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ABSTRACT 

 AMBA (Advanced Microcontroller 

based Bus Architecture) consists of AHB, APB, 

ASB and AXI. In this project we are Tracing 

AHB (Advanced High performance Bus) signals 

with Real time Compression and Multiresolution 

Techniques. A simple transaction on the AHB 

consists of an address phase and a subsequent 

data phase. Access to the target device is 

controlled through a MUX , thereby admitting 

bus-access to one bus-master at a time. In AHB 

Tracer we have to Trace Address signals, Data 

signals and Control signals the have to compress 

them depending on AHB protocols. A 

multiresolution AHB on-chip bus tracer is 

named as SYS_HMRBT (AHB Multiresolution 

Bus Tracer) and is used monitoring. By using 

this SYS_HMRBT, we can achieve 79%-96% of 

compression depending on selected resolution 

mode. 

INTRODUCTION 

AHB Tracer 

The ON-CHIP bus is an important 

system-on-chip (SoC) infrastructure that 

connects major hardware components. 

Monitoring the on-chip bus signals is crucial to 

the SoC debugging and performance 

analysis/optimization. Unfortunately, such 

signals are difficult to observe since they are 

deeply embedded in a SoC and there are often 

no sufficient I/O pins to access these signals. 

Therefore, a straightforward approach is to 

embed a bus tracer in SoC to capture the bus 

signal trace and store the trace in an on-chip 

storage such as the trace memory which could 

then be off loaded to outside world (the trace  

          This paper presents a real-time multi-

resolution AHB on-chip bus tracer, named SYS-

HMRBT (aHb multiresolution bus tracer)[1]. 

The bus tracer adopts three trace compression 

mechanisms to achieve high trace compression 

ratio. It supports „multiresolution tracing‟ by 

capturing traces at different timing and signal 

abstraction levels. In addition, it provides the 

„dynamic mode change‟ feature to allow users to 

switch the resolution on-the-fly for different 

portions of the trace to match specific 

debugging/analysis needs. Given a trace 

memory of fixed size, the user can trade off 

between the granularity and trace length to make 

the most use of the trace memory. In addition, 

the bus tracer is capable of tracing signals 

before/after the event triggering, named pre-

T/post-T tracing, respectively. This feature 

provides a more flexible tracing to focus on 

the interesting points.The rest of this 

documentation is organized as follows. 

Chapter2.2 surveys the related work. Chapter3 

illustrates the literature survey of AHB Tracer. 

Chapter4 presents the hardware architecture of 

our bus tracer. Chapter5 provides experiments to 

analyze the compression ratio, trace depth, and 

cost of our bus tracer. A case study is also 

conducted to integrate the bus tracer with a 3-D 

graphics SoC. Finally, Chapter7 concludes this 

project and gives directions for future research. 

DESIGN AND IMPLENTATION 

Figure4.1 is the bus tracer overview. It 

mainly contains four parts: Event Generation 

Module, Abstraction Module, Compression 

Modules, and Packing Module. The Event 

Generation Module controls the start/stop time, 

the trace mode, and the trace depth of traces. 

This information is sent to the following 

modules. Based on the trace mode, the 
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Abstraction Module abstracts the signals in both 

timing dimension and signal dimension. The 

abstracted data are further compressed by the 

Compression Module to reduce the data size. 

Finally, the compressed results are packed with 

proper headers and written to the trace memory 

by the Packing Module. 

 

Figure4.1 Multiresolution bus tracer block 

diagram. 

  

4.1 AHB Protocol checker (HP checker) 

 
Figure4.2 Protocol Checker 

Figure4.2 shows AHB Protocol Checker 

(HP Checker) architecture, which contains two 

main function blocks: Protocol Checker, 

ERROR Reference Table. 

HPChecker is a rule-based protocol 

checker, thus how to establish a set of well-

defined rules is very important. In conclusion, 

our protocol checker has rules, including   

master-related rules, slave-related rules, reset-

related rules, and bus components-related rules. 

Bus components include arbiter and decoder. 

Protocol Checker is the main core of 

HPChecker, the inputs are all AHB bus signals, 

and the outputs are ERROR signals and 

corresponding master and slave IDs[2]. 

Event Generation Module 
 The Event Generation Module decides 

the starting and stopping of a trace and its trace 

mode. The module has configurable event 

registers which specify the triggering events on 

the bus and a corresponding matching circuit to 

compare the bus activity with the events 

specified in the event registers. Optionally, this 

module can also accept events from external 

modules. Table4.1 is the format of an event 

register.  
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Table4.1 Event Register. 

Abstraction Module 
The Abstraction Module monitors the 

AMBA bus and selects/filters signals based on 

the abstraction mode. The bus signals are 

classified into four groups as mentioned below: 

Timing and Signal Abstraction 

Definition 
The abstraction level is in two dimensions: 

timing abstraction and signal abstraction. At the 

timing dimension, it has two abstraction levels, 

which are the cycle level and transaction level, 

as shown in Table2.1. The cycle level captures 

the signals at every cycle. The transaction level 
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records the signals only when their value 

changes (event triggering).  

 

Figure4.3 BSM for encoding bus master 

behaviors. 

For example, since the bus read/write 

control signals do not change during a successful 

transfer, the tracer only records this signal at the 

first and last cycles of that transfer. However, if 

the signal changes its value cycle-by-cycle, the 

transaction-level trace is similar to the cycle-

level trace.At the signal dimension, first, we 

group the AHB bus signals into four categories: 

program address, data address/value, access 

control signals (ACS), and protocol control 

signals (PCS). Then, we define three abstraction 

levels for those signals.  

The BSM is designed based on the 

AMBA AHB 2.0 protocol to represent the key 

bus handshaking activities within a transaction. 

The transitions between BSM states follow the 

AMBA protocol control signals. For example, in 

the beginning (state 0), if the master is granted 

the bus (HGRANT = true), it enters start state 

(state 2). After, the master begins to transfer by 

first acknowledging the transfer type, which is a 

sequential transfer (HTRANS = SEQ) or a 

nonsequential transfer (HTRANS = NONSEQ). 

If it is a successful transfer, the BSM goes to the 

normal state (state 3). After it is in state 3, if the 

slave is busy, the BSM enters to the wait states 

(HREADY = false and HRESP is OK). Later on, 

if the slave can finish the transfer, the BSM 

changes from state 4 to state 5. (HREADY = 

true and HRESP indicates OK).  

 

Compression Module 
The purpose of the Compression 

Module is to reduce the trace size. It accepts the 

signals from the abstraction module. To achieve 

real-time compression, the Compression Module 

is pipelined to increase the performance. Every 

signal type has an appropriate compression 

method, as shown in Table4.2 the program 

address is compressed by a combination of the 

branch/target filtering, the dictionary-based 

compression, and the slicing. The data address 

and the data value are compressed by a 

combination of the differential and encoding 

methods. The ACS and PCS signals are 

compressed by the dictionary-based 

compression. Details will be discussed below 

Compression Mechanism[3]. 

Program Address Compression 
We divide the program address 

compression into three phases for the spatial 

locality and the temporal locality. Figure4.5 

shows the compression flow. There are three 

approaches: branch/target filter, dictionary-

based compression, and slicing. 

Here we have three parts in address 

compression: 

--Branch/Target Filtering 

--Dictionary based Compression 

--Slicing 

Branch/Target Filtering 
This technique aims at the spatial locality of the 

program address. Spatial locality exists since the 

program addresses are sequential mostly. 

Software programs (in assembly level) are 

composed by a number of basic blocks and the 

instructions in each basic block are sequential. 

Because of these characteristics, Branch/target 

filtering can records only the first instruction‟s 

address (Target) and the last instruction‟s 

address (Branch) of a basic block. The rest of 

the instructions are filtered since they are 

sequential and predictable.  
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Dictionary-Based Compression 

To further reduce the size, we take the 

advantage of the temporal locality. Temporal 

locality exists since the basic blocks repeat 

frequently (loop structure), which implies the 

branch and target addresses after Phase 1 repeat 

frequently. Therefore, we can use the dictionary-

based compression.  

 
Figure4.7 Block diagram of the dictionary-

based compression circuit. 

 

Slicing 
The miss address can also be 

compressed with the Slicing approach. Because 

of the spatial locality, the basic blocks are often 

near each other, which means the high-order bits 

of branch/target addresses nearly have no 

change. Therefore, the concept of the Slicing is 

to reduce the data size by recording only the 

different digits of two consecutive miss 

addresses. To implement this concept in 

hardware, the address is partitioned into several 

slices of a equal size. The comparison between 

two consecutive miss addresses is at the slice 

level. For example, there are three address 

sequences: A (0001_0010_0000), B 

(0001_0010_0110), C (0001_0110_0110). At 

first, we record instruction A‟s full address. 

Next, since the upper two slices of address B are 

the same as that of the address A, only the least-

significant slice is recorded. For address C, since 

the most significant slice is the same to that of 

the address B, only the lower two slices are 

recorded. Figure4.8 shows the hardware 

architecture. It has the register REG storing the 

previous data (dini-1).  

 
Figure4.8 Block diagram of slicing circuit 

Data Address/Value Compression 
Data address and data value tends to be 

irregular and random. Therefore, there is no 

effective compression approach for data 

address/value. Considering using minimal 

hardware resources to achieve a good 

compression ratio, we use a differential 

approach based on the subtraction. Figur4.9 

shows the hardware compressor. The register 

REG saves the current datum dini and outputs 

the previous datum dini-1. By comparing the 

current datum with the previous data value, the 

three modules comp, differential, and sizeof 

output the encoded results. The comp module 

computes the sign bit (signed_bit) of the 

difference value. The differential module 

calculates the absolute difference value (value). 

Since the absolute difference between two data 

value may be small, we can neglect the leading 

zeros and use fewer digits to record it. 

Therefore, the sizeof module calculates the 

nonzero digit number (sizei) of the difference. 

Finally, the encoded datum is sent to the packing 

module along with sizei.  

 
Figure4.9 Block diagram of differential 

compression circuit 
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Control Signal Compression 
We classify the AHB control signals 

into two groups: access control signals (ACS) 

and protocol control signals (PCS). ACS are 

signals about the data access aspect, such as 

read/write, transfer size, and burst 

operations[4s]. PCS are signals controlling the 

transfer behavior, such as master request, 

transfer type, arbitration, and transfer response. 

Control signals have two characteristics. First, 

the same combinations of the control signals 

repeat frequently, while other combinations 

happen rarely or never happen. 

Packing Module 

The Packing Module is the last phase. It 

receives the compressed data from the 

compression module, processes them, and writes 

them to the trace memory. It is responsible for 

three jobs: packet management, circular buffer 

management, and mode change control. For 

packet management, since the compressed data 

length and type are variable, every compressed 

data needs a header for interpretation. Therefore, 

this step generates a proper header and attaches 

it to each compressed datum[5]. In this paper, 

we call a compressed data with a header as a 

packet. Dynamic mode change can be achieved 

by changing the mode in the abstraction module. 

Designers can achieve this by setting the desired 

trace mode in the event register. However, since 

the header of each packet does not include the 

mode information because of space reduction, 

the decompression software cannot tell how to 

decompress the packets.  

Circular Buffer Management 
To decompress those traces (segments) 

in a circular buffer, we must know where the 

traces are in the circular buffer and which one is 

the oldest trace.Therefore, a header position 

table is used to keep track the location of each 

trace, as shown in Figue4.12. 

 
Figure4.12 Trace buffer and assistant header    

position table. 

This table consists of sixteen header position 

registers, which allows us to support up to 16 

segments in the buffer. In addition, there is an 

oldest header register to point to the oldest trace. 

This helps the decompression software to 

identify the location of the oldest trace so that it 

can decompress the trace in time order.  

Dynamic Mode Change 
Our bus tracer also supports dynamic 

mode change (DMC) feature. This feature 

allows designers to change the trace mode 

dynamically in real-time. As Figur4.13 shows, 

the trace mode changes seamlessly during 

execution.  

 

Figure4.13 Debugging/monitoring process 

with dynamic mode change. 

Dynamic mode change has two benefits. 

One is that it provides customized traces 

according to the debugging purpose. The other is 

that designers can make tradeoffs between the 

trace granularity and the trace depth. Thus, the 

trace memory utilization is more efficient.The 

dynamic mode change is achieved by setting up 

the event registers[6]. The event registers define 

the start/stop time of a trace and the trace mode. 
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Thus, when the trigger condition meets and a 

new trace begins, the new trace starts in the trace 

mode specified in the event registers.  

RESULT 

Event Generator Result 

This module is responsible for producing the 

control signal for the tracer, which represents the 

start and stop point of the trace. 

Trace_In_Progreess is the output signal for this 

module. And this module also produces mode of 

trace on which basis the tracer is working. 

 
          Event Generation Simulation Result 

Checker Result 

 
                    Checker Simulation Result 

The output for this module is ERROR register of 

44 bit length, in which each bit represents 

various protocol errors of AHB. For example 

when reset signal is high (HRESETn) then all 

the control signals should be at initial state 

otherwise they will produce an error. The 

protocol list is given in table.  

Abstraction Result 

           Abstraction Simulation Result 

Abstraction module takes the inputs from the 

AHB bus and the Event Generation module. If 

divides the AHB signals into ADDRESS 

signals, DATA signals and control signals. It is 

also responsible for producing the output 

depends on the mode of operation. For example 

if the trace mode is in Full cycle signal (FC) 

then it produces the output for every clock cycle. 

If it is in Bus transaction mode first it encodes 

the PCS control signals and generates the output 

on transactions only. 

Compression Result 

            Compression Simulation Result 

The address, data and control signals from the 

abstraction module are the inputs for the 

compression module. The signals are 

compressed based on different compression 

techniques. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org



Packing Result 

                 Packing Simulation Result 

The compressed data is in the form of bits only. 

If we transmit it directly to the memory, then 

there will be a great problem at the decoder to 

differentiate the data. So we have to attach the 

header for each data. According to the header 

only decoder can find out the different packets. . 

Each buffer is of 32bits. Whenever the data in 

one buffer is full, then that buffer gives the data 

to the memory. 

CONCLUSION 

We have presented an on-chip bus tracer 

SYS-HMRBT for the development, integration, 

debugging, monitoring, and tuning of AHB-

based SoC‟s. It is attached to the on-chip AHB 

bus and is capable of capturing and compressing 

in real time the bus traces with five modes of 

resolution. These modes could be dynamically 

switched while tracing. The bus tracer also 

supports both directions of traces: pre-T trace 

(trace before the triggering event) and post-T 

trace (trace after the triggering event). In 

addition, a graphical user interface, running on a 

host PC, has been developed to configure the 

bus tracer and analyze the captured traces. With 

the aforementioned features, SYS-HMRBT 

supports a diverse range of design/debugging/ 

monitoring activities, including module 

development, chip integration, 

hardware/software integration and debugging, 

system behavior monitoring, system 

performance/power analysis and optimization, 

etc. The users are allowed to tradeoff between 

trace granularity and trace depth in order to 

make the most use of the on-chip trace memory 

or I/O pins.In the future, we would extend this 

work to more advanced buses/connects such as 

AXI or OCP. In addition, with its real time 

abstraction capability, we would like to explore 

the possibility of bridging our bus tracer with 

ESL design methodology for advanced 

hardware/software co development/debugging/ 

monitoring/analysis, etc. 
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