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Abstract—This paper presents an artificial neural network 

based flat controller for synchronous generators. A neural 

network to identify the field voltage (efd) characteristics of a 

synchronous machine equipped by a flat controller was 

developed. A neural network of 2 inputs, two hidden and one 

output layers was used by MATLAB toolbox to simulate the 

excitation (efd).The network has the features of a simple 

structure, adaptability and fast response. The error between the 

Neural Network approximated efd of the flat controller and the 

desired efd was found to be minimal after the training.  Results 

show that the neural network emulates the efd and were 

successfully applied to stabilize the system under 3-cycle fault 

condition. The network response is evaluated in a synchronous 

generator connected to a single machine infinite bus 

 

Keywords: Multilayer Percepterons, Neural Networks, 

Identification, synchronous generator, Flat systems, Feedback 

Linearization. 

I. INTRODUCTION 

Parameters in the electrical power system (PS) change 
with time, slowly due to environmental effects or rapidly due 
to faults. Thus it is necessary to update the control law with 
system changes. 

The design of adaptive controllers to improve the 
performance of the power system has been a topic of research 
for a long time. Neural networks (NN) are a suitable choice 
for the control of complex nonlinear plants since the 
conventional control methods show limitations in 
performance. Due to advantages of high computation speed, 
generalization and learning ability, neural networks have been 
successfully applied to the identification and control of 
nonlinear systems [1]. 

One of the promising applications of NN in PS is in the 
area of power stabilization. Neural network based power 
system stabilizers (PSS) [2] have been shown to be very 
effective in damping out the PS lower frequency oscillations 
and experimentally have been shown to have much better 
performance over a conventional PSS. Another important 
application of NN controller is for transient stability 
enhancement. This is a subject of this paper. 

The flatness-based controller has been employed to enhance 

the first swing stability. The  approach is to compute using 

―system flatness theory‖ the linearizing state or flat output for 

the reduced order model of the synchronous machine and 

design a flatness-based feedback law [3]. ANN back-

propagation will be used to train a controller using the input-

output data generated by the flatness-based feedback law and 

the neural controller will replace the flat controller to control 

the system. 

 
The flatness-based scheme is an offshoot of the input-state 

feedback linearization making use of the same linearizing 
output. Once the system is shown to be flat, in effect implying 
that the system possesses a well characterized dynamics, it 
becomes amenable to trajectory generation and system 
tracking without the need for simultaneous on-line parameter 
identification and controller adaptation as would be the case in 
adaptive control strategies [4]. This is because all system 
parameters and control becomes a function of the linearizing 
output that can enable the generation of reference trajectories 
a-priori. The construction of the feedback law is done by a 
simple inversion of system equations with respect to the 
control. In our scheme, the Neural network is used to learn the 
constructed ‗Flatness‘ based feedback law and the 
performance is evaluated in simulation where the machine is 
configured in a single machine infinite bus system.  

II. DESCRIPTION OF THE MATHEMATICAL 

POWER SYSTEM MODEL 

 
A simplified dynamic model of the power system is used, 

namely a single generator connected through two parallel 
transmission lines to a very large network approximated by an 
infinite bus. The model is shown below: 
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Fig.1  Single machine infinite bus model 

 

Modeling of a synchronous machine is done by the use of 
equivalent circuits for the magnetic (the rotor and stator 
windings and couplings) and the external electrical circuits 
(the bus and loading). It also uses the appropriate 
representation of the mechanical parts of the system (speed 
and inertia system) and adequate representation
of auxiliary (turbine and excitation system) equipment. The 
machine has two stator circuits and two rotor circuits 
described by two differential equations and together with the 
swing equation gives a fourth order synchronous machine 
representation: 

q d d q q qe e x x i0
 ( )' ' '                          (1) 

d q fd q d d de e e x x i0
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By further assumptions,
ed

'

 becomes an algebraic 
expression since the synchronous machine is connected to an 

infinite bus, the d-q terminal voltage
vd , 

vq  are constrained 
load equation   

 

III. THE  MLP BASED FLAT CONTROLER 

A. Flatness 

A system is said to be diffrerentially flat [5] if there exists 
a set of independent variables referred to as flat output such 
that every other system variable (including the input variables) 
is a function of the flat output and a finite number of its 
successive time derivatives. More precisely, the system 

f x x u( , , )  0                                                              (7)                 

with x Rn   and   u Rm  is differentially flat if one can 

find a set of variables called flat output;   

        y h x u u u u r ( , , , ,....., )( )
                                     (8) 

y Rm and system variables, 

        x y y y y q ( , , ,....., )( )
                                    (9) 

and control,  

    u y y y y q ( , , ,....., )( )1
                                    (10)  

with q  a finite integer such that the system equations 

0 1 f
d

dt
y y y y y y y y y y y yq q q( ( , , ,....., )), ( , , ,....., ), ( , , ,....., )( ) ( ) ( )


 

                                                                              (11) 

are identically satisfied .[3] shows the computation of the 
flat output for the synchronous generator here considered. 

The state of the SMIBS is a function of the flat output   

and its derivatives up to order 2 . The endogenous 

feedback system to the following closed loop system is of 

order 31 , so that from the linear system  

 
  v                                                                (12)   

the compensator follows. Considering the systems‘ dynamical 
equations, perform the following state transformations:   
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 
                                    (13) 

This yields the equivalent normal form for the system, 
from which we can compute the nonlinear controller by 

inverting the expressions from   and
e fd . The state 

transformations are invertible and exist throughout the 

transient operating zone 0 180  o

. Using the network 

parameters of figure (1), 
e fd  is proved to be a function of the 

flat variable and its derivatives, that is  
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e fd     ( , , )
                                        (14)      

       

 

B. MLP Neural Network 

Among the Neural Networks,  feed forward networks, 
namely Multilayer Perceptrons (MLP) is very much  used for 
different applications. This network type has been proven to 
be a universal function approximator. Therefore MLP can be 
powerful tool for system identification.  

In this paper, the MLPN consists of three layers of neurons 
(input, hidden, and output layers as shown in Fig. 2) 
interconnected by the input and output weight matrices W and 
V, respectively. The weights of the MLPN are obtained using 
the backpropagation algorithm [6]. The activation function for 
neurons in the hidden layer is the following sigmoidal 
function 

   𝑕 𝑥 =  
1

1+𝑒𝑥𝑝 (−𝑥)                                                     (15) 

During online training, the MLPN starts with small 
random initial values for its weights, and then computes a one-
pass backpropagation algorithm at each time step k, which 
consists of a forward pass propagating the input vector 
through the network layer by layer, and a backward pass to 
update the weights by the gradient descent rule. The output 
layer neurons are formed by the inner products between the 
nonlinear regres sion vector from the hidden layer and the 
output weight matrix V. The inner weights (W) for the MLPN 
are updated by (19) 
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where 

 
2)]([)2/1()( kEkJ

j j , where E(k) is the error  

      between outputs of the plant and MLPN, and k 
indicates discrete  sampling time; 

At
    target value; 

L,l      output and hidden layers, respectively; 

mi        number of neurons in the hidden layer; 

p          output of the activation function for a neuron; 

q          regression vector as the activity of a neuron; 

X        input vector of the MLPN. 

The function h is the sigmoid function in (15). By trial and 
error, 20 neurons in the hidden layer are optimally chosen for 
the off-line training. These values depend on a tradeoff 
between convergence speed and accuracy. 
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Fig.2  Multi-layer Perceptron Neuron structure 

C.       Flat-Neural Controller 

    In this approach, the signals of the system measurements 
control by a flat controller are to be adapted as input signal to 
the ANN controller. The latter uses the back propagation MLP 
to train the network to reduce the error between the system 
output and the desired output. The ANN Controller replaces 
the flat controller and produces an output signal to control the 
system and keep it at the desired operating position. 

A pattern from the training set to be identified is the efd 
and is presented in the input layer of the network and the error 
is calculated in the output layer. The error is propagated 
backwards towards the input layer and the weights are 
updated. This procedure is repeated for the entire training 
pattern. At the end of the iteration, test patterns are presented 
to ANN and classification performance of the ANN is 
evaluated. Further training is continued till the desired 
classification performance is reached. 

Forward propagation: The output of each node in the 
successive layers is calculated. 

𝑂 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑎 𝑛𝑜𝑑𝑒 =  
1

1+exp ⁡(− 𝑤𝑖𝑗  𝑥𝑖𝑗   )
                  (17) 

Where; 

 𝑤𝑖𝑗    : The weight matrix connecting nodes of the previous  

            layer i with nodes of next layer j. 

 𝑥𝑖𝑗   : The variables of a pattern. 

  𝑜     : The output of a node in the successive layer. 
The error E(p) of a pattern number p is calculated; 

             𝐸 𝑝 = (
1

2
)  (𝑑 𝑝 − 𝑂 𝑝 )2                         (18) 

Where, d is the target which is efd. 

Reverse propagation: The error δ for the nodes in the 
output layer is calculated, 

𝛿(𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 = 𝑂(1 − 𝑂)(𝑑 − 𝑂)                             (19)                               

The new weights between output layer and hidden layer 
are updated, 

     
𝑤 𝑛 + 1 = 𝑤 𝑛 +  η𝛿 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑂(𝑕𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟)    
(20) 
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where: η is the learning rate. 

The error δ for the nodes in the hidden layer is calculated 
𝛿 𝑕𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 =
𝑂(1 −

𝑂)  
𝛿 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑤(𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔𝑕𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

 𝑕𝑖𝑑𝑑𝑒𝑛 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟)    
  (21)          

The weights between hidden and input layer are updated, 

  𝑤 𝑛 + 1 = 𝑤 𝑛 + ηδ hidden O(input layer)            (22) 

The above steps complete one weight updating. The 
remaining training patterns are presented in further update 
iterations using equations 17-22. The training of the network 
is stopped once the desired Mean square Error (MSE) is 
reached as given below 

𝐸 𝑀𝑆𝐸 =  𝐸(𝑝)                                                             (23) 

The final updated weights are saved and used to generate 
the efd pattern in simulation runs of the SMIBS. 

IV. SIMULATION  

 
The simulation results for the third order SMIBS equipped 

with a controller referred to as Field Voltage Dynamic 
Feedback Controller (FVDFC) is presented in Figure 3. The 
figure clearly shows the response of the third order SMIBS 
equipped with FVDFC designed in [3], to a three-phase short 
circuit fault of 3-cycles duration. Note that the field voltage 
settled to steady state in 3 seconds. Fig. 3 described above is  
the pattern the MLP was trained to recognize. 

The system and network parameters used in the 
computation of the control law are assumed to remain constant 
during the simulation period. The system simulation data are 
summarized in Tables 1-3. The per-unit values are expressed 
on a common 100MVA base. The operating point of the 
system was determined using the data presented in Tables 1 to 
3 in the appendix. The trained MLP was later used to replace 
the efd and further simulations done with the SMIBS to 
ascertain its response. 

  

Fig.3 Control signal (Field Voltage) in a 3-Cycle Fault using 
the flat controller (FVDFC). 

 

V. RESULTS 

The input-output data set of the FVDFC was used to train a 
neural network at 1000 epochs with 0.001 acceptable mean 
square error tolerances and the result is shown in figure 4. The 
result shows how the neural network emulates the output of 
the FVDFC and points A, B, C, D, E, F, G and H in fig.4 
shows the performance of the neural network at the transition 
points and the points are magnified and shown in different 
plots in figures 4a, b, c, d, e, f, h and h respectively. 

 

 

      Fig. 4 Neural Network approximation of the field voltage 

        
        Fig.4a Point A                            Fig.4b Point B 

         
         Fig.4c Point C                            Fig.4d Point D 

 

                                              

           
        Fig.4e Point E                        Fig.4f  Point F 
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    Fig.4g Point G                        Fig.4h Point H  

  Fig.5 Response of Terminal Voltage in a 3-Cycle Fault with 
Flat Neural Controller. 

The figures clearly show the responses of the third order 
SMIBS equipped with Flat Neural Network designed in this 
work, to a three-phase short circuit fault of 3-cycles duration. 
A close look at Figure 7 reveals that the system was restored 
to equilibrium in three seconds. Figures 8, 5 and 6 give the 
responses of the speed deviation, terminal voltage and 
electrical power respectively. 

Note also that the controller damped out the fault 
oscillation within 4.2 seconds from the time of fault inception 

 

Fig.6 Response of Electric Power using Flat Neural controller 

 

Fig.7 Response of Field Voltage in a 3-Cycle Fault with Flat 
Neural controller. 

 

Fig.8 Response of Field Voltage in a 3-Cycle Fault with Flat 
Neural Controller. 

VI. CONCLUSION 

The dynamic behavior of the single machine infinite bus 
system (SMIBS) with the controller appropriately 
incorporated is amply demonstrated via several simulations in 
Matlab environment. Simulations were done with the designed 
flat controller attached to the field voltage of SMIBS. 

To overcome the drawbacks of the conventional power 
system stabilizers, an MLP neural network trained to learn the 
dynamics of flat controller is presented. The proposed method 
is evaluated in a single machine infinite bus power system. 
The design is based on the flat output of the synchronous 
generator, which is the phase angle. Simulation results for the 
3-cycle faults demonstrate the effectiveness and robustness of 
the flatness based neural controller. Such a nonlinear adaptive 
controller will yield a better and fast damping under small and 
large disturbances even with changes in the operating 
conditions. Better and fast damping means that generators can 
operate more close to their maximum generation capacity. 
Thus, ensuring that generators remain stable under sever faults 
such as three fault short circuits. 
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VII. APPENDIX 

 

TABLE I.  SYSTEM DATA OF THE GENERATOR AND NETWORK 

Parameter Value Unit 

Machine Power 

Power Factor 
Infinite Bus Volts.   

Machine Speed     

Reactance Xe 
Resistance Re 

           1.0 

0.85 
1.0 

314.519 

0.4 
0.02 

 
      

      Pu 

Pu 
Pu 

rad/s 

pu 
       pu 

 

 

 

 

TABLE II.  SYSTEM  FIELD VOLTAGE LIMITS 

Parameter Value Unit 

e fd max  

e fd min  

4.5 

 
-4-5 

 

Pu 

 
pu 

 

 

TABLE III.  TURBINE INITIALISATION DATA 

Parameter symbol Value 
Unit 

Turbine Power 
 

Turbine Time constant 

 

Governor Time constant 

 

Turbine speed regulation 
 

Governor max. Limit 

P0
 

 t  

 g
 

RT  

pgv max  

1.0 
 

0.7 

 

0.3 

 

20 
 

1.05 

Pu 
 

S 

 

S 

 

Pu 
 

pu 
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