
Advanced SOC Tracing Technique

 A.Sireesha(M.Tech) MD.Hayath Razvee,M.Tech(VLSI)

Quba College of Engg& Technology Quba College of Engg& Technology

 Nellore Nellore

ABSTRACT

 AMBA (Advanced Microcontroller

based Bus Architecture) consists of AHB, APB,

ASB and AXI. In this project we are Tracing

AHB (Advanced High performance Bus) signals

with Real time Compression and Multiresolution

Techniques. A simple transaction on the AHB

consists of an address phase and a subsequent

data phase. Access to the target device is

controlled through a MUX , thereby admitting

bus-access to one bus-master at a time. In AHB

Tracer we have to Trace Address signals, Data

signals and Control signals the have to compress

them depending on AHB protocols. A

multiresolution AHB on-chip bus tracer is

named as SYS_HMRBT (AHB Multiresolution

Bus Tracer) and is used monitoring. By using

this SYS_HMRBT, we can achieve 79%-96% of

compression depending on selected resolution

mode.

INTRODUCTION

AHB Tracer

The ON-CHIP bus is an important

system-on-chip (SoC) infrastructure that

connects major hardware components.

Monitoring the on-chip bus signals is crucial to

the SoC debugging and performance

analysis/optimization. Unfortunately, such

signals are difficult to observe since they are

deeply embedded in a SoC and there are often

no sufficient I/O pins to access these signals.

Therefore, a straightforward approach is to

embed a bus tracer in SoC to capture the bus

signal trace and store the trace in an on-chip

storage such as the trace memory which could

then be off loaded to outside world (the trace

 This paper presents a real-time multi-

resolution AHB on-chip bus tracer, named SYS-

HMRBT (aHb multiresolution bus tracer)[1].

The bus tracer adopts three trace compression

mechanisms to achieve high trace compression

ratio. It supports „multiresolution tracing‟ by

capturing traces at different timing and signal

abstraction levels. In addition, it provides the

„dynamic mode change‟ feature to allow users to

switch the resolution on-the-fly for different

portions of the trace to match specific

debugging/analysis needs. Given a trace

memory of fixed size, the user can trade off

between the granularity and trace length to make

the most use of the trace memory. In addition,

the bus tracer is capable of tracing signals

before/after the event triggering, named pre-

T/post-T tracing, respectively. This feature

provides a more flexible tracing to focus on

the interesting points.The rest of this

documentation is organized as follows.

Chapter2.2 surveys the related work. Chapter3

illustrates the literature survey of AHB Tracer.

Chapter4 presents the hardware architecture of

our bus tracer. Chapter5 provides experiments to

analyze the compression ratio, trace depth, and

cost of our bus tracer. A case study is also

conducted to integrate the bus tracer with a 3-D

graphics SoC. Finally, Chapter7 concludes this

project and gives directions for future research.

DESIGN AND IMPLENTATION

Figure4.1 is the bus tracer overview. It

mainly contains four parts: Event Generation

Module, Abstraction Module, Compression

Modules, and Packing Module. The Event

Generation Module controls the start/stop time,

the trace mode, and the trace depth of traces.

This information is sent to the following

modules. Based on the trace mode, the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org

Abstraction Module abstracts the signals in both

timing dimension and signal dimension. The

abstracted data are further compressed by the

Compression Module to reduce the data size.

Finally, the compressed results are packed with

proper headers and written to the trace memory

by the Packing Module.

Figure4.1 Multiresolution bus tracer block

diagram.

4.1 AHB Protocol checker (HP checker)

Figure4.2 Protocol Checker

Figure4.2 shows AHB Protocol Checker

(HP Checker) architecture, which contains two

main function blocks: Protocol Checker,

ERROR Reference Table.

HPChecker is a rule-based protocol

checker, thus how to establish a set of well-

defined rules is very important. In conclusion,

our protocol checker has rules, including

master-related rules, slave-related rules, reset-

related rules, and bus components-related rules.

Bus components include arbiter and decoder.

Protocol Checker is the main core of

HPChecker, the inputs are all AHB bus signals,

and the outputs are ERROR signals and

corresponding master and slave IDs[2].

Event Generation Module
 The Event Generation Module decides

the starting and stopping of a trace and its trace

mode. The module has configurable event

registers which specify the triggering events on

the bus and a corresponding matching circuit to

compare the bus activity with the events

specified in the event registers. Optionally, this

module can also accept events from external

modules. Table4.1 is the format of an event

register.

32 bits

Address

Address Mask

Data

Data Mask

Control

Control Mask

Trace Depth

Trace

Mode

(4bits

)

Dire

ctio

n

En

abl

e

A

H

B

B

us

Chec

ker

Even

t

Eve

nt

Nu

mbe

rs

(24

bits)

Event Numbers(21 bits) [10:0]

zeros

Table4.1 Event Register.

Abstraction Module
The Abstraction Module monitors the

AMBA bus and selects/filters signals based on

the abstraction mode. The bus signals are

classified into four groups as mentioned below:

Timing and Signal Abstraction

Definition
The abstraction level is in two dimensions:

timing abstraction and signal abstraction. At the

timing dimension, it has two abstraction levels,

which are the cycle level and transaction level,

as shown in Table2.1. The cycle level captures

the signals at every cycle. The transaction level

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org

records the signals only when their value

changes (event triggering).

Figure4.3 BSM for encoding bus master

behaviors.

For example, since the bus read/write

control signals do not change during a successful

transfer, the tracer only records this signal at the

first and last cycles of that transfer. However, if

the signal changes its value cycle-by-cycle, the

transaction-level trace is similar to the cycle-

level trace.At the signal dimension, first, we

group the AHB bus signals into four categories:

program address, data address/value, access

control signals (ACS), and protocol control

signals (PCS). Then, we define three abstraction

levels for those signals.

The BSM is designed based on the

AMBA AHB 2.0 protocol to represent the key

bus handshaking activities within a transaction.

The transitions between BSM states follow the

AMBA protocol control signals. For example, in

the beginning (state 0), if the master is granted

the bus (HGRANT = true), it enters start state

(state 2). After, the master begins to transfer by

first acknowledging the transfer type, which is a

sequential transfer (HTRANS = SEQ) or a

nonsequential transfer (HTRANS = NONSEQ).

If it is a successful transfer, the BSM goes to the

normal state (state 3). After it is in state 3, if the

slave is busy, the BSM enters to the wait states

(HREADY = false and HRESP is OK). Later on,

if the slave can finish the transfer, the BSM

changes from state 4 to state 5. (HREADY =

true and HRESP indicates OK).

Compression Module
The purpose of the Compression

Module is to reduce the trace size. It accepts the

signals from the abstraction module. To achieve

real-time compression, the Compression Module

is pipelined to increase the performance. Every

signal type has an appropriate compression

method, as shown in Table4.2 the program

address is compressed by a combination of the

branch/target filtering, the dictionary-based

compression, and the slicing. The data address

and the data value are compressed by a

combination of the differential and encoding

methods. The ACS and PCS signals are

compressed by the dictionary-based

compression. Details will be discussed below

Compression Mechanism[3].

Program Address Compression
We divide the program address

compression into three phases for the spatial

locality and the temporal locality. Figure4.5

shows the compression flow. There are three

approaches: branch/target filter, dictionary-

based compression, and slicing.

Here we have three parts in address

compression:

--Branch/Target Filtering

--Dictionary based Compression

--Slicing

Branch/Target Filtering
This technique aims at the spatial locality of the

program address. Spatial locality exists since the

program addresses are sequential mostly.

Software programs (in assembly level) are

composed by a number of basic blocks and the

instructions in each basic block are sequential.

Because of these characteristics, Branch/target

filtering can records only the first instruction‟s

address (Target) and the last instruction‟s

address (Branch) of a basic block. The rest of

the instructions are filtered since they are

sequential and predictable.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org

Dictionary-Based Compression

To further reduce the size, we take the

advantage of the temporal locality. Temporal

locality exists since the basic blocks repeat

frequently (loop structure), which implies the

branch and target addresses after Phase 1 repeat

frequently. Therefore, we can use the dictionary-

based compression.

Figure4.7 Block diagram of the dictionary-

based compression circuit.

Slicing
The miss address can also be

compressed with the Slicing approach. Because

of the spatial locality, the basic blocks are often

near each other, which means the high-order bits

of branch/target addresses nearly have no

change. Therefore, the concept of the Slicing is

to reduce the data size by recording only the

different digits of two consecutive miss

addresses. To implement this concept in

hardware, the address is partitioned into several

slices of a equal size. The comparison between

two consecutive miss addresses is at the slice

level. For example, there are three address

sequences: A (0001_0010_0000), B

(0001_0010_0110), C (0001_0110_0110). At

first, we record instruction A‟s full address.

Next, since the upper two slices of address B are

the same as that of the address A, only the least-

significant slice is recorded. For address C, since

the most significant slice is the same to that of

the address B, only the lower two slices are

recorded. Figure4.8 shows the hardware

architecture. It has the register REG storing the

previous data (dini-1).

Figure4.8 Block diagram of slicing circuit

Data Address/Value Compression
Data address and data value tends to be

irregular and random. Therefore, there is no

effective compression approach for data

address/value. Considering using minimal

hardware resources to achieve a good

compression ratio, we use a differential

approach based on the subtraction. Figur4.9

shows the hardware compressor. The register

REG saves the current datum dini and outputs

the previous datum dini-1. By comparing the

current datum with the previous data value, the

three modules comp, differential, and sizeof

output the encoded results. The comp module

computes the sign bit (signed_bit) of the

difference value. The differential module

calculates the absolute difference value (value).

Since the absolute difference between two data

value may be small, we can neglect the leading

zeros and use fewer digits to record it.

Therefore, the sizeof module calculates the

nonzero digit number (sizei) of the difference.

Finally, the encoded datum is sent to the packing

module along with sizei.

Figure4.9 Block diagram of differential

compression circuit

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org

Control Signal Compression
We classify the AHB control signals

into two groups: access control signals (ACS)

and protocol control signals (PCS). ACS are

signals about the data access aspect, such as

read/write, transfer size, and burst

operations[4s]. PCS are signals controlling the

transfer behavior, such as master request,

transfer type, arbitration, and transfer response.

Control signals have two characteristics. First,

the same combinations of the control signals

repeat frequently, while other combinations

happen rarely or never happen.

Packing Module

The Packing Module is the last phase. It

receives the compressed data from the

compression module, processes them, and writes

them to the trace memory. It is responsible for

three jobs: packet management, circular buffer

management, and mode change control. For

packet management, since the compressed data

length and type are variable, every compressed

data needs a header for interpretation. Therefore,

this step generates a proper header and attaches

it to each compressed datum[5]. In this paper,

we call a compressed data with a header as a

packet. Dynamic mode change can be achieved

by changing the mode in the abstraction module.

Designers can achieve this by setting the desired

trace mode in the event register. However, since

the header of each packet does not include the

mode information because of space reduction,

the decompression software cannot tell how to

decompress the packets.

Circular Buffer Management
To decompress those traces (segments)

in a circular buffer, we must know where the

traces are in the circular buffer and which one is

the oldest trace.Therefore, a header position

table is used to keep track the location of each

trace, as shown in Figue4.12.

Figure4.12 Trace buffer and assistant header

position table.

This table consists of sixteen header position

registers, which allows us to support up to 16

segments in the buffer. In addition, there is an

oldest header register to point to the oldest trace.

This helps the decompression software to

identify the location of the oldest trace so that it

can decompress the trace in time order.

Dynamic Mode Change
Our bus tracer also supports dynamic

mode change (DMC) feature. This feature

allows designers to change the trace mode

dynamically in real-time. As Figur4.13 shows,

the trace mode changes seamlessly during

execution.

Figure4.13 Debugging/monitoring process

with dynamic mode change.

Dynamic mode change has two benefits.

One is that it provides customized traces

according to the debugging purpose. The other is

that designers can make tradeoffs between the

trace granularity and the trace depth. Thus, the

trace memory utilization is more efficient.The

dynamic mode change is achieved by setting up

the event registers[6]. The event registers define

the start/stop time of a trace and the trace mode.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

5www.ijert.org

Thus, when the trigger condition meets and a

new trace begins, the new trace starts in the trace

mode specified in the event registers.

RESULT

Event Generator Result

This module is responsible for producing the

control signal for the tracer, which represents the

start and stop point of the trace.

Trace_In_Progreess is the output signal for this

module. And this module also produces mode of

trace on which basis the tracer is working.

 Event Generation Simulation Result

Checker Result

 Checker Simulation Result

The output for this module is ERROR register of

44 bit length, in which each bit represents

various protocol errors of AHB. For example

when reset signal is high (HRESETn) then all

the control signals should be at initial state

otherwise they will produce an error. The

protocol list is given in table.

Abstraction Result

 Abstraction Simulation Result

Abstraction module takes the inputs from the

AHB bus and the Event Generation module. If

divides the AHB signals into ADDRESS

signals, DATA signals and control signals. It is

also responsible for producing the output

depends on the mode of operation. For example

if the trace mode is in Full cycle signal (FC)

then it produces the output for every clock cycle.

If it is in Bus transaction mode first it encodes

the PCS control signals and generates the output

on transactions only.

Compression Result

 Compression Simulation Result

The address, data and control signals from the

abstraction module are the inputs for the

compression module. The signals are

compressed based on different compression

techniques.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org

Packing Result

 Packing Simulation Result

The compressed data is in the form of bits only.

If we transmit it directly to the memory, then

there will be a great problem at the decoder to

differentiate the data. So we have to attach the

header for each data. According to the header

only decoder can find out the different packets. .

Each buffer is of 32bits. Whenever the data in

one buffer is full, then that buffer gives the data

to the memory.

CONCLUSION

We have presented an on-chip bus tracer

SYS-HMRBT for the development, integration,

debugging, monitoring, and tuning of AHB-

based SoC‟s. It is attached to the on-chip AHB

bus and is capable of capturing and compressing

in real time the bus traces with five modes of

resolution. These modes could be dynamically

switched while tracing. The bus tracer also

supports both directions of traces: pre-T trace

(trace before the triggering event) and post-T

trace (trace after the triggering event). In

addition, a graphical user interface, running on a

host PC, has been developed to configure the

bus tracer and analyze the captured traces. With

the aforementioned features, SYS-HMRBT

supports a diverse range of design/debugging/

monitoring activities, including module

development, chip integration,

hardware/software integration and debugging,

system behavior monitoring, system

performance/power analysis and optimization,

etc. The users are allowed to tradeoff between

trace granularity and trace depth in order to

make the most use of the on-chip trace memory

or I/O pins.In the future, we would extend this

work to more advanced buses/connects such as

AXI or OCP. In addition, with its real time

abstraction capability, we would like to explore

the possibility of bridging our bus tracer with

ESL design methodology for advanced

hardware/software co development/debugging/

monitoring/analysis, etc.

REFFERENCES

[1]YANG et al.: On-Chip AHB Bus Tracer with

Real-Time Compression

[2]AMBA AHB Bus Potocol Checker with

Efficient Debugging Mechanism Yi-Ting Lin,

Chien-Chou Wang, and Ing-Jer Huang

Department of Computer Science and

Engineering National Sun Yat-sen University.

[3] ARM Ltd., San Jose, CA, “AMBA

Specification (REV 2.0) ARM IHI0011A,”

1999.

[4] ARM Ltd., San Jose, CA, “ARM. AMBA

AHB Trace Macrocell (HTM) technical

reference manual ARM DDI 0328D,” 2007.

[5] AHB Example AMBA System Technical

Reference Manual, DDI0170A 1999 ARM

Limited.

[6] ARM IHI 0011A AMBA™ Specification

(Rev 2.0)

[7]

http://en.wikipedia.org/wiki/Advanced_Microco

ntroller_Bus_Architecture

[8] http://www.arm.com/products/system-

ip/amba/index.php

[9] www.asic-world.com/verilog/veritut.html

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

7www.ijert.org

