;

Figure 9: Logic used for generation of control word 𝑡 for the barrel shifter for

𝐿 = 8

As in the case in [4], all the bits of the error except the most

significant bit (MSB) one are ignored (8
th

 Bit). The remaining

bits are magnitude of the error, the magnitude of the computed

error is decoded to generate the control word 𝑡 for the barrel

shifter. The logic used for the generation of control word 𝑡 for

the barrel shifter is shown in Fig. 9. The number of shifts 𝑡 in

that case is increased by 𝑖 locations accordingly to reduce the

hardware complexity. The weight increment unit as shown in

Fig. 8 for 𝑁 = 4 comprises of 4 barrel shifters and four carry

save adder cells. The barrel shifter shifts the different input

values 𝑥𝑘 for 𝑘 = 0, 1, 2… 𝑁 − 1 by appropriate number of

locations. The barrel shifter yields the desired increments are

fed to the carry save adder with the sign bit from the error

value. The sign bit of the error is used as the control for the

2:1 MUX to select any one of the sum or carry output from the

Carry save adder. The output of the MUX is fed to the Byte-

parallel to Bit-serial converter to convert 8 bit data into 1 bit

data. The output waveform of DA-based adaptive FIR filter

(N=16) as shown in Fig. 10.

Figure 10: DA-based LMS adaptive FIR filter of length N=4

V. RESULTS

Thus the existing and proposed designs in [7] and [8] are

implemented in Xilinx 14.1 using verilog code. Along with

area and power of corresponding design are measured using

Tanner 15.1 EDA in 250nm CMOS technology.

Table 1: Implementation Results Using Xilinx 14.1 and Tanner 15.1

Designs Filter

Length

Area

(sq.µs)

Power

(mW)

Existing N = 16 18264 9.41

Proposed N = 16 14520 6.40

VI. CONCLUSION

In this script, an adaptive FIR filter using distributed

arithmetic (DA) for area efficient design is implemented. High

throughput is drastically enriched by parallel (LUTs) update

and equivalent implementation of filtering and weight-update

operations. The proposed carry save accumulation using 10

transistor full adder schemes of signed partial inner products

for the computation of the filter output and also modified in

weight increment block. By this way it utilizes low area, low

power consumption and the throughput of the filter rates

increases irrespective of the filter length.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive signal processing. Prentice
Hall, Englewood Cliffs, NJ, 1985.

[2] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,

―LMS adaptive filters using distributed arithmetic for high
throughput,‖ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52,

no.7,pp. 1327–1337, Jul. 2005.

[3] R. Guo and L. S. DeBrunner, ―Two high-performance adaptive filter
implementation schemes using distributed arithmetic,‖ IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 600–604, Sep. 2011.

[4] R. Guo and L. S. DeBrunner, ―A novel adaptive filter implementation
scheme using distributed arithmetic,‖ in Proc. Asilomar Conf.

Signals, Syst., Comput., , pp. 160–164, Nov. 2011.

[5] S. Haykin and B. Widrow ―Least-Mean-Square Adaptive Filters‖
Hoboken, NJ, USA: Wiley, 2003.

[6] P. K. Meher and S. Y. Park, ―High-throughput pipelined realization

of adaptive FIR filter based on distributed arithmetic,‖ in VLSI
Symp. Tech. Dig., Oct. 2011, pp. 428–433.

[7] Sang Yoon Park, Member, IEEE, and Pramod Kumar Meher, Senior

Member, IEEE ―Low-Power, High-Throughput, and Low-Area
Adaptive FIR Filter Based on Distributed Arithmetic‖ IEEE

Transactions On Circuits And Systems—Ii: Express Briefs, Vol. 60,

No. 6 June 2013.
[8] S. A. White ―Applications of the distributed arithmetic to digital

signal processing: A tutorial review,‖ IEEE ASSP Mag., vol. 6, no. 3,

pp. 4–19, Jul. 1989.
[9] Hanan A.Mahmoud and Magdy.A. Bayoumi, ― A 10-Transistor Low

Power High Speed Full Adder Cell‖.

1683

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20906

