
Amendments to the R*-Tree Construction

Principles in Distributed Environment

F. Sagayaraj Francis
Pondicherry Engineering College

Puducherry

India

P. Xavier
Sacred Heart College

Tirupattur

India

Abstract—This paper identifies the rooms for improvement in

the processes that are reported in the literature for the

construction of R*-Trees in Hadoop and MapReduce

environment. Subsequently, the amendments that are required to

amend these deficient processes have been suggested. The

effectiveness of the proposed amendments have ben

experimentally verified and presented.

Keywords—R*-Trees, Hadoop, MapReduce, Hilbert values

I. INTRODUCTION

We are in an age of burgeoning big data. The data that are

generated are voluminous, varied, complex and come at a rate
that is challenging to data management and data processing
systems. They come from every imaginable quarter of all
perceivable domains. This necessitates the development of
robust and scalable data management and data processing
systems. Hence parallel and distributed storage as well as
computing models have been developed and deployed. Hadoop
and MapReduce is one such approach that is extensively and
exhaustively employed today to build such systems. Hadoop is
a distributed computing framework, where clusters with many
computing and storage facilities are dynamically formed. The
management of the clusters are transparent to the users.
MapReduce is a programming paradigm for Hadoop
distributed computing framework.

R-Tree is data partitioned multi-dimensional indexing
technique. Fig. 1 gives a sample R-Tree. The original R-Tree
has undergone a sea change and wider ramifications. R*-Tree
is one such efficient version of R-Tree. In this paper the terms
R-Tree and R*-Tree are used interchangeably to refer to R*-
Trees and its construction principles. For the first several years
people attempted at improving the performance by enhancing
the splitting methods of the nodes and forcing reinsertions
during the insertion of a single point. Later attempts were made
to insert objects parallel and concurrently. Subsequently the
behaviour of the R-Trees was studied during bulk loading.
Today efforts are made to employ effectively construct and
deploy R-Trees in a distributed environment.

The general approach to construct an R-Tree in a
distributed environment, specifically Hadoop and MapReduce,
consists of three phases. In the first phase a function computes
a representational single key value for each of the points in the
n dimensional space. In the second phase these key values are

used to partition the dataset into a predetermined set of
partitions. Subsequently a small R-Tree is constructed for each
partition. In the third and the final phase these small R-Trees
are merged into a single R-Tree with all the data points
originally considered. While the first two phases use the
MapReduce paradigm to achieve their objectives, the third
phase is carried out sequentially due to lesser computational
constraint. The phases are pictorially illustrated in Fig. 2.

Fig. 1. A sample R-Tree and the corresponding spatial objects in 2D

1348

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051553

Vol. 3 Issue 5, May - 2014

Fig. 2. Phases of R-Tree construction in a distributed system

The goal of this paper is to present the shortcomings
observed in the methods proposed in the literature that are used
to construct R-Tree and its clones using Hadoop and
MapReduce and provide solutions to these shortcomings.

The paper is organized as follows: Section II gives a brief
literature review of the relevant works pertaining to the realm
of the problem addressed in this paper. Section III lists the very
important observations made in the literature regarding R-
Trees in the context of Hadoop and MapReduce that form the
basis and motivation of this work. These observations are
simply the gaps in achieving the desired results of the problem
addressed in this paper. Section IV presents the actual
contributions of this paper. The proposals given in this section
enhances the existing processes and also fills the gaps in the
existing processes. Section V presents the results of the
experiments conducted. Section VI concludes the paper and
suggests possible continuation for the work reported in the
paper.

II. LITERATURE REVIEW

The database community relied on B-Tree [1, 2] and its

clones for indexing large volume of data. But they failed
miserable when adopted for higher dimensions. R-Tree [3]
provided an answer for this challenge by recursively
partitioning data to form a structure like a B-Tree but
preserving spatial proximity of data. It used the Minimum
Bounding Rectangles (MBRs) to encompass the data partitions.
The edges of the rectangles are orthogonal to the axes that form
the data space. The method was easily scalable for higher
dimensions. R*-Tree [4] ameliorated the performance of R-
Tree and answering nearest neighbour queries and directional
queries became easy and straight forward. A review of a host
of ramifications of R*-Tree and their applications in various
fields is reported in [5, 6]. The performance of R-Trees in the
context of fractal dimensions were later studied and reported in
[7, 8]. The fundamentals of constructing and querying R-Trees
were further refined in [9].

The applicability of the R-Trees was very much evident in
various domains where large volume of multidimensional data
was involved. Bulk insertions using small-tree-large-tree

method [10], sort based parallel loading method [11] method
and several such methods were proposed to handle data in
these domains. Improvement in the response time was achieved
by efficiently storing the R-Tree in the physical medium by
controlled duplication of the nodes [12]. A wide range of
literature is available related to the estimations of various
parameters of R-Trees during point and range queries. One
such work is reported in [12]. An insight into R-Trees in P2P
systems is reported in [14, 15].

The advent of Hadoop framework and MapReduce
programming paradigm brought interesting advancements in R-
Trees. Researchers attempted to study the behaviour and
performance of R-Trees in distributed environments that are
based on Hadoop and MapReduce [16] which forms the basic
plot of this paper. Incidentally bulk loading [17], estimations
[18] and every field of exploration of R-Tree migrated into this
new environment and the findings are regularly reported. A
related survey is found in [19]. This survey also gives a
comprehensive analysis of shortcomings of the Hadoop and
MapReduce paradigm.

III. INFERENCE FROM THE LITERATURE SURVEY

The first observation that was made during the review of

literature is the aberrations caused by the single
representational values of the multidimensional points obtained
by applying space filling curves. Consider a point in a 2-
dimensional space. It has eight neighbors at a distance of one
unit from it. If the basic pattern of the space filling curve uses
four points, then at least half of the neighbors do not form a
sequence in the one dimensional space. The space filling
curves use smaller sized blocks to build bigger sized blocks
and connect the points recursively with the same pattern. As
the number of blocks becomes more and the sizes of the blocks
become big, the spatial proximity of good number of points is
completely lost and results in poor partitioning of points. This
poor partitioning results in inefficient grouping of data with
more overlapping of partitions and increased perimeters of the
partitions. These are the most undesired characteristics that
generate an inefficient R-Tree or its clones. The aberration is
exponentially magnified for higher dimensions.

The second observation is regarding merging R-Trees.
Given a space S and partitions si of S, the R-Trees of si, when
merged are not comparable with the R-Tree of S. The
differences in the measures of the parameters of R-Tree are so
severe that the approach itself leaves a lot of questions than
answers. Moreover deciding the partitions even before the R-
Tree is constructed does not form the correct launching of the
process for the purpose. The problem becomes even more
complicated when the points are not uniformly distributed or
any other distribution is followed. In short, the problem
exaggerates when the points form clusters and partitioning is
done arbitrarily without considering this information.

The third observation pertains to the slanting of the results
due to the inherent limitation of the MapReduce paradigm, viz.,
approximate result in quick time. This limitation infiltrates into
the solutions that employ the paradigm for problem solving.

Henceforth in this paper, the „RTS‟ refers to the R*-Tree
construction principles adopted and also the R*-Tree
constructed in a single node non-distributed environment;
„RTHEx‟ refers to the R*-Tree construction principles and also

1349

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051553

Vol. 3 Issue 5, May - 2014

the R*-Tree constructed in a Hadoop and MapReduce
environment using the best techniques reported in the literature.
„RTHPr‟ refers to the R*-Tree construction principles adopted
and also the R*-Tree constructed in a Hadoop and MapReduce
environment using the improvements and refinements
suggested in this paper.

IV. IMPROVISED R*-TREE CONSTRUCTION

METHOD IN HADOP AND MAPREDUCE

ENVIRONMENT

The improvised R*-Tree construction process retains all the

three stages described in Fig. 1, but refines the computations
and the sub processes each of them. Accordingly, the first
amendment was made to the calculation of representational
single key value for each of the points in the dataset. Along
with the first function f1, another function f2 also was applied to
the coordinates of the points, thus obtaining two keys for the
same point. Both keys are Hilbert values, but each Hilbert
curve corresponding to the functions f1 and f2 have either
different starting positions for the same space filling curve or
completely two different space filling curves starting at the
same position. The necessity for this approach is explained
below.

Fig 3 Illustration for the computation of f1 and f2

In Figure 3, the Hilbert values computed by f1 for the cells
(4, 4) and (1, 5) will fix them next to each other in the
sequential ordering of cells‟ key values that does not reflect the
actual Euclidean distance between the two cells. On the other
hand the Hilbert values computed by f1 for the cells (4, 4) and
(4, 5) will not fix them next to each other in the sequential
ordering of the cells‟ key values that does not reflect the near
proximity of the two cells. But the positions in the sequential
order of the Hilbert values of the cells (5, 5), (5, 6), (6, 5) and
(6, 6) reflect their proximities. Hence f2 must be chosen
carefully that eliminates this anomaly. Subsequently, both f1
and f2 were used for partitioning the dataset into pre-
determined set of partitions in the second stage. The R-Trees
that were obtained covered the near optimal spaces. In the third
stage the final R-Tree was constructed using sort based bulk
insertions.

V. EXPERIMENTS AND RESULTS

The experiments were conducted using hypothetical data

sets of sizes 100K, 200K, 500K and 1000K and
dimensionalities 2, 3 and 5. The data followed a random
distribution. The results are displayed in Figure 4, Figure 5 and
Table 1. The results show that the RTHEx method produces a
R-Tree that is less efficient when compared with RTS method.
This is due to the inherent drawbacks of Hadoop and
MapReduce environment such as partitioning and redundant
computations. RTHPr method reduces this deficiency and
produces a R*-Tree that is almost nearer to the RTS method,
but still not bettering the performance of RTS method. But this
is acceptable in the context of following observations:

i. Hadoop and MapReduce are scalable for large volume
of data. RTS methods ended up crashing the systems for
datasets larger than 500K in 2D and for proportionally smaller
datasets for higher dimensions.

ii. The time taken by RTHPr is less when compared with
RTS (ignoring the network parameters).

Fig. 4. Percentage increase in total area covered by RTHEx compared

with RTS

Fig. 5. Percentage increase in total perimeter length by RTHEx compared
with RTS

0

20

40

60

80

100

100K 200K 500K 1000K

P
e

rc
e

n
ta

ge

Number of MBRs

2D

3D

5D

0

20

40

60

80

100

100K 200K 500K 1000K

P
e

rc
e

n
ta

ge

Number of MBRs

2D

3D

5D

1350

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051553

Vol. 3 Issue 5, May - 2014

TABLE I. Comparison of RTHEx and RTHPr

Number

of

Points

Dim

RTHEx RTHPr

%

increase
in the

total

volume
of

space

%

increase
in the

total

volume
of

space

%

increase
in the

total

volume
of

space

%

increase
in the

total

volume
of

space

100K

2 40.23 40.63 9.11 9.20

3 49.68 53.65 9.84 10.23

5 55.34 52.57 11.31 10.98

200K

2 43.45 44.32 10.67 10.14

3 53.96 58.28 11.84 11.49

5 63.61 69.97 13.26 13.40

500K

2 48.34 51.24 12.39 12.76

3 59.34 65.27 13.26 13.92

5 71.29 70.58 15.11 15.72

1000K

2 56.78 56.21 15.85 16.17

3 66.83 64.83 16.64 17.31

5 81.88 76.97 17.97 17.43

VI. CONCLUSION

This paper in the first place has identified the gaps and the

rooms for improvement in the construction of R*-Trees in
Hadoop and MapReduce environments. Next, suggestions to
filling these gaps and ameliorations to the existing processes in
various stages have been presented. The effectiveness of the
proposals has been verified with experimental results.

REFERENCES

[1] J. Nievergelt, "Binary search trees and file organization,” ACM
Computing Surveys, vol. 6, no. 3, pp. 195-207, 1973.

[2] D. Comer, “The ubiquitous B-tree," ACM Computing Surveys, vol. 11,
no. 2, pp. 121-137, 1979.

[3] Guttman, "R-trees: A dynamic index structure for spatial searching,"
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 47-57, 1984.

[4] N. Beckmann, H. -P. Krieger, R. Schneider and B. Seeger, “The R*-tree:
an efficient and robust access method for points and rectangles,"
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 322-331, 1990.

[5] V. Gaede and 0. Guenther, "Multidimensional access methods," ACM
Computing Surveys, vol. 30, no. 2, pp. 170-23 1, 1998.

[6] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos and Y.
Theodoridis, “R-trees have grown everywhere," Technical Report,
Available at http://citeseer.ist.psu.edu/706599.html (2003)

[7] Faloutsos and I. Kamel, "Beyond uniformity and independence:
Analysis of R-trees using the concept of fractal dimension," Proceedings
of the 13th ACMPODS Conference, pp. 4-13, 1994.

[8] I. Kamel and C. Faloutsos, "Hilbert R-tree: An improved R-tree using
fractals," Proceedings of the 20th International Conference on Very
Large Databases, pp. 500-509, 1994.

[9] S. Brakatsoulas, D. Pfoser and Y. Theodoridis, "Revisiting R-tree
construction principles," Proceedings of the 6th ADBIS Conference, pp.
149-162, 2002.

[10] L. Chen, R. Choubey and E. A. Rundensteiner, "Bulk-insertions into R-
trees using the small-tree-large-tree approach," Proceedings of the 6th
ACM GIS Conference, pp. 161-162, 1998.

[11] Daniar Achakeev, Marc Seidemann, Markus Schmidt and Bernhard
Seeger, “Sort-based parallel loading of R-trees,” Proceedings of the 1st
ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data, pp. 62-70, 2012.

[12] F.Sagayaraj Francis and P.Thambidurai, “Efficient Physical
Organization of R-Trees Using Node Clustering”, Journal of Computer
Science, vol. 3, no. 7, pp. 506-514, 2007.

[13] F.Sagayaraj Francis and P.Thambidurai, “An Efficient Method to
Estimate the Number of Node Accesses in R*-trees for Window
Queries”, Journal of Advance Research in Computer Engineering, vol. 1,
nos. 1-2, pp. 9-24, 2007.

[14] X. Wei and K. Sezaki, "DHR-Trees: A distributed multidimensional
indexing structure for P2P systems," Proceedings of the 5th International
Symposium on Parallel and Distributed Computing, pp. 281-290, 2006.

[15] Dafei Yin, Bin Chen, Yu Fang and Zhou Huang, “Fully distributed R-
tree for efficient range query dissemination in peer-to-peer spatial data
grid,” Proceedings of the Conference on Geoinformatics, Geospatial
Information Science, doi:10.1117/12.761369, 2007.

[16] Ariel Cary, Zhengguo Sun, Vagelis Hristidis and Naphtali Rishe,
“Experiences on Processing Spatial Data with MapReduce,”
Proceedings of the 21st International Conference on Scientific and
Statistical Database Management, pp. 302-319, 2009.

[17] Himanshu Gupta, Bhupesh Chawda, Sumit Negi, Tanveer A. Faruquie,
L. V. Subramaniam and Mukesh Mohania, “Processing multi-way
spatial joins on map-reduce,” Proceedings of the 16th International
Conference on Extending Database Technology, pp. 113-124 , 2013.

[18] Yi Liu, Ning Jing, Luo Chen and Huizhong Chen, "Parallel bulk-loading
of spatial data with MapReduce: An R-tree case," Wuhan University
Journal of Natural Sciences, vol. 16, No. 6, pp. 513-519, 2011.

[19] Christos Doulkeridis and Kjetil Norvag, “A Survey of Large-Scale
Analytical Query Processing in MapReduce,” The VLDB Journal, DOI:
10.1007/s00778-013-0319-9, 2013.

1351

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051553

Vol. 3 Issue 5, May - 2014

