
An Algorithm To Detect Separation And Reconnecting Wireless Sensor

Network Partitions

R.Jayashree

M.Tech, Department of Computer Science &

Engineering, Prist University,

Tiruchirapalli, TamilNadu,India.

R.Kalaivani

Assistant Professor, Department of

Computer Science & Engineering, Prist

University, Tiruchirapalli, TamilNadu,India.

Abstract
Wireless sensor networks (WSNs) are a promising

technology for monitoring large regions at high

spatial and temporal resolution. The failure of some

of its nodes, which is called cut can separate the

network into multiple connected components. The

ability of detecting cuts by the disconnected nodes and

source node of a wireless sensor network will lead to

the increase in the operational lifetime of the network.

The Distributed Cut Detection (DCD) algorithm

proposed here enables every node of a wireless sensor

network to detect Disconnected frOm Source events if

they occur. Second, it enables a subset of nodes that

experience CCOS events to detect them and estimate

the approximate location of the cut in the form of a

list of active nodes that lie at the boundary of the cut.

The algorithm is based on ideas from electrical

network theory and parallel iterative solution of

linear equations. A key strength of the DCD algorithm

is that the convergence rate of the iterative scheme is

quite fast and independent of the size and structure of

the network.

Index Terms –Detection and estimation, Iterative

computation, Network Separation, Sensor networks,

Wireless networks.

1. Introduction

Wireless sensor networks (WSNs) are a

promising technology for monitoring large regions at

high spatial and temporal resolution. However, the

small size and low cost of the nodes that makes them

attractive for widespread deployment also causes the

disadvantage of low-operational reliability. A node

may fail due to various factors such as

mechanical/electrical problems, environmental

degradation, battery depletion, or hostile tampering.

In fact, node failure is expected to be quite common

due to the typically limited energy budget of the

nodes that are powered by small batteries. Failure of a

set of nodes will reduce the number of multihop paths

in the network. Such failures can cause a subset of

nodes—that have not failed—to become disconnected

from the rest, resulting in a “cut”..

 We consider the problem of detecting cuts by

the nodes of a wireless network. The source node may

be a base station that serves as an interface between

the network and its users. Since a cut may or may not

separate a node from the source node, we distinguish

between two distinct outcomes of a cut for a particular

node. When a node u is disconnected from the source,

we say that a Disconnected from Source (DOS) event

has occurred for u. When a cut occurs in the network

that does not separate a node u from the source node,

we say that Connected, but a Cut Occurred

Somewhere (CCOS) event has occurred for u. By cut

detection we mean 1) detection by each node of a

DOS event when it occurs, and 2) detection of CCOS

events by the nodes close to a cut, and the

approximate location of the cut. Nodes that detect the

occurrence and approximate locations of the cuts can

then alert the source node or the base station.

Therefore, on one hand, if a node were able to detect

the occurrence of a cut, it could simply wait for the

network to be repaired and eventually reconnected,

which saves on-board energy of multiple nodes and

prolongs their lives. Thus, the ability to detect cuts by

both the disconnected nodes and the source node will

lead to the increase in the operational lifetime of the

network as a whole. A method of repairing a

disconnected network by using mobile nodes has been

proposed in [1]. Algorithms for detecting cuts, as the

one proposed here, can serve as useful tools for such

network repairing methods.

In this paper, we propose a distributed

algorithm to detect cuts, named the Distributed Cut

Detection (DCD) algorithm. The algorithm allows

each node to detect DOS events and a subset of nodes

to detect CCOS events. The algorithm we propose is

distributed and asynchronous: it involves only local

communication between neighboring nodes, and is

robust to temporary communication failure between

node pairs. A key component of the DCD algorithm is

a distributed iterative computational step through

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

which the nodes compute their (fictitious) electrical

potentials. The convergence rate of the computation is

independent of the size and structure of the network.

2.Related Work

 Especially the academic interest in group

communication pushed for a partition detection

scheme. Babaoglu et al. [3] developed a partitionable

group communication service which allows so called

“partition-aware applications” to operate in separated

network topologies and, after two or more partitions

merge, reconfigure themselves. The partitioning

problem is handled by a simple PING/ACK

mechanism. A node sends a PING message to another

node. If it does not receive an ACK in a certain

amount of time, that node is added to a list of

suspects. A dynamic timeout mechanism is used

which leads to a reasonably accurate suspect list. This

scheme lacks the ability to distinguish between node

failure and partitioning which for most applications is

desirable. Also it does not carefully choose the nodes

that monitor the network to increase the detection

probability.

 As noted by Shrivastava et. al. [2], the

challenges posed by the possibility of network

partitioning in WSNs has been recognized in several

papers but the problem of detecting when such

partitioning occurs seems to have received little

attention. To the best of our knowledge, the work by

Shrivastava et. al. [2] is the only one that addresses

the problem of detecting cuts in wireless sensor

networks. They developed an algorithm for detecting

ǫ linear cuts, which is a linear separation of ǫn nodes

from the base station. The reason for the restriction to

linear cuts is that their algorithm relies critically on a

certain duality between straight line segments and

points in 2D, which also restricts the algorithm in [2]

to sensor networks deployed in the 2D plane. The

algorithm developed in [2] needs a few nodes called

sentinels that communicate with a base station either

directly or through multi-hop paths. The base station

detects 𝜖-cuts by monitoring whether it can receive

messages from the sentinels.

In contrast to the algorithm in [2], the DSSD

algorithm proposed in [6] is not limited to 𝜖-linear

cuts; it can detect cuts that separate the network into

multiple components of arbitrary shapes.

Furthermore, the DSSD algorithm is not restricted to

networks deployed in 2D, it does not require

deploying sentinel nodes, and it allows every node to

detect if a cut occurs.The DSSD algorithm involves

only nearest neighbor communication, which

eliminates the need of routing messages to the source

node. This feature makes the algorithm applicable to

mobile nodes as well. Since the computation that a

node has to carry out involves only averaging, it is

particularly well suited to wireless sensor networks

with nodes that have limited computational

capability.In this paper,the proposed algorithm is an

extension of previous work [6], which partially

examined the DOS detection problem.

3.Distributed Cut Detection
3.1 Definition and Problem Statement

 Time is measured with a discrete counter

k=-∞,...,-1,0,1,2,...We model a sensor network as a

time-varying graph 𝒢 𝑘 = (𝑉 𝑘 ℰ 𝑘) whose node

set V(k) represents the sensor nodes active at time k

and the edge set ℰ(𝑘) consists of pairs of nodes (u,v)

such that nodes u and v can directly exchange

messages between each other at time k. By an active

node we mean a node that has not failed permanently.

All graphs considered here are undirected, i.e., (𝒾 ,

𝑗)=(𝑗, 𝒾). The neighbors of a node 𝒾 is the set 𝑁𝑖 of

nodes connected to 𝒾, i.e. 𝑁𝑖 = {𝑗|(𝑖, 𝑗) ∈ ℰ}. The

number of neighbors of 𝒾,|𝑁𝑖 𝑘 |,is called its degree,

which is denoted by di. A path from 𝒾 to 𝑗 is a

sequence of edges connecting 𝒾 and 𝑗. A graph is

called connected if there is a path between every pair

of nodes. A component 𝒢𝑐 of a graph 𝒢 is a maximal

connected subgraph of 𝒢 (i.e., no other connected

subgraph of 𝒢 contains 𝒢𝑐 as its subgraph).

In terms of these definitions, a cut event is

formally defined as the increase of the number of

components of a graph due to the failure of a subset of

nodes (as depicted in Fig. 1). The number of cuts

associated with a cut event is the increase in the

number of components after the event.

The problem we seek to address is twofold.

First, we want to enable every node to detect if it is

disconnected from the source (i.e., if a DOS event has

occurred). Second, we want to enable nodes that lie

close to the cuts but are still connected to the source

(i.e., those that experience CCOS events) to detect

CCOS events and alert the source node.

Fig 1.Examples of cuts and holes. Filled circles represent

active nodes and unfilled filled circles represent failed

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

nodes. Solid lines represent edges, and dashed lines

represent edges that existed before the failure of the nodes.

The hole in (d) is indistinguishable from the cut in (b) to

nodes that lie outside the region R.

There is an algorithm-independent limit to

how accurately cuts can be detected by nodes still

connected to the source, which are related to holes.

Fig. 1 provides a motivating example. We allow the

possibility that the algorithm may not be able to tell a

large hole (one whose circumference is larger than

ℓmax) from a cut, since the examples of Figs. 1b and

1c show that it may be impossible to distinguish

between them. Note that the discussion on hole

detection part is limited to networks with nodes

deployed in 2D.

3.2 State Update Law and Electrical analogy

The DCD algorithm is based on the

following electrical analogy. Imagine the wireless

sensor network as an electrical circuit where current is

injected at the source node and extracted out of a

common fictitious node that is connected to every

node of the sensor network. Each edge is replaced by

a 1 Ω resistor. When a cut separates certain nodes

from the source node, the potential of each of those

nodes becomes 0, since there is no current injection

into their component. The potentials are computed by

an iterative scheme (described in the sequel) which

only requires periodic communication among

neighboring nodes. The nodes use the computed

potentials to detect if DOS events have occurred (i.e.,

if they are disconnected from the source node).

To detect CCOS events, the algorithm uses

the fact that the potentials of the nodes that are

connected to the source node also change after the cut.

Therefore, CCOS detection proceeds by using probe

messages that are initiated by certain nodes that

encounter failed neighbors, and are forwarded from

one node to another in a way that if a short path exists

around a “hole” created by node failures, the message

will reach the initiating node. The nodes that detect

CCOS events then alert the source node about the cut.

 Every node keeps a scalar variable, which is

called its state. The state of node 𝔦 at time k is denoted

by 𝑥𝑖(𝑘). Every node 𝔦 initializes its state to 0, i.e.,

 𝑥𝑖 0 = 0 ,∀𝑖.During the time interval between the

kth and k + 1th iterations, every node 𝔦 broadcasts its

current state 𝑥𝑖(𝑘) and listens for broadcasts from its

current neighbors. Let 𝑁𝑖(𝑘) be the set of neighbors

of node 𝔦 at time k. Assuming successful reception, 𝔦
has access to the states of its neighbors, i.e., 𝑥𝑗 𝑘 for

j∈ 𝑁𝑖(𝑘) , at the end of this time period. The node

then updates its state according to the following state

update law (the index 𝔦 = 1 corresponds to the source

node), where the source strength s (a positive number)

is a design parameter:

where 𝑑𝑖 𝑘 ≔ |𝑁𝑖 𝑘 | is the degree of node 𝔦 at time

k, and 1𝐴(𝑖) is the indicator function of the set A.

That is, 1 1 𝑖 = 1if 𝔦 = 1 (source node)

, 𝑎𝑛𝑑 1 1 𝑖 = 0 if 𝔦 ≠ 1 and . After the state is

updated, the next iteration starts. At deployment,

nodes go through a neighbor discovery and every

node 𝔦 determines its initial neighbor set 𝑁𝑖(0). After

that, 𝔦 can update its neighbor list 𝑁𝑖(𝑘) as follows: If

no messages have been received from a neighboring

node for the past 𝑇𝑑𝑟𝑜𝑝 iterations, node 𝔦 drops that

node from its list of neighbors. The integer parameter

𝑇𝑑𝑟𝑜𝑝 is a design choice.

Fig. 2. A graph describing a sensor network 𝒢 (left), and the

associated fictitious electrical network 𝒢elec(right). s Amp

current is injected into the electrical network through the

“source node” (unfilled circle), and extracted through the

“ground” node (filled triangle). The line segments in the

electrical network are 1Ω resistors.

To understand the state update law’s relation

to the electrical analogy described earlier, given an

undirected graph 𝒢(𝒱, ℰ), imagine a fictitious graph

 𝒢elec
=(𝒱elec

, ℰelec
) as follows: The node set of the

fictitious graph is 𝒱elec
 =𝒱 ∪ {𝑔}, where g is a

fictitious grounded node; and every node 𝒱 in is

connected to the grounded node g with a single edge,

which constitute the extra edges in ℰelec
that are not

there in ℰ . Now an electrical network (𝒢elec
 ,1) is

imagined by assigning to every edge of 𝒢elec
 a

resistance of 1Ω . Fig. 2 shows a graph 𝒢 and the

corresponding fictitious electrical network (𝒢elec
,1).

The state update law is simply an iterative procedure

to compute the node potentials in the electrical

network (𝒢elec
 ,1) in which s Ampere current is

injected at the source node and extracted through the

grounded node 𝑔. The potential of the grounded node

𝑔 is held at 0.

When the sensor network 𝒢 is connected, the

state of a nodeconverges to its potential in the

electrical network (𝒢elec
 ,1),which is a positive

number. If a cut occurs, the potential of anode that is

disconnected from the source is 0; and this is the

value its state converges to. If reconnection occurs

after a cut, the states of reconnected nodes again

converge to positive values. Therefore, a node can

monitor whether it is connected or separated from the

source by examining its state. The above description

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

assumes that all updates are done synchronously. In

practice, especially with wireless communication, an

asynchronous update is preferable. The algorithm can

be easily extended to asynchronous setting by letting

every node keep a buffer of the last received states of

its neighbors. If a node does not receive messages

from a neighbor during the interval between two

iterations, it updates its state using the last

successfully received state from that neighbor. In the

asynchronous setting every node keeps a local

iteration counter that may differ from those of other

nodes by arbitrary amount.

 𝑎 𝒢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑢𝑡 (b) 𝒢 𝑘 𝑓𝑜𝑟 𝑘 > 100

 (c) state of node 𝓊 (d) state of node 𝜈

Fig. 3 shows the evolution of the node states in a

network of 200 nodes when the states are computed using

the update law described above.
The source node is at the center. The nodes

shown as red squares in Fig. 3b fail at k = 100, and

thereafter they do not participate in communication or

computation. Figs. 3c and 3d show the time evolution

of the states of the two nodes 𝓊 and 𝜈, which are

marked by circles in Fig. 3b. The state of node 𝓊
(that is disconnected from the source due to the cut)

decays to 0 after reaching a positive value, whereas

the state of the node 𝜈 (which is still connected after

the cut) stays positive.

4.Distributed Cut Detection Algorithm
4.1 DOS Detection

When a node u is disconnected from the

source, we say that a Disconnected from Source

(DOS) event has occurred for u. The algorithm allows

each node to detect DOS events. The nodes use the

computed potentials to detect if DOS events have

occurred (i.e., if they are disconnected from the

source node). The approach here is to exploit the fact

that if the state is close to 0 then the node is

disconnected from the source, otherwise not. In order

to reduce sensitivity of the algorithm to variations in

network size and structure, we use a normalized state.

DOS detection part consists of steady-state detection,

normalized state computation, and

connection/separation detection.A node keeps track of

the positive steady states seen in the past using the

following method. Each node 𝔦 computes the

normalized state difference 𝛿𝑥𝑖(𝑘) as follows:

 (2)

Where 𝜖zero is a small positive number. A node 𝔦
keeps a Boolean variable Positive Steady State

Reached (PSSR) and updates PSSR(k)← 1 if

 𝛿𝑥𝑖 𝑘 < 𝜖∆𝑥 for 𝜅 = k − Tguard , k −

Tguard +1,…,k(i.e., for Tguard consecutive iterations),

where 𝜖∆𝑥 is a small positive number and Tguard is a

small integer. The initial 0 value of the state is not

considered a steady state, so PSSR(𝑘)=0 for 𝑘 =
0,1, … , Tguard .

Each node keeps an estimate of the most

recent “steady state” observed, which is denoted by

𝑥𝑖
𝑠𝑠(𝑘). This estimate is updated at every time k

according to the following rule: if PSSR(𝑘)=1, then

𝑥𝑖
𝑠𝑠 𝑘 ← 𝑥𝑖 𝑘 ; otherwise 𝑥𝑖

𝑠𝑠 𝑘 ← 𝑥𝑖 𝑘 − 1 . It is

initialized as 𝑥𝑖
𝑠𝑠(0) = ∞.Every node i also keeps a

list of steady states seen in the past, one value for each

unpunctuated interval of time during which the state

was detected to be steady. This information is kept in

a vector 𝑥𝑖
𝑠𝑠(𝑘) , which is initialized to be empty and

is updated as follows: If PSSR(𝑘) = 1 but PSSR(𝑘 −
1) = 0, then 𝑥𝑠𝑠 𝑘 is appended to 𝑥𝑖

𝑠𝑠(𝑘) as a new

entry. If steady state reached was detected in both 𝑘

and 𝑘 - 1 (i.e., PSSR(𝑘) = PSSR(𝑘 − 1) = 1, then the

last entry of 𝑥𝑖
𝑠𝑠(𝑘) is updated to 𝑥𝑖

𝑠𝑠(𝑘) .

4.2 CCOS Detection

When a cut occurs in the network that does

not separate a node u from the source node, we say

that Connected, but a Cut Occurred Somewhere

(CCOS) event has occurred for u. detection of CCOS

events by the nodes close to a cut, and the

approximate location of the cut. By “approximate

location” of a cut we mean the location of one or

more active nodes that lie at the boundary of the cut

and that are connected to the source. To detect CCOS

events, the algorithm uses the fact that the potentials

of the nodes that are connected to the source node also

change after the cut. However, a change in a node’s

potential is not enough to detect CCOS events, since

failure of nodes that do not cause a cut also leads to

changes in the potentials of their neighbors.

Therefore, CCOS detection proceeds by using probe

messages.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

4.3 Probe Message Indication

Probe messages that are initiated by certain

nodes that encounter failed neighbors, and are

forwarded from one node to another in a way that if a

short path exists around a “hole” created by node

failures, the message will reach the initiating node.

The pseudo code for the algorithm that decides when

to initiate a probe is included. Each PROBE message

p contains the following information:

1) A unique probe ID,

2) Source Node id S

3) Destination node,

4) Path traversed (in chronological order), and

5) The angle traversed by the probe message.

The list of probes is the union of the probes it

received from its neighbors and the probe it decided

to initiate, if any probe is forwarded in a manner such

that if the probe is triggered by the creation of a small

hole or cut(with circumference less than 𝑙𝑚𝑎𝑥) the

probe traverses a path around the hole in a counter-

clockwise (CCW) direction and reaches the node

that initiated the probe. Since it is only used to

compute destinations of probe messages.

The information required to compute and

update these probe variables necessitates the

following assumption for CCOS detection:

Assumption 1. 1) The sensor network is a two-

dimensional geometric graph, with 𝑃𝑖 𝜖 𝐼𝑅2 denoting

the location of the ith node in a common Cartesian

reference frame; 2) Each node knows its own location

as well as the locations of its neighbors.

The location information needed by the

nodes need not be precise, since it is only used to

compute destinations of probe messages. The

assumption of the network being 2D is needed to be

able to define CW or CCW direction unambiguously,

which is used in forwarding probes. At the beginning

of an iteration, every node starts with a list of probes

to process. The list of probes is the union of the

probes it received from its neighbors and the probe it

decided to initiate, if any. The manner in which the

information in each of the probes in its list is updated

by a node.

5.Performance Evaluation

Performance of the DCD algorithm was

tested using MATLAB simulations . Two important

metrics of performance for the DCD algorithm are 1)

detection accuracy, and 2) detection delay. Detection

accuracy refers to the ability to detect a cut when it

occurs and not declaring a cut when none has

occurred. DOS detection delay for a node 𝔦 that has

undergone a DOS event is the minimum number of

iterations (after the node has been disconnected) it

takes before the node switches its 𝐷𝑂𝑆𝑖 flag from 0 to

1. CCOS detection delay is the minimum number of

iterations it takes after the occurrence of a cut before a

node detects it. In detecting disconnection from

source (DOS) events, two kinds of inaccuracies are

possible. A DOS0/1 error is said to occur if a node

concludes it is connected to the source while it is in

fact disconnected, i.e., node 𝔦 declares 𝐷𝑂𝑆𝑖 to be 0

while it should be 1. A DOS1/0 error is said to occur

if a node concludes that is disconnected from the

source while in fact it is connected. In CCOS

detection, again two kinds of inaccuracies are

possible. A CCOS0/1 error is said to occur when cut

(or a large hole) has occurred but not a single node is

able to detect it. A CCOS1/0 error is said to occur

when a node concludes that there has been a cut (or

large hole) at a particular location while no cut has

taken place near that location.The algorithm’s

effectiveness is examined by evaluating the

probabilities of the four types of possible errors

enumerated above, as well as the detection delays.

6 System Implementation

In this section, we describe the software

implementation and evaluation of the DCD algorithm.

In software the algorithm was implemented using the

Dot Net(c#) language running on windows xp

operating system. The system executes in two

phases: the Reliable Neighbor Discovery (RND)

phase and the DCD Algorithm phase. In the RND

phase each node is connected to the source node.

Upon receiving the message, the mote updates the

number of beacons received from that particular

sender. To determine whether a communication link is

established, each mote first computes for each of its

neighbors the Packet Reception Ratio (PRR), defined

as the ratio of the number of successfully received

beacons and the total number of beacons sent by a

neighbor. A neighbor is deemed reliable if the PRR >

0:8. Next, the DCD algorithm executes. After

receiving state information from neighbors, a node

updates its state according to (1) in an asynchronous

manner and broadcasts its new state. The state is

stored in the database

 7.Conclusion

The DCD algorithm we propose here enables

every node of a wireless sensor network to detect

Disconnected from Source events if they occur.

Second, it enables a subset of nodes that experience

CCOS events to detect them and estimate the

approximate location of the cut in the form of a list of

active nodes that lie at the boundary of the

cut/hole.The DOS and CCOS events are defined with

respect to a specially designated source node. The

algorithm is based on ideas from electrical network

theory and parallel iterative solution of linear

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

equations.The algorithm works effectively with a

large classes of graphs of varying size and structure,

without requiring changes in the parameters. For

certain scenarios, the algorithm is assured to detect

connection and disconnection to the source node

without error. A key strength of the DCD algorithm is

that the convergence rate of the underlying iterative

scheme is quite fast and independent of the size and

structure of the network, which makes detection using

this algorithm quite fast. Application of the DCD

algorithm to detect node separation and reconnection

to the source in mobile networks is a topic of ongoing

research.

8.References

[1] G. Dini, M. Pelagatti, and I.M. Savino, “An

Algorithm for Reconnecting Wireless Sensor Network

Partitions,” Proc. European Conf. Wireless Sensor

Networks, pp. 253-267, 2008.

[2] N. Shrivastava, S. Suri, and C. D. T´oth, “Detecting cuts

in sensor networks,”in IPSN ’05: Proceedings of the 4th

international symposiumon Information processing in

sensor networks, 2005, pp. 210–217.

 [3] Ö. Babaoglu, R. Davoli, A. Montresor, Group

Communication in Partitionable Systems: Specification and

Algorithms, IEEE Transactions on Software Engineering,

2001, vol. 27, no.4.

[4] H. Ritter, R. Winter, and J. Schiller, “A Partition

Detection System for Mobile Ad-hoc Networks,” Proc. First

Ann. IEEE Comm. Soc. Conf. Sensor and Ad Hoc Comm.

and Networks (IEEE SECON ’04), pp. 489-497, Oct. 2004.

[5] M. Hauspie, J. Carle, and D. Simplot, “Partition

Detection in Mobile Ad-Hoc Networks,” Proc. Second

Mediterranean Workshop Ad-Hoc Networks, pp. 25-27,

2003.

[6] P. Barooah, “Distributed Cut Detection in Sensor

Networks,” Proc. 47th IEEE Conf. Decision and Control,

pp. 1097-1102, Dec.2008.

[7] A.D. Wood, J.A. Stankovic, and S.H. Son, “Jam: A

Jammed-Area Mapping Service for Sensor Networks,”

Proc. IEEE Real Time Systems Symp., 2003.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

