

AN ACCURATE MODEL OF SOFTWARE

CODE READABILITY

Dr.P.SIVAPRAKASAM
1
, V.SANGEETHA

2

1Reader, Sri Vasavi College, Erode, Tamil Nadu.

2ASST.PROFF, Department of Computer Science, Vysya College, Salem, Tamil Nadu.

Abstract: In this paper we present the role of software

readability on software development cost. We dispute that the

upfront cost of incorporating software readability pays off

attractively at later stages in the life cycle, especially at the

maintenance phase which is where most of the life cycle cost of

software is expended. We explore the concept of code

readability and investigate its relation to software quality. We

build an automated readability measure and show that it can

be 75 percent effective and better than a human, on average, at

predicting readability judgments. We also measure the snippets

on over million lines of code, as well as longitudinally, over

many releases of selected projects. At last, we discuss the

suggestions of this study on Programming language design

and engineering practice.

Index Terms - Software readability, code

readability, software maintenance.

1. INTRODUCTION

Aggarwal claims that source code readability and

documentation readability

are both critical to the maintainability of a project [10].

Our analysis of different software development activities

shows that software readability has a global effect on

Software development cost and is independent of software

size (i.e., KSLOC). We also discover the concept of code

readability and examine its relation to software quality [1].

This is a new advance to measuring the complexity of

software systems [2]. Software industry uses software

metrics to measure the complexity of software systems for

software cost estimation, software development control,

software assurance, software testing, and software

maintenance [3], [7], [5]. We find out the concept of code

readability and study its relation to software quality. With

data collected from open source, we derive associations

between a simple set of local code features and human

notions of readability. We construct an automated

readability measure and show that it can be 80% effective,

and better than a human on average, at predicting

readability judgments. This model of software readability

correlates strongly with human annotators and also with

external (widely available) notions of software quality. To

understanding the usefulness of the objective model of

software readability, we have to consider the readability

metrics in natural languages. A number of readability

measure and formulas were defined, but only few

succeeded to conform validation standards. Few of

the most popular readability formulas include: Flesch's

Reading Ease Score [12], Dale-Chall's Readability

Formula [13], SPACHE Readability Formula, FryGraph

Readability Formula, SMOG Grading, Cloze Procedure,

Lively-Pressey's Formula and Gunning's Fog Index (or

FOG).

2. BACKGROUND

In addition, readability factors may vary significantly

based on application domain. This research is needed to

determine the extent of this variability, and whether

specialized models would be useful. Another possibility

for improvement would be an extension of our notion of

local code readability to include broader features. While

most of our features are calculated as average or

maximum value per line, it may be useful to consider the

size of compound statements, such as the number of

simple statements within an if block. For this study, we

intentionally avoided such features to help ensure that we

were capturing readability rather than complexity.

However, in practice, achieving this separation of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

concerns is likely to be less compelling.Readability

measurement tools present their own challenges in terms

of programmer access. We suggest that such tools could

be integrated into an IDE, such as Eclipse, in the same

way that natural language readability metrics are

incorporated into word processors. Finally, in line with

conventional readability metrics, it would be worthwhile

to express our metric using a simple formula over a small

number of features. Using only the truly essential and

predictive features would allow the metric to be adapted

easily into many development processes. In addition, with

a smaller number of coefficients the readability metric

could be parameterized or modified in order to better

describe readability in certain environments, or to meet

more specific concerns.

3. METHODOLOGY

3.1 SELECT THE SNIPPET

In the generation of readability model, first collected the

snippets from different project open source software

repository. Snippet is small part of the code. A snippet

does include preceding or in-between lines that are not

simple statements, such as comments, function Headers,

blank lines, or headers of compound statements like if-

else, try-catch, while, switch, and for. These snippets must

be too short to aid feature discrimination. However, if

snippets are too short, then they may obscure important

readability considerations. Second, snippets should be

logically coherent to allow annotators the context to

appreciate their readability. These snippets are given to

the annotators; these are the people who can write the

functionality of the code.

Table 2.1 snippets from different project

SNO PROJECT

NAME
NUMBER

OF LINES
1 2D GAMES 2623
2 BSPMAP 8442
3 GAME 1526
4 LIBRARY

RECORD

STYSTEM

836

5 PAYROLL 535

3.2 SCORING READABILITY

We can give ratings to the snippets in given order from 1

to 5. If the code is “more readable” the metric value is 5,

if less the metric value is 1or 2, if in the average case the

metric value is 3. According to given instructions they are

gave ratings for the snippets from different project in the

given order. First, forms a set of features that can be

detected statically from a snippet or other block of code.

For any code it contains some of local code features those

are to be Line length (# character), identifiers,

Fig:3.1 Distribution of readability score on code

snippets taken from several open source projects

identifier length, Indentation (preceding whitespace),

Keywords, Parenthesis, Numbers, Comments, Periods,

branches, loops likewise nearly 18 features are there. Each

feature can be applied to an arbitrary sized block of Java

source code, and each represents either an average value

per line, or a maximum value for all lines. For example,

we have a feature that represents the average number of

identifiers in each line and another that represents the

maximum number in any one line. There are several

machine learning algorithms are available for this

situation. Such algorithms typically take the form of a

classifier which operates on instances. For our Purposes,

an instance is a feature vector extracted from a single

snippet. In the training phase, we give a classifier a set of

instances along with a labeled “correct answer” based on

the readability data from our annotators. The labeled

correct answer is a binary judgment partitioning the

snippets into “more readable” and “less readable” based

on the human annotator data. We group the remaining

snippets and consider them to be “more readable.”

Furthermore, the use of binary classifications also allows

us to take advantage of a wider variety of learning

algorithms [9]. After making the training and testing

phases we generated a readability model. Using this

readability the readability of the code is calculated. The

readability is to be comes between 0-1, means a fractional

value[10]. The readability model which is to be developed

is to be incorporated into the graphical user inter phase

such as to be NetBeans or Eclipse we can easily

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

understand the readability and we can also generate

graphs to the readability of the code which is to be taken

to calculate the readability.

The graphical representation is to be for the better

understanding purpose. NetBeans and Eclipse are to be the

IDEs (Integrated Development Environment), and if we

incorporate this model into the IDEs, we can make more

friendliness to the users to use the readability model in

nature. Many organizations can be using this to check

their code readability. If code readability is less then

automatically the quality of the code also to be less.

Readability and quality both are to be interrelated in

nature. If readability is less then they try to increase the

readability of the code by changing the code. Then

automatically quality of the code also increases. Anyone

can automatically judge readability about as well as the

“average” human can.

4. RESULT

Unlike other formulas, it is easy to calculate and

is regarded as more accurate readability index. Total

number of words, syllables and sentences are the basic

counts of the formula. Then it uses average sentence

length and average number of syllables per word to

compute a final readability score for a given text. The

original Flesch Reading Ease Formula is as below:

R:E: = 206.835 - (0.846 *wl) - (1.015 * sl)

Here:

R.E. = Reading Ease

wl = Word Length (The number of syllables in a 100 word

sample).

sl = Average Sentence Length (the number of words

divided by the number of sentences, in a 100 word

sample).

Below is the modified form of the formula in case of text

having more than 100 words:

R:E: = 206.835 - (84.6 * ASW) - (1.015 *ASL)

Here:

ASW = Average Number of Syllables per Word (total

number of syllables divided by the total number of

words).

ASL = Average Sentence Length (the number of words

divided by the number of sentences).

Constants in the formula are selected by Flesch after years

of observation and trial [14]. The R.E. value ranges from 0

to 100 and higher value implies easier the text is to read.

Abram and Dowling [14] use interpretations for FRES,

originally specified by Klare and Campbell.

The above mentioned is one example for the natural

language readability metrics. These metrics can help

organizations gain some confidence that their documents

meet goals for readability very cheaply, and have become

ubiquitous for that reason. We believe that similar metrics,

targeted specifically at source code and backed with

empirical evidence for effectiveness, can serve an

analogous purpose in the software domain. Most of the

classical readability formulas, including FRES, are based

on the count of lexical tokens or entities, e.g., total

number of words, unique words, sentences, syllables, and

paragraphs. In order to apply readability formulas to

computer programs, one has to find the equivalents of

these lexical entities for a program text. Programming

languages at present are not exactly same as natural

languages are, however the basic lexical units are similar.

They have their own set of characters equivalent to

alphabets, keywords and user defined identifiers

equivalent to words, statements equivalent to sentences,

block structures equivalent to paragraphs or sections, and

modules equivalent to chapters.

An experiment is to be conducted on to the small part of

the java code called snippet. This experiment is conducted

using the IDE as Netbeans tocalculate the readability of

the code. For this experiment given the snippet as

Class clas = object.getClass();

Field field = Reflect.resolveJavafield

(clas, name, false/*onlyStatic*

if (field != null)

return new Variable(

name,field.getType(),new

LHS(object,field));

The above used a snippet from the java code and this is

used as a input to my model and the output generated is

the readability score. The readability score is

0.5342345566

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

The above mentioned graph is to be the calculated

readability of the given snippets. Using the model like

above it can be calculated for any snippets

Conclusion

The techniques presented in this paper should provide an

excellent platform for conducting readability formula,

especially with respect to unifying even a very large

number of judgments into an accurate model of

readability. While we have shown that there is significant

agreement between our annotators on the factors that

contribute to code readability, we would expect each

annotator to have personal preferences that lead to a

somewhat different weighting of the relevant factors. It

also investigates whether a personalized or organization-

level model, adapted over time, would be effective in

characterizing code readability.

5. REFERENCE

[1] Buse, R. & Weimer, W. (2010), 'Learning a Metric for

Code Readability', transactions on Software Engineering

36 (4) , 546--558 . [2] C. M. Chung, and C. Yung,

"Readability Metrics," The Proceedings of Mid-America

Chinese Projkssional Annual Convention 2011,

Chicago, Illinois.

[3] C. M. Chung, W. R. Edwards, and M. G. Yang, "Static

and Dynamic Data Flow Metrics," Policy and Information,

Vol. 13, No. 1, pp. 91-103, June 2010.

[4] N. E. Fenton, "Software Metrics: Successes, Failures

& New Directions," presented at ASM 99: Applications of

Software Measurements a n joe , C A.

[5] C. M. Chung, and M. G. Yang, "A Software Meh7ics

Based Software Environment for Coding, Testing and

Maintenance," Proceedings of The 2010. Science,

Engineering and Technology Seminars, Houston, Texas,

pp. T3-13 - T3 [6] K. Aggarwal, Y. Singh, and J. K.

Chhabra. Anintegrated measure of software

maintainability. Reliability and Maintainability

Symposium, 2009.Proceedings.Annual, pages 235{241,

September 2009.

[7] C. M. Chung, and C. Yung, "Measuring Software

Complexity Considering Both Readability and Size,"

Infomration and Communication, Tamkang Univ.,

Taiwan.

[8] C. M. Chung, and C. Yung, "Readability Metrics," The

Proceedings of Mid-America Chinese Projkssional Annual

Convention Chicago, Illinois.

[9] S. D. Conte, H. E. Dunsmore, and Models,

Benjamin/Cummings Press

[10] K. Aggarwal, Y. Singh, and J. K. Chhabra, “An

integrated measure of software maintainability,”

Reliability and Maintainability Symposium, pp. 235–241,

Sep. 2010.

[11] Ben Chelf Chief Technology Officer

Coverity,Inchttp://www.coverity.com/library/pdf/

open_source_quality_report.pdf.

[12] R. Flesch. A New ReadabiliJournal of Applied

Psychology

[13] E. Dale and J.S. Chall. A Form Readability.

Educational Resea 11{28, 1948.

[14]. M.J.Abram and W.D. Dowlin are Parenting Books?

Family 365{368, 1979.

Biography

Dr.P.Svaprakasam did his Mphil computer science

during the year of 1995 and completed his Ph.D in the

year of 2005. He has been specialized in this area of

Netwoking, Web designing, and Software engineering.

He has attended many conferences and presented

several papers to his credit. He has twenty two years

experience in the field of computer science.

V.Sangeetha has completed her Msc(cs) during the

year of 2001 and Mphil during the year 2004 from

periyar university .Her research interest include

software engineering, Data mining, Compiler design.

She has eleven years experience in the field of

computer science.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

