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Abstract—The recent digital transmission system demands 

the channel equalizers to have short training time and high 

tracking rate. The purpose of an adaptive equalizer is to operate 

on the channel output such that the cascade connection of the 

channel and the equalizer provides an approximation to an 

ideal transmission medium. The adaptive filtering algorithm 

employed in the equalizer design suffers from the convergence 

speed misadjustment trade off problem. In this paper, variants 

of affine projection algorithm (APA) providing fast convergence 

and minimum misadjustment has been presented. Simulation 

results are provided to corroborate the analytical results. 

Index Terms—Affine projection algorithm (APA),Channel 

equalization, Least Mean Square algorithm (LMS), Least 

Square algorithm (LS), normalized LMS,                              

I. INTRODUCTION 

One of the most important advantages of digital 

transmission system is their higher reliability in noisy 

environment compared to their analog counter parts. 

Unfortunately the digital transmission suffers from inter 

symbol interference (ISI) where the transmitted pulses are 

smeared out so that the pulses that corresponds to different 

symbols are not separable. In order to solve this problem 

equalizers are designed which is meant to work in such a 

way that the BER (bit error rate) should be low and SNR 

(signal to noise ratio) should be high. 

Since the channel’s transfer function may be stationary or 

non-stationary so adaptive [1, 2] equalizers are exploited 

mostly. An adaptive equalizer is an equalization filter that 

automatically adapts to time varying properties of the 

communication channel. It is a filter that self-adjusts its filter 

coefficients according to an optimizing algorithm.  

The rest of the paper is organized as follows. Section II 

describes the basic concept of transversal equalizer. In 

section III the conventional affine projection algorithm is 

discussed. Section IV describes the variants of APA. Section 

V provides the experimental results and section VI presents 

the conclusions. 

II. CHANNEL EQUALIZATION 

The inter symbol interference (ISI) imposes obstacle in 

achieving increased digital transmission rates with the 

required accuracy. ISI problem is resolved by channel 

equalization. The channel parameters are not known in 

advance and moreover they may vary with time. Hence it is 

necessary to use the adaptive equalizers, which provide the 

means of tracking the channel characteristics. The following 

figure shows a diagram of a channel equalization system. 

 
Fig. 1. Adaptive equalizer in a chain of the transmission system 

 

The source block transmits QPSK symbols xk ±1±j1 

(k=1… K) with equal probability. The total number of 

transmitted symbols is denoted as K. The channel block 

introduces ISI using a finite impulse response (FIR) type of 

channel model. At the output of channel, a noise sequence nk 

is added. This noise is assumed to be additive white 

Gaussian noise (AWGN) with variance σn
2
. The sum of 

channel output and noise sequence forms the received signal 

rk, which is fed into equalizer block. Finally the equalizer 

output qk is fed to the slicer to obtain estimate zk of the 

transmitted data symbol xk. The equalizer block performs the 

equalization of channel. Different performance criterion can 

be utilized in equalization. For Mean Square Error (MSE) 

criterion, the LMS algorithm update of the equalizer 

coefficient vector is given by 

hk+1 =  hk + 2µekrk 

where rk=[rk rk-1 … rk-(N-1) ]
T
 is the input vector, hk is the 

weight vector, ek is the error signal, N is the number of 

adaptive filter coefficients and µ is the step size parameter. 

The step size parameter µ controls the adaption speed of the 

adaptive filter. 

 In order to implement the adaptive equalizer, we need to 

generate a reference signal for the adaptive algorithm. For 

the initial adaption of the filter coefficients we need at the 

receiver to be able to generate a replica of the transmitted 

data sequence. This known sequence is referred to as the 
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training sequence. During the training period the desired 

signal is used as a reference signal and the error signal is 

defined as ek = xk-D - qk   (see Fig. 1.). After the training 

period, the equalization can be performed in decision-

directed manner. This mode can be utilized if the channel 

can be assumed to be time variant. Therefore, it can be 

assumed that the decisions in the slicer output are correct 

most of the time and the slicer decisions can be used as 

reference signal. In the decision directed mode, the error 

signal is defined as ek = zk - qk (see Fig. 1.). The mean square 

error (MSE) [23] for the filter in the k
th

 time instant is 

defined as 

MSEk = E[|ek|
2
] 

III. AFFINE PROJECTION ALGORITHM 

The algorithm based on Least Square (LS) solution is a 

member of zero forcing algorithms (ZFA). ZFA may provide 

the convergence of the adaptive filter in M iterations (M is 

the filter length) by solving the M×M full rank equation 

matrix. There is another member of ZFA, which is base on 

partial rank filtering equations. This algorithm is known as 

affine projection algorithm (APA)[15]. It is also called as 

partial rank algorithm. Ehen the APA provides full rank 

solution, it becomes equivalent to LS algorithm and may 

converge in M iterations. The APA provides slower 

convergence [16] with lower projection orders (partial rank 

solutions), and the convergence speed is also highly 

dependent on the correlation of the input process. The Affine 

Projection Algorithm with projection order one is equivalent 

to normalized LMS algorithm (NLMS) [19]. 

 
 

Fig. 2. Adaptive Scheme and signals involved using APA 

 

   Consider data {d(n)} that arise from the model 

             ( ) ( ) ( )od n n n u w                          (1) 

where  w
o 

is an unknown column vector that we wish to 

estimate, υ(n) accounts for measurement noise and u(n) 

denotes 1XM row input (regressor) vectors. Let w(n) be an 

estimate for w
o
 at iteration n. The Affine Projection 

Algorithm computes w(n) via: 
* * 1( 1) ( ) ( )[ ( ) ( )] ( )n n n n n n   w w U U U e             (2) 

where 

 ( ) [ ( ) ( 1)...... ( 1)]

( ) [ ( ) ( 1)....... ( 1)]

T

T

n n n n P

n d n d n d n P

   

   

U u u u

d

  (3) 

e(n) is a vector of size P×1 given by 

          e(n)=d(n)-U(n)w(n)                                                  (4) 

P is projection order which is number of input vectors and μ 

is the step-size. P and µ affects the performance of APA. 

IV. VARIANTS OF AFFINE PROJECTION 

ALGORITHM 

The low cost APA [19] includes fast affine projection 

algorithm (FAP), Gauss Seidel pseudo affine projection 

algorithm (PAP), and low complexity dichotomous 

coordinate descent (DCD) based APA, FAP[24] and PAP. 

The variable step size (VSS) based APA are discussed 

below. 

 

A. Optimal variable step size Affine Projection Algorithm  

 

    The update recursion (2) can be written in terms of the 

weight-error vector, ( ) ( )on n w w w  as:                   

* * 1( 1) ( ) ( )[ ( ) ( )] ( )n n n n n n   w w U U U e         (5) 

Squaring both sides and taking expectations, we find that that 

the mean square deviation (MSD)[2] satisfies: 

 

 2 2 * * 1( 1) ( ) 2 Re ( )( ( ) ( )) ( ) ( )E n E n E n n n n n      w w e U U U w
                            

 
1

2 * *( ) ( ) ( ) ( )E n n n n
 

  
e U U e

 

                   2
( ) ( )E n w                                  (6)  

    If we choose μ such that Δ(μ) is maximized, then this 

choice guarantees that the MSD will undergo the largest 

decrease from iteration n to n+1 .  

Maximizing     

   
1

* * 1 2 * *( ) 2 Re ( )( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )E n n n n n E n n n n  


         
e U U U w e U U e

with respect to μ, leads to the optimum step-size 

                

  
 

1
* *

1
* *

Re ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

o

E n n n n n

n
E n n n n







 
  


 
  

e U U U w

e U U e

  (7) 

      Assuming the noise sequence υ(n) is identically and 

independently distributed and statistically independent of the 

regression data {U(n)}, neglecting the dependency of ( )nw  

on past noises, ( )o n  is approximated as- 

                 

  

2

12 2 *

( )
( )

( ) ( ) ( )

o

v

E n
n

E n E n n







 
  

w

w Tr U U

          (8) 

where                        

 
12 * * *( ) ( ) ( ) ( ) ( ) ( ) ( )E n E n n n n n n
 

  
w w U U U U w

 

Observe that  
1

* *( ) ( ) ( ) ( )n n n n


U U U U  is a projection 

matrix onto R(U
*
(n)) ,the range space of U

*
(n). 

Let   
1

* *( ) ( ) ( ) ( ) ( ) ( )n n n n n n


p U U U U w      (9)       

which is the projection of ( )nw  onto R(U*(n)).  

Since 

 
12 * * *( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n


p w U U U U w  (10) 

therefore the optimum step-size in (8) becomes- 
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  

2

2 2 *

( )
( )

( ) ( ) ( )

o

v

E n
n

E n E n n





 
 

p

p Tr U U

  (11)                          

In calculating this    ( )o n  , however, the major obstacle is 

that p(n) is not available during adaptation, since w
o
 is 

unknown. 

 

B. Variable step size Affine Projection Algorithm  

 

   When v (i) =0, p(n)=U
*
(n)(U(n)U

*
(n))

-1
e(n) and even with 

white noise, it holds under expectation that 

 
1

* *[ ( )] ( ) ( ) ( ) ( )E n E n n n n
 

  
p U U U e          (12) 

Motivated by these facts, we estimate p(n) by time averaging 

as follows: 

 
1

* *ˆ ˆ( ) ( 1) (1 ) ( ) ( ) ( ) ( )n n n n n n 


   p p U U U e (13) 

with a smoothing factor α (0≤α<1). 

Using 2
ˆ ( )np  instead of 2

ˆ ( )E np  in (11), the VSS-

APA becomes 

                     
* * 1( 1) ( ) ( ) ( )[ ( ) ( )] ( )n n n n n n n   w w U U U e       

       
2

max 2

ˆ ( )
( )

ˆ ( )

n
n

n C
 



p

p

                                         (14) 

where C is a positive constant. 

From (11) and (14), we see that C is related 

to   2 *( ) ( )v E n n  
 

Tr U U , and this quantity can be 

approximated as K/ SNR. 

When 2
ˆ ( )np  is large, w (n) is far from w

0
 and ( )n  tends 

to 
max . On the other hand when 2

ˆ ( )np  is small, w(n) 

approaches  w
0
 and step-size is small. Thus depending on 

2
ˆ ( )np  , ( )n  varies between 0 and max . 

To guarantee Filter stability [14], 
max is chosen less than 2 

 

C. Optimal variable step size APA with Forgetting Factor  

 

Now, we introduce a forgetting factor into the pseudo-

inverse projection matrix, resulting in a marked convergence 

enhancement. The input matrix at time n can be described as: 

    [ 1, 1]( ) ( )k l n u n k l    U
                             (15) 

 k = 0, 1, . . ., K − 1; l = 0, 1, . . . , L − 1; 

By introducing a forgetting factor λ, 0 < λ ≤ 1, 

            
'

[ 1, 1]( ) ( ) ( )k l k l

k l n u n k l u n k l  

       U
      (16) 

In matrix notation, we represent this as 
   '

[ 1, 1]( ) ( )
K L

k l n n    U U
                                 (17) 

where Λ
(m)

 is an m × m diagonal matrix with 

   [Λ
(m)

]j,j = λ
j−1      

            j = 1, 2, . . .,m                            (18) 

then (12) becomes 

 
1

' '* * '*( ) ( ) ( ) ( ) ( )n n n n n


p U U U e
                    (19) 

The newly generated projection matrix in (17) is time 

dependent; the latest data are more significant in the pseudo 

inverse matrix by which the error vector is projected. 

The variable step size Affine Projection Algorithm with 

forgetting factor (VS-APA-FF) is:  

                     
* * 1( 1) ( ) ( ) ( )[ ( ) ( )] ( )n n n n n n n   w w U U U e                            

            

2
'

max 2
'

ˆ ( )
( )

ˆ ( )

n
n

n C
 



p

p
                       (20) 

                     

 
1

' ' '* ' '*ˆ ˆ( ) ( 1) (1 ) ( ) ( ) ( ) ( )n n n n n n 


   p p U U U e
   0 ≤ α < 1 

Note that U(n) is only replaced by 
'( )nU  during the error 

evaluation phase (19), not during the weights updating phase 

because of instability which has been observed in some 

simulations of replacing U(n) by 
'( )nU  for both. This 

phenomenon is most possibly due to the ill-conditioning of 

the input matrix U(n) caused by forgetting process. 

A special case of this Algorithm is the variable step size 

NLMS with forgetting factor (VS-NLMS-FF) obtained by 

setting K = 1. For this case, the input matrix U(n) is a row 

vector and the forgetting factor processing is implemented 

only in the row direction. 

       
'( )nU  = U(n)Λ

(L)
                                              (21) 

 

D. Regularization of ill conditioned Projection Matrix 

 

In (19) of the previously proposed Algorithm, 

(
' '*( ) ( )n nU U  ) is potentially ill-conditioned with small 

singular values. Using the singular value decomposition 

(SVD), 
'

U  can be decomposed as: 

           
'

U =RΣV∗                                                                                    
(22) 

where R and V are K×K and L×L unitary matrices, 

respectively. Σ is a K×L matrix with nonnegative diagonal 

elements of singular values σn, The ill-conditionness of U is 

characterized by its condition number, 

            condU=σmax/σmin=σ1/σK                                   (23) 

from (17), the SVD of the weighted input matrix 
'

U  is: 
'

U  = Λ
(K)

UΛ
(L)

 = Λ
(K)

[RΣV∗]Λ
(L)

 

   = R(Λ
(K)

ΣΛ
(L)

)V∗                                                         (24) 

  = R
' V∗ 

where 
'  is a K × L matrix with all zero entities except 

 [
' ]j,j = λ

2(j−1)
σj  , j = 1, 2, . . .,K. The condition number 

of the weighted input matrix 
'

U  is: 

 cond
'

U  = σ1/[λ
2(K−1)

σK] = λ
2(1−K)

 condU 

which illustrates the increasing condition number due to 

decrease in λ and increase in K. Because of this ill 

conditioning, the estimated 
'

p  may not be a true evaluation 

of the error signal. Even if the error signal is stable, the 

projected 
'

p  could be unstable. Thus the VS-APA and VS-

APA-FF Algorithms adopt a smoothing function, in the form 
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of (13), to alleviate this problem with the cost loss of error 

signal fidelity, which sacrifices convergence speed and/or 

misadjustment. 

To address this problem we use Tikhonov regularization 

approach, under which (19) becomes: 

                     

 
1

' '* * '* 2( ) ( ) ( ) ( ) ( )n n n n I n


 p U U U e
       (25) 

where I is the identity matrix, and δ is a hyper parameter to 

control the amount of regularization. The modified 

Algorithm becomes: 

                     
* * 1( 1) ( ) ( ) ( )[ ( ) ( )] ( )n n n n n n n   w w U U U e  

             

2
'

max 2
'

ˆ ( )
( )

ˆ ( )

n
n

n C
 



p

p
                     (26) 

Note that the smoothing function is no longer needed since 

the regularization process accomplishes this function. 

 

V. SIMULATION RESULTS 

We illustrate the performance of the Affine Projection 

Algorithm by carrying out computer simulations for variable 

step sizes and projection orders. QPSK generator provides 

the test signal and additive white Gaussian noise (AWGN) is 

used as noise signal. The Filter length is chosen to be of 32 

taps and the covariance matrix of offset 1 is selected. 

 

 

 
 

Fig. 3 Scatter Plot for µ=0.01 and po=2 

 

 
 

Fig. 4 Scatter Plot for µ=0.05 and po=2 

 

 
 

Fig. 5 Scatter Plot for µ=0.05 and po=10 

 

VI. CONCLUSION 

We see that as the step-size increases the convergence 

speed increases but at the same time steady state error also 

increases. Also when projection order increases the 

convergence speed increases but at the same time steady 

state error also increases. The symbols are largely scattered 

when the signal is transmitted through the channel; this is 

due to the presence of noise, but when they pass through the 

equalizer the scattering of the symbols reduces. The Variable 

step size methods for Affine Projection Algorithm (VSS-

APA) improve the SNR and reduce the computational 

requirement.  
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