
An Adaptive Environment To Evaluate The Performance Of Parallel

Merge Sort

Husain Ullah Khan, Rajesh Tiwari

Abstract

Merging is very well understood in the sequential

model of computation and a simple algorithm exists for

its solution. Parallel computing on loosely coupled

architecture has been evolved now days because of the

availability of fast, inexpensive processors and

advancements in communication technologies. The One

common example of parallel processing is the

implementation of the merge sort within a parallel

processing environment. such as Open-MP and MPI,

and run it on multi-core computers and multi-core

clusters. The aim of this paper is to estimate the

performance and speedup of parallel merge sort

algorithm compare it with theoretical analysis .The

parallel computational time complexity is O(p) using p

processes and one element in each process. It has been

found that there is no major difference between

theoretical performance analysis and the actual result.

1. Introduction

Merge sort is an efficient divide-and-conquer sorting

algorithm. Because merge-sort is easier to understand

than other useful divide-and-conquer methods. One

common example of parallel processing is the

implementation of the merge sort within a parallel

processing environment. In the fully parallel model,

you repeatedly split the sub lists down to the point

where you have single-element lists. [1] Intuitively,

merge sort operates on an array of n objects as follows:

(1) if n > 1, divide the array into two sub-arrays of

about half the size each;

(2) apply merge sort on each sub-array;

(3) merge the two sorted sub-arrays from step 2 into

one sorted array.

Manuscript received Oct 18, 2012.

 Husain ullah khan:- M.E.(Pursuing) in Computer Technology &
Application from Shri Shankaracharya College of Engineering &

Technology, CSVTU Bhilai, India. Mob: +91-9907417003,(e-mail:

khan.husain@gamil.com).

Rajesh Tiwari:- Dept. Of Computer Science & Engineering, Sr.
Associate Professor in Department of computer Science in Shri

Shankaracharya Group of institutions (Faculty of engineering),

Mob: +91-9893411757, (e-mail: raj_tiwari_in@yahoo.com).

2. Parallel Merge Sort

The merge sort algorithm uses a divide and conquer

strategy to sort its elements [6].The list is divided into 2

equally sized lists and the generated sub-lists are

further divided. The numbers are then merged together

as pairs to form sorted lists .The lists are then merged

subsequently until the whole list is constructed. This

algorithm can parallelized by distributing n/p elements

memory of n elements for its merge operation (the

same as quick sort). The practical performance of

merge sort is known to improve with recursion removal

and cache memory utilization [4]. We use merge sort as

a test bed to explore parallelization schemes that may

possibly apply without significant changes to other

divide-and conquer methods. Merge sort parallelization

is well-studied in theory. Figure 2.1 shows the

processing tree for the case in which you have a list of

2000 items to be sorted and have resources only

sufficient for four parallel processes. The processes

receiving the size 500 lists use some sequential sorting

algorithm. Because of the implementation environment,

it will be something in the C/C++ language and your

favorite implementation of a fast sorting algorithm.

Each leaf node (with a size 500 list) then provides the

sorted result to the parent process within the processing

tree that processes combines the two lists to generate a

size 1000 list, and then sends that result upstream to its

parent process. Finally, the root process in the

processing tree merges the two lists to obtain a size

2000 list, fully sorted. If your environment supports

more parallel processes, you might take the processing

tree to four levels, so that eight processes do the

sequential sorting of size 250 lists.

 Figure:-2.1 Merge tree

3. Time Complexity of Parallel Merge Sort

Sequential merge sort time complexity is O (n log n).

when parallelizing the merge sort algorithm the time

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

complexity reduces to O(n/p log n/p) as stated in [4].

4. Properties for Parallel Algorithm

Five important properties that we desire a parallel

algorithm to possess. The first two properties concern

the number of processors to be used by the algorithm.

Let n be the size of the problem to be solved:

(i) p(n) must be smaller than n: No matter how

inexpensive computers become, it is unrealistic when

designing a parallel algorithm to assume that we have

at our disposal more (or even as many) processors as

there are items of data. This is particularly true when n

is very large. It is therefore important that p(n) be

expressible as a sub linear function of n, that is,

p(n) = n X ; 0 < x < 1.

(ii) p(n) must be adaptive: In computing in general,

and in parallel computing in particular, "appetite comes

with eating" . Algorithms using a number of processors

that is a sub linear function of n [and hence satisfying

property (i)], such as log n or n'/2, would not be

acceptable either due to their inflexibility. What we

need are algorithms that possess the "intelligence" to

adapt to the actual number of processors available on

the computer being used.

4.1 Running Time

The next two properties concern the worst-case running

time of the parallel algorithm:

(i) t(n) must be small: Our primary motive for building

parallel computers is to speed up the computation

process. It is therefore important that the parallel

algorithms we design be fast. To be useful, a parallel

algorithm should be significantly faster than the best

sequential algorithm for the problem at hand.

(ii) t(n) must be adaptive: Ideally, one hopes to have an

algorithm whose running time decreases as more

processes are used. In practice, it is usually the case

that a limit is eventually reached beyond which no

speedup possible regardless of the number of

processors is used. Nevertheless, it is desirable that t(n)

vary inversely with p(n) within the bounds set for p(n).

4.2 Cost

Ultimately, we wish to have parallel algorithms for

which c(n) = p(n) x t(n) always matches a known lower

bound on the number of sequential operations required

in the worst case to solve the problem. In other words,

a parallel algorithm should be cost optimal. In

particular, when a set of processors are linked by an

interconnection network, the geometry of the network

often imposes limits on what can be accomplished by a

parallel algorithm. It is a different story when the

algorithm is to run on a shared-memory parallel

computer. parallel algorithm for selecting the kth

smallest element of a sequence S = {S, S2,..., s,}. The

algorithm runs on an SM SIMD computer with N

processors, where N < n. The algorithm enjoys all the

desirable properties formulated in this section:

(i) It uses p(n) = n' -' processors, where 0 < x < 1. The

value of x is obtained from N = n". Thus p(n) is sub

linear and adaptive.

(ii) It runs in t(n) = 0(nX) time, where x depends on the

number of processors available on the parallel

computer. The value of x is obtained in (i). Thus t(n) is

smaller than the running time of the optimal sequential

algorithm described in

5. An Algorithm For Parallel Selection

We are now ready to study an algorithm for parallel

selection on an SM SIMD computer. The algorithm

presented as procedure PARALLEL SELECT makes

the following assumptions (some of these were stated

earlier):

1. A sequence of integers S = {s1, s2, .. , s- and an

integer k, I < k < n, are given, and it is required to

determine the kth smallest element of S. This is the

initial input to PARALLEL SELECT.

2. The parallel computer consists of N processors PI, .

..., PN.

3. Each processor has received n and computed x from

N = n', where O<x< 1.

4. Each of the n' processors is capable of storing a

sequence of nx elements in its local memory.

5. Each processor can execute procedures SELECT,

SEQUENTIAL, BROADCAST, and ALL SUMS.

6. M is an array in shared memory of length N whose

ith position is M(i).

As usual, we denote by t(n) the time required by

PARALLEL SELECT for an input of size n.

A function describing t(n) is now obtained by analyzing

each step of the procedure.

Step 1: To perform this step, each processor needs the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

beginning address A of sequence S in the shared

memory, its size is ,and the value of k. These quantities

can be broadcast to all processors using procedure

BROADCAST: This requires O(log n' -x) time. If ISI <

4, then P1 returns the kth element in constant time.

Otherwise, Pi computes the address of the first and last

elements in Si from A + (i -1)nx and A + inX - 1,

respectively; this can be done in constant time. Thus,

step 1 takes cllog n time units for some constant cl.

Step 2: SEQUENTIAL SELECT finds the median of a

sequence of length nX in c2n' time units for some

constant c2.

Step 3: Since PARALLEL SELECT is called with a

sequence of length n'-x, this step requires t(n'-x) time.

Step 4: The sequence S can be subdivided into L, E,

and G as follows:

(i) First m is broadcast to all the processors in

O(logn1-x) time using procedure BROADCAST.

(ii) Each processor Pi now splits Si into three

subsequences Li, E,, and Gi of elements smaller than,

equal to, and larger than m, respectively. This can be

done in time linear in the size of Si, that is, 0(nX) time.

(iii) The subsequences Li, E,, and Gi are now merged

to form L, E, and G. We show how this can be done for

the Li; An Algorithm for Parallel Selection running

time can be derived for merging the Ei and G;,

respectively. All these sums can be obtained by n`-x

processors in O(log nl X) time using procedure

ALLSUMS.

 Step 5: The size of L needed in this step has already

been obtained in step 4 through the computation . The

same remark applies to the sizes of E and G. The

preceding analysis yields the following recurrence for

t(n): t(n) = c1log n + C2nX + t(n'X) + C3nX + t(3n/4),

whose solution is t(n) = 0(nX) for n > 4.

Since p(n) = n', we have c(n) = p(n) x t(n) = n' -x x

0(nx) = O(n). Since N = n'-x and n/nX < n/log n, it

follows that PARALLEL SELECT is cost optimal

provided N < n/log n.

6. A Network for Merging

Special-purpose parallel architectures can be obtained

in any one of the following ways:

(i) using specialized processors together with a

conventional interconnection network,

(ii) using a custom-designed interconnection network to

link standard processors,

 Or

(iii) using a combination of (i) and (ii).

In this paper we shall take the third of these

approaches. Merging will be accomplished by a

collection of very simple processors communicating

through a special-purpose network. This special-

purpose parallel architecture is known as an (r, s)-

merging network. All the processors to be used are

identical and are called comparators. a comparator

receives two inputs and produces two outputs. The only

operation a comparator is capable of performing is to

compare the values of its two inputs and then place the

smaller and larger of the two on its top and bottom

output lines, respectively

6.1 Analysis

Our analysis of odd-even merging will concentrate on

the time, number of processors, and total number of

operations required to merge. (i) Running Time. We

begin by assuming that a comparator can read its input,

perform a comparison, and produce its output all in one

time unit. Now, let t(2n) denote the time required by an

(n, n)-merging network to merge two sequences of

length n each. The recursive nature of such a network

yields the following recurrence for

t(2n): t(2) = 1 for n = I , t(2n) = t(n) + 1 for n > 1

whose solution is easily seen to be t(2n) = 1 + log n.

This is significantly faster than the best, namely, 0(n),

running time achievable on a sequential computer. (ii)

Number of Processors. Here we are interested in

counting the number of comparators required to odd-

even merge.

merging network. Again, we have a recurrence:

p(2) = 1

for n = 1

p(2n) = 2p(n) + (n - 1) for n > I

whose solution p(2n) = I + n log n is also

straightforward.

(iii) Cost.

Since t(2n) = 1 + log n and p(2n) = 1 + n log n, the total

number

of comparisons performed by an (n, n)-merging

network, that is, the network's cost, is c(2n) = p(2n) x

t(2n)= O(n log2n).Our network is therefore not cost

optimal as it performs more operations than the 0(n)

sufficient to merge sequentially.

7. Choosing the Parallel Environment: MPI

 There is an easily used parallel processing

environment for you whether your target system is a

single multiprocessor computer with shared memory or

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

a number of networked computers: the Message

Passing Interface (MPI) [5] As its name implies,

processing is performed through the exchange of

messages among the processes that are cooperating in

the computation. Central to computing within MPI is

the concept of a “communicator”. The MPI

communicator specifies a group of processes inside

which communication occurs. MPI_COMM_WORLD

is the initial communicator, containing all processes

involved in the computation. Each process

communicates with the others through that

communicator, and has the ability to find position

within the communicator and also the total number of

processes in the communicator. Through the

communicator, processes have the ability to exchange

messages with each other. The sender of the message

specifies the process to receive the message. In

addition, the sender attaches to the message something

called a message tag, an indication of the kind of

message it is. Since these tags are simply non-negative

integers, a large number is available to the parallel

programmer, since that is the person who decides what

the tags are within the parallel problem solving system

being developed. The process receiving a message

specifies both from what process it is willing to receive

a message and what the message tag is. In addition,

however, the receiving process has the capability of

using wild cards, one specifying that it will accept a

message from any sender, the other specifying that it

will accept a message with any message tag. When the

receiving process uses wild card specifications, MPI

provides a means by which the receiving process can

determine the sending process and the tag used in

sending the message. For the parallel sorting program,

you can get by with just one kind of receive, the one

that blocks execution until a message of the specified

sender and tag is available. You need to initialize

within the MPI environment. The presumption is that

this one is called from the program’s main, and so it

sends pointers to the argc and argv that it received from

the operating system. We choose MPI to implement

message-passing merge sort on single and networked

computers because

(i) MPI is implemented for a broad variety of

architectures, including implementations that are freely

available; (ii) MPI is well documented; (iii) MPI has

grown much more popular than alternative platforms,

such as PVM [3]. and, our preference for an

implementation language is ANSI C because (i) C is

fast and available on virtually any platform; (ii) C can

be used to implement merge sort versions with various

platform.

8. Merge Sort with MPI

void mergesort_serial(int a[], int size, int temp[]) {

if (size < SMALL) {

mergesort_serial(a, size/2, temp);

mergesort_serial(a + size/2, size - size/2, temp);

merge(a, size, temp);}

The MPI API [5] supports, on a variety of platforms,

programming of message-based communication

between processes and is typically used in distributed-

memory systems, such as computer clusters. With MPI,

programmers in a wide variety of languages use a set of

library routines to implement communication and

synchronization between processes. all MPI processes

start at once at the very beginning of program

execution, and all processes concurrently execute the

same code the entire program. Consequently, the MPI

program must permit each process to recognize its own

place and role in the recursion tree. With MPI,

processes need to be explicitly programmed to map

themselves to nodes in the recursion tree from the

recursion tree to threads. As MPI processes map

themselves to nodes from the recursion tree, they form

a virtual process tree. Process 0 is at the root of the tree,

with the remaining processes appearing as nodes of the

tree. The root process splits the data and sends half of it

to a helper process which sorts the data and returns it to

the root process (send operations are visualized as

arrows in Figure:- 8.1. The other half of data is retained

by the root process for further sorting by using this

same procedure once sorted, the two halves of data are

merged by the root process.

Figure:- 8.1 Root and helper processes merge sort.

MPI process tree for recursive merge-sort. Arrows

visualize communications with helper processes; Note

that the root process can further split its retained data

and send half of it to yet another helper process. Helper

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

processes themselves can follow the same procedure as

the root process. Splitting and sending data continues

until each MPI process becomes a node in the virtual

process tree, i.e. until all processes are sent some

amount of data to sort. All MPI processes run the same

main function which differentiates between the root

process and helper processes. The root process prepares

the array to sort and then invokes parallel merge sort

while each helper process: (i) receives data from its

parent process; (ii) invokes parallel merge sort; and (iii)

sends sorted data back to parent (Figure:-8.1). Note that

each helper process calculates the level of its top-most

appearance in the process tree and passes it to the

parallel merge sort function .

int main(…) {

// ask MPI for my_rank;

if (my_rank == 0) {

// allocate array to sort then run root to sort it:

run_root_mpi(a, size, temp, …);

} else {

run_helper_mpi(my_rank, …);

}

// array is sorted;

}

void run_root_mpi (int a[], int size, int temp[], …) {

int level = 0;

mergesort_parallel_mpi(a, size, temp, level,…);

}

void run_helper_mpi(int my_rank, …) {

// probe MPI for a message from parent process

// and identify message size and parent_rank;

// allocate int a[size], temp[size];

MPI_Recv(a, size, …, parent_rank, …);

int level=my_topmost_level(my_rank);

mergesort_parallel_mpi(a, size, temp, level, …);

// send sorted array to parent process:

MPI_Send(a, size,… , parent_rank, …);

}

int my_topmost_level_mpi(int my_rank) {

int level = 0;

while (pow(2, level) <= my_rank) level++;

return level;

}

Parallel merge sort is executed by various processes

at various levels of the process tree, with the root being

at level 0, its children at level 1, and so on (Fig.7.1). In

that, the process’s level and the MPI process rank are

used to calculate a corresponding helper process’s rank

Then, merge sort communicates for further sorting half

of the array with that helper process. Serial merge sort

is invoked when no more MPI helper processes are

available.

void mergesort_parallel_mpi

(int a[], int size, int temp[], int level, …) {

// my_rank is used to calculate helper rank:

int helper_rank = my_rank + pow(2, level);

if (helper_rank > max_rank) {

mergesort_serial(a, size, temp);

} else {

// send second half of array, asynchronous:

MPI_Isend(a+size/2, size-size/2, …, helper_rank,

…);

// sort first half:

mergesort_parallel_mpi(a, size/2, temp, level+1, …);

// receive second half sorted:

MPI_Recv(a+size/2, size-size/2, …, helper_rank,

…);

// merge the two sorted sub-arrays:

merge(a, size, temp);

}

}

The performance of the above message-passing (with

MPI) implementation is evaluated in Section 5.

mergesort_parallel_omp(a, size, temp, threads);

} else {

MPI_Isend(a+size/2, size-size/2, …, helper_rank,

…);

mergesort_parallel_mpi_and_omp

(a, size/2, temp, level+1, threads, …);

MPI_Recv(a+size/2, size-size/2, …, helper_rank,

…);

merge(a, size, temp);

}

}

9. Mapping the Communications

You might initially think of letting each node in the

processing tree be a separate process. That way you

can simply borrow an idea from the binary heap when

it is implemented in an array with the root at zero. For

any in-use cell within the array with subscript k, the left

child of that heap entry is at subscript 2*k+1, the right

child is at subscript 2*k+2, and the parent is at (k–1)/2.

This would also give the parent/child relationships

within the complete binary tree that constitutes the

processing tree. Thus an internal node would split the

data in half and send the two halves to the child

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

processes for processing. Should an internal node have

only one child process, it would have to sort its own

right-hand side. Leaf nodes, of course, just do the

sorting. The internal nodes then receive back the data,

perform the merge of the two halves, and (for all but

the root node itself) send the result to the parent.

The communication of sub problems is an overhead

expense that you want to minimize. Also, there’s no

reason to allow an internal node process to sit idle,

waiting to receive two results from its children.

Instead, you want the parent to send half the work to

the child process and then accomplish half of the work

itself. It effectively becomes a node in the next level

down in the sorting tree. Figure: 7.1 shows a full

sorting tree in which all of the processes (represented

by their ranks) compute at the sorting tree leaf level.

10. Performance Evaluation

We measured the performance of our shared

memory, message-passing, and parallel merge sorts on

2, 4, 8 & 16 processes under Linux. Processors running

under a 1.80 MHz clock. We executed our merge sorts

with randomly generated arrays of 10
7
integer elements.

No other applications were active on the cluster during

our performance measurements. Shared memory merge

sort was executed on 1, 2, 4, and 8 cores on the master

node using all available cores for MPI processes. Our

merge sorts process a single array that can be entirely

held in RAM on a single node. This setup is

advantageous for single node implementations

centralized setup involves multiple MPI data

transmissions that begin and end with the root node. in

cluster nodes, and the cluster network; for example, a

fast network can make a message-passing (with MPI)

solution for some problem faster.

11. References

[1] Seyed H. Roosta, Parallel Processing and Parallel

Algorithms (Springer-Verlag New York: 2000), pp.

397-98.

[2] Cormen, Thomas H.; Leiserson, Charles E.; Rivest,

Ronald L.; Stein, Clifford. Introduction to Algorithms

(3rd ed.), MIT Press, 2009.

[3] Geist, Al; Beguelin, Adam; Dongarra, Jack; Jiang,

Weicheng; Manchek, Robert; Sunderam , Vaidy. PVM:

Parallel Virtual Machine. MIT Press, 1994.

[4] LaMarca, Anthony; Ladner, Richard. The influence

of caches on the performance of sorting. Proc. 8th Ann.

ACM-SIAM Symposium on Discrete Algorithms

(SODA97), 370–379.

[5] The Message Passing Interface (MPI) standard.

Retrieved on March 1, 2011 from

http://www.mcs.anl.gov/research/projects/mpi/.

[6]The OpenMP specification for parallel programming

Retrieved on March 1, 2011 from

http://openmp.org

Husain ullah khan

M.E.(Pursuing) in Computer

Technology & Application from Shri Shankaracharya

College of Engineering & Technology, CSVTU Bhilai,

India. Research areas are Parallel Computing & its

Enhancement.

Rajesh Tiwari

M.E. in Computer Technology &

Application form SSCET, CSVTU

Bhilai, India. Currently pursuing

Ph.D. from CSVTU, Bhilai. He is working as Sr.

Associate Professor in Department of computer Science

in Shri Shankaracharya Group of institutions (Faculty

of engineering).He is having long experience in the

field of teaching & research. His research areas are

Parallel Computing and its Enhancement, His research

work has been published in many national and

international journals.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

