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Abstract  
 

Merging is very well understood in the sequential 

model of computation and a simple algorithm exists for 

its solution. Parallel computing on loosely coupled 

architecture has been evolved now days because of the 

availability of fast, inexpensive processors and 

advancements in communication technologies. The One 

common example of parallel processing is the 

implementation of the merge sort within a parallel 

processing environment. such as Open-MP and MPI, 

and run it on multi-core computers and multi-core 

clusters.  The aim of this paper is to estimate the 

performance and  speedup  of parallel merge sort 

algorithm compare it with theoretical analysis .The 

parallel computational time complexity is O(p) using p 

processes and one element in each process. It has been 

found that there is no major difference between 

theoretical performance analysis and the actual result. 

 

1. Introduction  
 

Merge sort is an efficient divide-and-conquer sorting 

algorithm. Because merge-sort is easier to understand 

than other useful divide-and-conquer methods. One 

common example of parallel processing is the 

implementation of the merge sort within a parallel 

processing environment.   In the fully parallel model, 

you repeatedly split the sub lists down to the point 

where you have single-element lists. [1] Intuitively, 

merge sort operates on an array of n objects as follows:  

(1) if n > 1, divide the array into two sub-arrays of              

about half the size each;  

(2) apply merge sort on each sub-array;  

(3) merge the two sorted sub-arrays from step 2 into 

one sorted array. 
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2. Parallel Merge Sort 
 

The merge sort algorithm uses a divide and conquer 

strategy to sort its elements [6].The list is divided into 2 

equally sized lists and the generated sub-lists are 

further divided. The numbers are then merged together 

as pairs to form sorted lists .The lists are then merged 

subsequently until the whole list is constructed. This 

algorithm can  parallelized by distributing n/p elements 

memory of n elements for its merge operation (the 

same as quick sort). The practical performance of 

merge sort is known to improve with recursion removal 

and cache memory utilization [4]. We use merge sort as 

a test bed to explore parallelization schemes that may 

possibly apply without significant changes to other 

divide-and conquer methods. Merge sort parallelization 

is well-studied in theory. Figure 2.1 shows the 

processing tree for the case in which you have a list of 

2000 items to be sorted and have resources only 

sufficient for four parallel processes.  The processes 

receiving the size 500 lists use some sequential sorting 

algorithm. Because of the implementation environment, 

it will be something in the C/C++ language and your 

favorite implementation of a fast sorting algorithm. 

Each leaf node (with a size 500 list) then provides the 

sorted result to the parent process within the processing 

tree that processes combines the two lists to generate a 

size 1000 list, and then sends that result upstream to its 

parent process.  Finally, the root process in the 

processing tree merges the two lists to obtain a size 

2000 list, fully sorted. If your environment supports 

more parallel processes, you might take the processing 

tree to four levels, so that eight processes do the 

sequential sorting of size 250 lists. 

 

 
         

   Figure:-2.1 Merge tree 

3. Time Complexity of Parallel Merge Sort 
 

Sequential merge sort time complexity is O (n log n). 

when parallelizing the merge sort algorithm the time 
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complexity reduces to O(n/p log n/p) as stated in [4]. 

 

4. Properties for Parallel Algorithm 
 

Five important properties that we desire a parallel 

algorithm to possess. The first two properties concern 

the number of processors to be used by the algorithm. 

Let n be the size of the problem to be solved:  

(i) p(n) must be smaller than n: No matter how 

inexpensive computers become, it is unrealistic when 

designing a parallel algorithm to assume that we have 

at our disposal more (or even as many) processors as 

there are items of data. This is particularly true when n 

is very large. It is therefore important that p(n) be 

expressible as a sub linear function of n, that is,  

p(n) = n X  ;    0 < x < 1.  

(ii) p(n) must be adaptive:  In computing in general, 

and in parallel computing in particular, "appetite comes 

with eating" . Algorithms using a number of processors 

that is a sub linear function of n [and hence satisfying 

property (i)], such as log n or n'/2, would not be 

acceptable either due to their inflexibility. What we 

need are algorithms that possess the "intelligence" to 

adapt to the actual number of processors available on 

the computer being used. 

 

4.1 Running Time 
 

The next two properties concern the worst-case running 

time of the parallel algorithm: 

(i) t(n) must be small: Our primary motive for building 

parallel computers is to speed up the computation 

process. It is therefore important that the parallel 

algorithms we design be fast. To be useful, a parallel 

algorithm should be significantly faster than the best 

sequential algorithm for the problem at hand.  

(ii) t(n) must be adaptive: Ideally, one hopes to have an 

algorithm whose running time decreases as more 

processes are used. In practice, it is usually the case 

that a limit is eventually reached beyond which no 

speedup possible regardless of the number of 

processors is used. Nevertheless, it is desirable that t(n) 

vary inversely with p(n) within the bounds set for p(n). 

 

 

 

4.2 Cost  
 

Ultimately, we wish to have parallel algorithms for 

which c(n) = p(n) x t(n) always matches a known lower 

bound on the number of sequential operations required 

in the worst case to solve the problem. In other words, 

a parallel algorithm should be cost optimal. In 

particular, when a set of processors are linked by an 

interconnection network, the geometry of the network 

often imposes limits on what can be accomplished by a 

parallel algorithm. It is a different story when the 

algorithm is to run on a shared-memory parallel 

computer. parallel algorithm for selecting the kth 

smallest element of a sequence S = {S, S2,..., s,}. The 

algorithm runs on an SM SIMD computer with N 

processors, where N < n. The algorithm enjoys all the 

desirable properties formulated in this section: 

 

(i) It uses p(n) = n' -' processors, where 0 < x < 1. The 

value of x is obtained from N = n". Thus p(n) is sub 

linear and adaptive. 

 

(ii) It runs in t(n) = 0(nX) time, where x depends on the 

number of processors available on the parallel 

computer. The value of x is obtained in (i). Thus t(n) is 

smaller than the running time of the optimal sequential 

algorithm described in 

 

5. An Algorithm For Parallel Selection  
 

We are now ready to study an algorithm for parallel 

selection on an SM SIMD computer. The algorithm 

presented as procedure PARALLEL SELECT makes 

the following assumptions (some of these were stated 

earlier): 

 

1. A sequence of integers S = {s1, s2, .. , s- and an 

integer k, I < k < n, are given, and it is required to 

determine the kth smallest element of S. This is the 

initial input to PARALLEL SELECT. 

2. The parallel computer consists of N processors PI, . 

..., PN. 

3. Each processor has received n and computed x from 

N = n', where O<x< 1. 

4. Each of the n' processors is capable of storing a 

sequence of nx elements in its local memory. 

5. Each processor  can  execute procedures SELECT, 

SEQUENTIAL, BROADCAST, and ALL SUMS. 

6. M is an array in shared memory of length N whose 

ith position is M(i).  

 

As usual, we denote by t(n) the time required by 

PARALLEL SELECT for an input of size n.  

A function describing t(n) is now obtained by analyzing 

each step of the procedure.  

Step 1: To perform this step, each processor needs the 
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beginning address A of sequence S in the shared 

memory, its size is ,and the value of k. These quantities 

can be broadcast to all processors using procedure 

BROADCAST: This requires O(log n' -x) time. If ISI < 

4, then P1 returns the kth element in constant time. 

Otherwise, Pi computes the address of the first and last 

elements in Si from A + (i -1)nx and A + inX - 1, 

respectively; this can be done in constant time. Thus,  

 

step 1 takes cllog n time units for some constant cl.  

Step 2: SEQUENTIAL SELECT finds the median of a 

sequence of length nX in c2n' time units for some 

constant c2. 

Step 3: Since PARALLEL SELECT is called with a 

sequence of length n'-x, this step requires t(n'-x) time. 

Step 4: The sequence S can be subdivided into L, E, 

and G as follows: 

(i) First m is broadcast to all the processors in 

O(logn1-x) time using procedure BROADCAST. 

(ii) Each processor Pi now splits Si into three 

subsequences Li, E,, and Gi of elements smaller than, 

equal to, and larger than m, respectively. This can be 

done in time linear in the size of Si, that is, 0(nX) time. 

(iii) The subsequences Li, E,, and Gi are now merged 

to form L, E, and G. We show how this can be done for 

the Li; An Algorithm for Parallel Selection running 

time can be derived for merging the Ei and G;, 

respectively.  All these sums can be obtained by n`-x 

processors in O(log nl X) time using procedure 

ALLSUMS.  

 Step 5: The size of L needed in this step has already 

been obtained in step 4 through the computation . The 

same remark applies to the sizes of E and G. The 

preceding analysis yields the following recurrence for 

t(n): t(n) = c1log n + C2nX + t(n'X) + C3nX + t(3n/4), 

whose solution is t(n) = 0(nX) for n > 4.  

Since p(n) = n',  we have c(n) = p(n) x t(n) = n' -x x 

0(nx) = O(n). Since N = n'-x and n/nX < n/log n, it 

follows that PARALLEL SELECT is cost optimal 

provided N < n/log n. 

 

6. A Network for Merging 

 
Special-purpose parallel architectures can be obtained 

in any one of the following ways: 

(i) using specialized processors together with a 

conventional interconnection network, 

(ii) using a custom-designed interconnection network to 

link standard processors, 

  Or 

(iii) using a combination of (i) and (ii). 

 

In this paper we shall take the third of these 

approaches. Merging will be accomplished by a 

collection of very simple processors communicating 

through a special-purpose network. This special-

purpose parallel architecture is known as an (r, s)-

merging network. All the processors to be used are 

identical and are called comparators. a comparator 

receives two inputs and produces two outputs. The only 

operation a comparator is capable of performing is to 

compare the values of its two inputs and then place the 

smaller and larger of the two on its top and bottom 

output lines, respectively 

 

6.1 Analysis 

 
Our analysis of odd-even merging will concentrate on 

the time, number of processors, and total number of 

operations required to merge. (i) Running Time.  We 

begin by assuming that a comparator can read its input, 

perform a comparison, and produce its output all in one 

time unit. Now, let t(2n) denote the time required by an 

(n, n)-merging network to merge two sequences of 

length n each. The recursive nature of such a network 

yields the following recurrence for  

t(2n): t(2) = 1 for n = I , t(2n) = t(n) + 1 for n > 1 

whose solution is easily seen to be t(2n) = 1 + log n. 

This is significantly faster than the best, namely, 0(n), 

running time achievable on a sequential computer. (ii) 

Number of Processors.  Here we are interested in 

counting the number of comparators required to odd-

even merge.  

merging network. Again, we have a recurrence: 

p(2) = 1  

for n = 1  

p(2n) = 2p(n) + (n - 1) for n > I  

whose solution p(2n) = I + n log n is also 

straightforward. 

(iii) Cost.  

Since t(2n) = 1 + log n and p(2n) = 1 + n log n, the total 

number 

of comparisons performed by an (n, n)-merging 

network, that is, the network's cost, is c(2n) = p(2n) x 

t(2n)= O(n log2n).Our network is therefore not cost 

optimal as it performs more operations than the 0(n) 

sufficient to merge sequentially.  

7. Choosing the Parallel Environment:  MPI 

 
 There is an easily used parallel processing 

environment for you whether your target system is a 

single multiprocessor computer with shared memory or 
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a number of networked computers:  the Message 

Passing Interface (MPI) [5] As its name implies, 

processing is performed through the exchange of 

messages among the processes that are cooperating in 

the computation. Central to computing within MPI is 

the concept of a “communicator”. The MPI 

communicator specifies a group of processes inside 

which communication occurs. MPI_COMM_WORLD 

is the initial communicator, containing all processes 

involved in the computation. Each process 

communicates with the others through that 

communicator, and has the ability to find position 

within the communicator and also the total number of 

processes in the communicator. Through the 

communicator, processes have the ability to exchange 

messages with each other.  The sender of the message 

specifies the process to receive the message.  In 

addition, the sender attaches to the message something 

called a message tag, an indication of the kind of 

message it is.  Since these tags are simply non-negative 

integers, a large number is available to the parallel 

programmer, since that is the person who decides what 

the tags are within the parallel problem solving system 

being developed.  The process receiving a message 

specifies both from what process it is willing to receive 

a message and what the message tag is.  In addition, 

however, the receiving process has the capability of 

using wild cards, one specifying that it will accept a 

message from any sender, the other specifying that it 

will accept a message with any message tag.  When the 

receiving process uses wild card specifications, MPI 

provides a means by which the receiving process can 

determine the sending process and the tag used in 

sending the message. For the parallel sorting program, 

you can get by with just one kind of receive, the one 

that blocks execution until a message of the specified 

sender and tag is available. You need to initialize 

within the MPI environment.  The presumption is that 

this one is called from the program’s main, and so it 

sends pointers to the argc and argv that it received from 

the operating system.  We choose MPI to implement 

message-passing merge sort on single and networked 

computers because  

(i) MPI is implemented for a broad variety of 

architectures, including implementations that are freely 

available; (ii) MPI is well documented; (iii) MPI has 

grown much more popular than alternative platforms, 

such as PVM [3]. and, our preference for an 

implementation language is ANSI C because (i) C is 

fast and available on virtually any platform; (ii) C can 

be used to implement merge sort versions with various 

platform. 

 

8. Merge Sort with MPI 
 

void mergesort_serial(int a[], int size, int temp[]) { 

if (size < SMALL) { 

mergesort_serial(a, size/2, temp); 

mergesort_serial(a + size/2, size - size/2, temp); 

merge(a, size, temp);} 

The MPI API [5] supports, on a variety of platforms, 

programming of message-based communication 

between processes and is typically used in distributed-

memory systems, such as computer clusters. With MPI, 

programmers in a wide variety of languages use a set of 

library routines to implement communication and 

synchronization between processes. all MPI processes 

start at once at the very beginning of program 

execution, and all processes concurrently execute the 

same code the entire program. Consequently, the MPI 

program must permit each process to recognize its own 

place and role in the recursion tree. With MPI, 

processes need to be explicitly programmed to map 

themselves to nodes in the recursion tree from the 

recursion tree to threads. As MPI processes map 

themselves to nodes from the recursion tree, they form 

a virtual process tree. Process 0 is at the root of the tree, 

with the remaining processes appearing as nodes of the 

tree. The root process splits the data and sends half of it 

to a helper process which sorts the data and returns it to 

the root process (send operations are visualized as 

arrows in Figure:- 8.1. The other half of data is retained 

by the root process for further sorting by using this 

same procedure once sorted, the two halves of data are 

merged by the root process. 

 

 

 
 

Figure:- 8.1 Root and helper processes merge sort. 

 

MPI process tree for recursive merge-sort. Arrows 

visualize communications with helper processes; Note 

that the root process can further split its retained data 

and send half of it to yet another helper process. Helper 
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processes themselves can follow the same procedure as 

the root process. Splitting and sending data continues 

until each MPI process becomes a node in the virtual 

process tree, i.e. until all processes are sent some 

amount of data to sort. All MPI processes run the same 

main function which differentiates between the root 

process and helper processes. The root process prepares 

the array to sort and then invokes parallel merge sort 

while each helper process: (i) receives data from its 

parent process; (ii) invokes parallel merge sort; and (iii) 

sends sorted data back to parent (Figure:-8.1). Note that 

each helper process calculates the level of its top-most 

appearance in the process tree and passes it to the 

parallel merge sort function . 

 

int main(…) { 

// ask MPI for my_rank; 

if (my_rank == 0) { 

// allocate array to sort then run root to sort it: 

run_root_mpi(a, size, temp, …); 

} else { 

run_helper_mpi(my_rank, …); 

} 

// array is sorted; 

} 

void run_root_mpi (int a[], int size, int temp[], …) { 

int level = 0; 

mergesort_parallel_mpi(a, size, temp, level,…); 

} 

void run_helper_mpi(int my_rank, …) { 

// probe MPI for a message from parent process 

// and identify message size and parent_rank; 

// allocate int a[size], temp[size]; 

MPI_Recv(a, size, …, parent_rank, …); 

int level=my_topmost_level(my_rank); 

mergesort_parallel_mpi(a, size, temp, level, …); 

// send sorted array to parent process: 

MPI_Send(a, size,… , parent_rank, …); 

} 

int my_topmost_level_mpi(int my_rank) { 

int level = 0; 

while (pow(2, level) <= my_rank) level++; 

return level; 

} 

Parallel merge sort is executed by various processes 

at various levels of the process tree, with the root being 

at level 0, its children at level 1, and so on (Fig.7.1 ). In 

that, the process’s level and the MPI process rank are 

used to calculate a corresponding helper process’s rank  

Then, merge sort communicates for further sorting half 

of the array with that helper process. Serial merge sort 

is invoked when no more MPI helper processes are 

available.  

 

void mergesort_parallel_mpi 

(int a[], int size, int temp[], int level, …) { 

// my_rank is used to calculate helper rank: 

int helper_rank = my_rank + pow(2, level); 

if (helper_rank > max_rank) { 

mergesort_serial(a, size, temp); 

} else { 

// send second half of array, asynchronous: 

MPI_Isend(a+size/2, size-size/2, …, helper_rank, 

…); 

// sort first half: 

mergesort_parallel_mpi(a, size/2, temp, level+1, …); 

// receive second half sorted: 

MPI_Recv(a+size/2, size-size/2, …, helper_rank, 

…); 

// merge the two sorted sub-arrays: 

merge(a, size, temp); 

} 

} 

The performance of the above message-passing (with 

MPI) implementation is evaluated in Section 5. 

 

mergesort_parallel_omp(a, size, temp, threads); 

} else { 

MPI_Isend(a+size/2, size-size/2, …, helper_rank, 

…); 

mergesort_parallel_mpi_and_omp 

(a, size/2, temp, level+1, threads, …); 

MPI_Recv(a+size/2, size-size/2, …, helper_rank, 

…); 

merge(a, size, temp); 

} 

} 

 

 

9. Mapping the Communications 

 
You might initially think of letting each node in the 

processing tree be a separate process.  That way you 

can simply borrow an idea from the binary heap when 

it is implemented in an array with the root at zero.  For 

any in-use cell within the array with subscript k, the left 

child of that heap entry is at subscript 2*k+1, the right 

child is at subscript 2*k+2, and the parent is at (k–1)/2.  

This would also give the parent/child relationships 

within the complete binary tree that constitutes the 

processing tree.  Thus an internal node would split the 

data in half and send the two halves to the child 
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processes for processing.  Should an internal node have 

only one child process, it would have to sort its own 

right-hand side.  Leaf nodes, of course, just do the 

sorting.  The internal nodes then receive back the data, 

perform the merge of the two halves, and (for all but 

the root node itself) send the result to the parent. 

The communication of sub problems is an overhead 

expense that you want to minimize.  Also, there’s no 

reason to allow an internal node process to sit idle, 

waiting to receive two results from its children.  

Instead, you want the parent to send half the work to 

the child process and then accomplish half of the work 

itself.  It effectively becomes a node in the next level 

down in the sorting tree.  Figure: 7.1  shows a full 

sorting tree in which all of the processes (represented 

by their ranks) compute at the sorting tree leaf level. 

 

10. Performance Evaluation 

 

We measured the performance of our shared 

memory, message-passing, and parallel merge sorts on 

2, 4, 8 & 16 processes under Linux. Processors running 

under a 1.80 MHz clock. We executed our merge sorts 

with randomly generated arrays of 10
7 
integer elements. 

No other applications were active on the cluster during 

our performance measurements. Shared memory merge 

sort was executed on 1, 2, 4, and 8 cores on the master 

node using all available cores for MPI processes. Our 

merge sorts process a single array that can be entirely 

held in RAM on a single node. This setup is 

advantageous for single node implementations 

centralized setup involves multiple MPI data 

transmissions that begin and end with the root node. in 

cluster nodes, and the cluster network; for example, a 

fast network can make a message-passing (with MPI) 

solution for some problem faster. 
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