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Abstract—This paper identifies the rooms for improvement in 

the processes that are reported in the literature for the 

construction of R*-Trees in Hadoop and MapReduce 

environment. Subsequently, the amendments that are required to 

amend these deficient processes have been suggested. The 

effectiveness of the proposed amendments have ben 

experimentally verified and presented.  
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I.  INTRODUCTION 

 
We are in an age of burgeoning big data. The data that are 

generated are voluminous, varied, complex and come at a rate 
that is challenging to data management and data processing 
systems. They come from every imaginable quarter of all 
perceivable domains. This necessitates the development of 
robust and scalable data management and data processing 
systems. Hence parallel and distributed storage as well as 
computing models have been developed and deployed. Hadoop 
and MapReduce is one such approach that is extensively and 
exhaustively employed today to build such systems. Hadoop is 
a distributed computing framework, where clusters with many 
computing and storage facilities are dynamically formed. The 
management of the clusters are transparent to the users. 
MapReduce is a programming paradigm for Hadoop 
distributed computing framework. 

R-Tree is data partitioned multi-dimensional indexing 
technique. Fig. 1 gives a sample R-Tree. The original R-Tree 
has undergone a sea change and wider ramifications. R*-Tree 
is one such efficient version of R-Tree. In this paper the terms 
R-Tree and R*-Tree are used interchangeably to refer to R*-
Trees and its construction principles. For the first several years 
people attempted at improving the performance by enhancing 
the splitting methods of the nodes and forcing reinsertions 
during the insertion of a single point. Later attempts were made 
to insert objects parallel and concurrently. Subsequently the 
behaviour of the R-Trees was studied during bulk loading. 
Today efforts are made to employ effectively construct and 
deploy R-Trees in a distributed environment. 

The general approach to construct an R-Tree in a 
distributed environment, specifically Hadoop and MapReduce, 
consists of three phases. In the first phase a function computes 
a representational single key value for each of the points in the 
n dimensional space. In the second phase these key values are 

used to partition the dataset into a predetermined set of 
partitions. Subsequently a small R-Tree is constructed for each 
partition. In the third and the final phase these small R-Trees 
are merged into a single R-Tree with all the data points 
originally considered. While the first two phases use the 
MapReduce paradigm to achieve their objectives, the third 
phase is carried out sequentially due to lesser computational 
constraint. The phases are pictorially illustrated in Fig. 2. 

 

Fig. 1. A sample R-Tree and the corresponding spatial objects in 2D 
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Fig. 2. Phases of R-Tree construction in a distributed system 

 

The goal of this paper is to present the shortcomings 
observed in the methods proposed in the literature that are used 
to construct R-Tree and its clones using Hadoop and 
MapReduce and provide solutions to these shortcomings.  

The paper is organized as follows: Section II gives a brief 
literature review of the relevant works pertaining to the realm 
of the problem addressed in this paper. Section III lists the very 
important observations made in the literature regarding R-
Trees in the context of Hadoop and MapReduce that form the 
basis and motivation of this work. These observations are 
simply the gaps in achieving the desired results of the problem 
addressed in this paper. Section IV presents the actual 
contributions of this paper. The proposals given in this section 
enhances the existing processes and also fills the gaps in the 
existing processes. Section V presents the results of the 
experiments conducted. Section VI concludes the paper and 
suggests possible continuation for the work reported in the 
paper.  

II. LITERATURE REVIEW 

 
The database community relied on B-Tree [1, 2] and its 

clones for indexing large volume of data. But they failed 
miserable when adopted for higher dimensions. R-Tree [3] 
provided an answer for this challenge by recursively 
partitioning data to form a structure like a B-Tree but 
preserving spatial proximity of data. It used the Minimum 
Bounding Rectangles (MBRs) to encompass the data partitions. 
The edges of the rectangles are orthogonal to the axes that form 
the data space. The method was easily scalable for higher 
dimensions. R*-Tree [4] ameliorated the performance of R-
Tree and answering nearest neighbour queries and directional 
queries became easy and straight forward. A review of a host 
of ramifications of R*-Tree and their applications in various 
fields is reported in [5, 6]. The performance of R-Trees in the 
context of fractal dimensions were later studied and reported in 
[7, 8]. The fundamentals of constructing and querying R-Trees 
were further refined in [9].  

The applicability of the R-Trees was very much evident in 
various domains where large volume of multidimensional data 
was involved. Bulk insertions using small-tree-large-tree 

method [10], sort based parallel loading method [11] method 
and several such methods were proposed to handle data in 
these domains. Improvement in the response time was achieved 
by efficiently storing the R-Tree in the physical medium by 
controlled duplication of the nodes [12]. A wide range of 
literature is available related to the estimations of various 
parameters of R-Trees during point and range queries. One 
such work is reported in [12]. An insight into R-Trees in P2P 
systems is reported in [14, 15]. 

The advent of Hadoop framework and MapReduce 
programming paradigm brought interesting advancements in R-
Trees. Researchers attempted to study the behaviour and 
performance of R-Trees in distributed environments that are 
based on Hadoop and MapReduce [16] which forms the basic 
plot of this paper. Incidentally bulk loading [17], estimations 
[18] and every field of exploration of R-Tree migrated into this 
new environment and the findings are regularly reported. A 
related survey is found in [19]. This survey also gives a 
comprehensive analysis of shortcomings of the Hadoop and 
MapReduce paradigm. 

III. INFERENCE FROM THE LITERATURE SURVEY 

 
The first observation that was made during the review of 

literature is the aberrations caused by the single 
representational values of the multidimensional points obtained 
by applying space filling curves. Consider a point in a 2-
dimensional space. It has eight neighbors at a distance of one 
unit from it. If the basic pattern of the space filling curve uses 
four points, then at least half of the neighbors do not form a 
sequence in the one dimensional space. The space filling 
curves use smaller sized blocks to build bigger sized blocks 
and connect the points recursively with the same pattern. As 
the number of blocks becomes more and the sizes of the blocks 
become big, the spatial proximity of good number of points is 
completely lost and results in poor partitioning of points. This 
poor partitioning results in inefficient grouping of data with 
more overlapping of partitions and increased perimeters of the 
partitions. These are the most undesired characteristics that 
generate an inefficient R-Tree or its clones. The aberration is 
exponentially magnified for higher dimensions. 

The second observation is regarding merging R-Trees. 
Given a space S and partitions si of S, the R-Trees of si, when 
merged are not comparable with the R-Tree of S. The 
differences in the measures of the parameters of R-Tree are so 
severe that the approach itself leaves a lot of questions than 
answers. Moreover deciding the partitions even before the R-
Tree is constructed does not form the correct launching of the 
process for the purpose. The problem becomes even more 
complicated when the points are not uniformly distributed or 
any other distribution is followed. In short, the problem 
exaggerates when the points form clusters and partitioning is 
done arbitrarily without considering this information.  

The third observation pertains to the slanting of the results 
due to the inherent limitation of the MapReduce paradigm, viz., 
approximate result in quick time. This limitation infiltrates into 
the solutions that employ the paradigm for problem solving. 

Henceforth in this paper, the „RTS‟ refers to the R*-Tree 
construction principles adopted and also the R*-Tree 
constructed in a single node non-distributed environment; 
„RTHEx‟ refers to the R*-Tree construction principles and also 
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the R*-Tree constructed in a Hadoop and MapReduce 
environment using the best techniques reported in the literature. 
„RTHPr‟ refers to the R*-Tree construction principles adopted 
and also the R*-Tree constructed in a Hadoop and MapReduce 
environment using the improvements and refinements 
suggested in this paper. 

IV. IMPROVISED R*-TREE CONSTRUCTION 

METHOD IN HADOP AND MAPREDUCE 

ENVIRONMENT 

 
The improvised R*-Tree construction process retains all the 

three stages described in Fig. 1, but refines the computations 
and the sub processes each of them. Accordingly, the first 
amendment was made to the calculation of representational 
single key value for each of the points in the dataset. Along 
with the first function f1, another function f2 also was applied to 
the coordinates of the points, thus obtaining two keys for the 
same point. Both keys are Hilbert values, but each Hilbert 
curve corresponding to the functions f1 and f2 have either 
different starting positions for the same space filling curve or 
completely two different space filling curves starting at the 
same position. The necessity for this approach is explained 
below. 

  

Fig 3 Illustration for the computation of f1 and f2 

In Figure 3, the Hilbert values computed by f1 for the cells 
(4, 4) and (1, 5) will fix them next to each other in the 
sequential ordering of cells‟ key values that does not reflect the 
actual Euclidean distance between the two cells. On the other 
hand the Hilbert values computed by f1 for the cells (4, 4) and 
(4, 5) will not fix them next to each other in the sequential 
ordering of the cells‟ key values that does not reflect the near 
proximity of the two cells. But the positions in the sequential 
order of the Hilbert values of the cells (5, 5), (5, 6), (6, 5) and 
(6, 6) reflect their proximities. Hence f2 must be chosen 
carefully that eliminates this anomaly. Subsequently, both f1 
and f2 were used for partitioning the dataset into pre-
determined set of partitions in the second stage. The R-Trees 
that were obtained covered the near optimal spaces. In the third 
stage the final R-Tree was constructed using sort based bulk 
insertions. 

 

V. EXPERIMENTS AND RESULTS 

 
The experiments were conducted using hypothetical data 

sets of sizes 100K, 200K, 500K and 1000K and 
dimensionalities 2, 3 and 5. The data followed a random 
distribution. The results are displayed in Figure 4, Figure 5 and 
Table 1. The results show that the RTHEx method produces a 
R-Tree that is less efficient when compared with RTS method. 
This is due to the inherent drawbacks of Hadoop and 
MapReduce environment such as partitioning and redundant 
computations. RTHPr method reduces this deficiency and 
produces a R*-Tree that is almost nearer to the RTS method, 
but still not bettering the performance of RTS method. But this 
is acceptable in the context of following observations: 

i. Hadoop and MapReduce are scalable for large volume 
of data. RTS methods ended up crashing the systems for 
datasets larger than 500K in 2D and for proportionally smaller 
datasets for higher dimensions.  

ii. The time taken by RTHPr is less when compared with 
RTS (ignoring the network parameters). 

 

 

Fig. 4. Percentage increase in total area covered by RTHEx compared  

with RTS 
 

 

Fig. 5. Percentage increase in total perimeter length by RTHEx compared 
with RTS 
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TABLE I. Comparison of RTHEx and RTHPr 

 

Number 

of 

Points 

Dim 

RTHEx RTHPr 

% 

increase 
in the 

total 

volume 
of 

space 

% 

increase 
in the 

total 

volume 
of 

space 

% 

increase 
in the 

total 

volume 
of 

space 

% 

increase 
in the 

total 

volume 
of 

space 

100K 

2 40.23 40.63 9.11 9.20 

3 49.68 53.65 9.84 10.23 

5 55.34 52.57 11.31 10.98 

200K 

2 43.45 44.32 10.67 10.14 

3 53.96 58.28 11.84 11.49 

5 63.61 69.97 13.26 13.40 

500K 

2 48.34 51.24 12.39 12.76 

3 59.34 65.27 13.26 13.92 

5 71.29 70.58 15.11 15.72 

1000K 

2 56.78 56.21 15.85 16.17 

3 66.83 64.83 16.64 17.31 

5 81.88 76.97 17.97 17.43 

 

VI. CONCLUSION 

 
This paper in the first place has identified the gaps and the 

rooms for improvement in the construction of R*-Trees in 
Hadoop and MapReduce environments. Next, suggestions to 
filling these gaps and ameliorations to the existing processes in 
various stages have been presented. The effectiveness of the 
proposals has been verified with experimental results. 
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