
An Algorithm To Detect Separation And Reconnecting Wireless Sensor 

Network Partitions 

 
 

R.Jayashree  

M.Tech, Department of Computer Science & 

Engineering, Prist University, 

Tiruchirapalli, TamilNadu,India.   

 

R.Kalaivani
 

Assistant Professor, Department of 

Computer Science & Engineering, Prist 

University, Tiruchirapalli, TamilNadu,India.   

 

Abstract 
Wireless sensor networks (WSNs) are a promising 

technology for monitoring large regions at high 

spatial and temporal resolution. The failure of some 

of its nodes, which is called cut can separate the 

network into multiple connected components. The 

ability of detecting cuts by the disconnected nodes and 

source node of a wireless sensor network will lead to 

the increase in the operational lifetime of the network. 

The Distributed Cut Detection (DCD) algorithm 

proposed here enables every node of a wireless sensor 

network to detect Disconnected frOm Source events if 

they occur. Second, it enables a subset of nodes that 

experience CCOS events to detect them and estimate 

the approximate location of the cut in the form of a 

list of active nodes that lie at the boundary of the cut. 

The algorithm is based on ideas from electrical 

network theory and parallel iterative solution of 

linear equations. A key strength of the DCD algorithm 

is that the convergence rate of the iterative scheme is 

quite fast and independent of the size and structure of 

the network.  

 

Index Terms –Detection and estimation, Iterative 

computation, Network Separation, Sensor networks, 

Wireless networks. 

 

 

1. Introduction 
  

Wireless sensor networks (WSNs) are a 

promising technology for monitoring large regions at 

high spatial and temporal resolution. However, the 

small size and low cost of the nodes that makes them 

attractive for widespread deployment also causes the 

disadvantage of low-operational reliability. A node 

may fail due to various factors such as 

mechanical/electrical problems, environmental 

degradation, battery depletion, or hostile tampering. 

In fact, node failure is expected to be quite common 

due to the typically limited energy budget of the 

nodes that are powered by small batteries. Failure of a 

  

set of nodes will reduce the number of multihop paths 

in the network. Such failures can cause a subset of 

nodes—that have not failed—to become disconnected 

from the rest, resulting in a “cut”.. 

 We consider the problem of detecting cuts by 

the nodes of a wireless network. The source node may 

be a base station that serves as an interface between 

the network and its users. Since a cut  may or may not 

separate a node from the source node, we distinguish 

between two distinct outcomes of a cut for a particular 

node. When a node u is disconnected from the source, 

we say that a Disconnected from Source (DOS) event 

has occurred for u. When a cut occurs in the network 

that does not separate a node u from the source node, 

we say that Connected, but a Cut Occurred 

Somewhere (CCOS) event has occurred for u. By cut 

detection we mean 1) detection by each node of a 

DOS event when it occurs, and 2) detection of CCOS 

events by the nodes close to a cut, and the 

approximate location of the cut. Nodes that detect the 

occurrence and approximate locations of the cuts can 

then alert the source node or the base station. 

Therefore, on one hand, if a node were able to detect 

the occurrence of a cut, it could simply wait for the 

network to be repaired and eventually reconnected, 

which saves on-board energy of multiple nodes and 

prolongs their lives. Thus, the ability to detect cuts by 

both the disconnected nodes and the source node will 

lead to the increase in the operational lifetime of the 

network as a whole. A method of repairing a 

disconnected network by using mobile nodes has been 

proposed in [1]. Algorithms for detecting cuts, as the 

one proposed here, can serve as useful tools for such 

network repairing methods.  

In this paper, we propose a distributed 

algorithm to detect cuts, named the Distributed Cut 

Detection (DCD) algorithm. The algorithm allows 

each node to detect DOS events and a subset of nodes 

to detect CCOS events. The algorithm we propose is 

distributed and asynchronous: it involves only local 

communication between neighboring nodes, and is 

robust to temporary communication failure between 

node pairs. A key component of the DCD algorithm is 

a distributed iterative computational step through 
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which the nodes compute their (fictitious) electrical 

potentials. The convergence rate of the computation is 

independent of the size and structure of the network.  

 

 

2.Related Work 
 
 Especially the academic interest in group 

communication pushed for a partition detection 

scheme. Babaoglu et al. [3] developed a partitionable 

group communication service which allows so called 

“partition-aware applications” to operate in separated 

network topologies and, after two or more partitions 

merge, reconfigure themselves. The partitioning 

problem is handled by a simple PING/ACK 

mechanism. A node sends a PING message to another 

node. If it does not receive an ACK in a certain 

amount of time, that node is added to a list of 

suspects. A dynamic timeout mechanism is used 

which leads to a reasonably accurate suspect list. This 

scheme lacks the ability to distinguish between node 

failure and partitioning which for most applications is 

desirable. Also it does not carefully choose the nodes 

that monitor the network to increase the detection 

probability. 

 As noted by Shrivastava et. al. [2], the 

challenges posed by the possibility of network 

partitioning in WSNs has been recognized in several 

papers  but the problem of detecting when such 

partitioning occurs seems to have received little 

attention. To the best of our knowledge, the work by 

Shrivastava et. al. [2] is the only one that addresses 

the problem of detecting cuts in wireless sensor 

networks. They developed an algorithm for detecting 

ǫ linear cuts, which is a linear separation of ǫn nodes 

from the base station. The reason for the restriction to 

linear cuts is that their algorithm relies critically on a 

certain duality between straight line segments and 

points in 2D, which also restricts the algorithm in [2] 

to sensor networks deployed in the 2D plane. The 

algorithm developed in [2] needs a few nodes called 

sentinels that communicate with a base station either 

directly or through multi-hop paths. The base station 

detects 𝜖-cuts by monitoring whether it can receive 

messages from the sentinels. 

In contrast to the algorithm in [2], the DSSD 

algorithm proposed in [6] is not limited to 𝜖-linear 

cuts; it can detect cuts that separate the network into 

multiple components of arbitrary shapes. 

Furthermore, the DSSD algorithm is not restricted to 

networks deployed in 2D, it does not require 

deploying sentinel nodes, and it allows every node to 

detect if a cut occurs.The DSSD algorithm involves 

only nearest neighbor communication, which 

eliminates the need of routing messages to the source 

node. This feature makes the algorithm applicable to 

mobile nodes as well. Since the computation that a 

node has to carry out involves only averaging, it is 

particularly well suited to wireless sensor networks 

with nodes that have limited computational 

capability.In this paper,the proposed algorithm is an 

extension of  previous work [6], which partially 

examined the DOS detection problem. 

 

 

3.Distributed Cut Detection 
3.1 Definition and Problem Statement 

 
 Time is measured with a discrete counter   

k=-∞,...,-1,0,1,2,...We model a sensor network as a 

time-varying graph 𝒢 𝑘 = (𝑉 𝑘 ℰ 𝑘 ) whose node 

set V(k) represents the sensor nodes active at time k 

and the edge set ℰ(𝑘) consists of pairs of nodes (u,v) 

such that nodes u and v can directly exchange 

messages between each other at time k. By an active 

node we mean a node that has not failed permanently. 

All graphs considered here are undirected, i.e., (𝒾 , 

𝑗)=(𝑗, 𝒾). The neighbors of  a node 𝒾 is the set 𝑁𝑖  of 

nodes connected to 𝒾, i.e. 𝑁𝑖 = {𝑗|(𝑖, 𝑗) ∈ ℰ}. The 

number of neighbors of 𝒾,|𝑁𝑖 𝑘 |,is called its degree, 

which is denoted by di. A path from 𝒾 to 𝑗 is a 

sequence of edges connecting 𝒾 and 𝑗. A graph is 

called connected if there is a path between every pair 

of nodes. A component 𝒢𝑐  of a graph 𝒢 is a maximal 

connected subgraph of 𝒢 (i.e., no other connected 

subgraph of 𝒢 contains 𝒢𝑐  as its subgraph). 

In terms of these definitions, a cut event is 

formally defined as the increase of the number of  

components of a graph due to the failure of a subset of 

nodes (as depicted in Fig. 1). The number of cuts 

associated with a cut event is the increase in the 

number of components after the event. 

The problem we seek to address is twofold. 

First, we want to enable every node to detect if it is 

disconnected from the source (i.e., if a DOS event has 

occurred). Second, we want to enable nodes that lie 

close to the cuts but are still connected to the source 

(i.e., those that experience CCOS events) to detect 

CCOS events and alert the source node. 

 

 
Fig 1.Examples of cuts and holes. Filled circles represent 

active nodes and unfilled filled circles represent failed 
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nodes. Solid lines represent edges, and dashed lines 

represent edges that existed before the failure of the nodes. 

The hole in (d) is indistinguishable from the cut in (b) to 

nodes that lie outside the region R. 

 
There is an algorithm-independent limit to 

how accurately cuts can be detected by nodes still 

connected to the source, which are related to holes. 

Fig. 1 provides a motivating example. We allow the 

possibility that the algorithm may not be able to tell a 

large hole (one whose circumference is larger than  

ℓmax) from a cut, since the examples of Figs. 1b and 

1c show that it may be impossible to distinguish 

between them. Note that the discussion on hole 

detection part is limited to networks with nodes 

deployed in 2D. 

 

 

3.2 State Update Law and Electrical analogy 
 

The DCD algorithm is based on the 

following electrical analogy. Imagine the wireless 

sensor network as an electrical circuit where current is 

injected at the source node and extracted out of a 

common fictitious node that is connected to every 

node of the sensor network. Each edge is replaced by 

a 1 Ω resistor. When a cut separates certain nodes 

from the source node, the potential of each of those 

nodes becomes 0, since there is no current injection 

into their component. The potentials are computed by 

an iterative scheme (described in the sequel) which 

only requires periodic communication among 

neighboring nodes. The nodes use the computed 

potentials to detect if DOS events have occurred (i.e., 

if they are disconnected from the source node). 

To detect CCOS events, the algorithm uses 

the fact that the potentials of the nodes that are 

connected to the source node also change after the cut. 

Therefore, CCOS detection proceeds by using probe 

messages that are initiated by certain nodes that 

encounter failed neighbors, and are forwarded from 

one node to another in a way that if a short path exists 

around a “hole” created by node failures, the message 

will reach the initiating node. The nodes that detect 

CCOS events then alert the source node about the cut. 

 Every node keeps a scalar variable, which is 

called its state. The state of node 𝔦 at time k is denoted 

by 𝑥𝑖(𝑘). Every node 𝔦 initializes its state to 0, i.e., 

 𝑥𝑖 0 = 0 ,∀𝑖.During the time interval between the 

kth and k + 1th iterations, every node 𝔦 broadcasts its 

current state 𝑥𝑖(𝑘) and listens for broadcasts from its 

current neighbors. Let 𝑁𝑖(𝑘) be the set of neighbors 

of node 𝔦 at time k. Assuming successful reception, 𝔦 
has access to the states of its neighbors, i.e., 𝑥𝑗  𝑘   for 

j∈ 𝑁𝑖(𝑘) , at the end of this time period. The node 

then updates its state according to the following state 

update law (the index 𝔦 = 1 corresponds to the source 

node), where the source strength s (a positive number) 

is a design parameter: 

  

 
where 𝑑𝑖 𝑘 ≔ |𝑁𝑖 𝑘 | is the degree of node 𝔦 at time 

k, and 1𝐴(𝑖) is the indicator function of the set A. 

That is, 1 1  𝑖 = 1if 𝔦 = 1 (source node) 

, 𝑎𝑛𝑑 1 1  𝑖 = 0 if 𝔦 ≠ 1 and . After the state is 

updated, the next iteration starts. At deployment, 

nodes go through a neighbor discovery and every 

node 𝔦  determines its initial neighbor set 𝑁𝑖(0). After 

that, 𝔦 can update its neighbor list 𝑁𝑖(𝑘) as follows: If 

no messages have been received from a neighboring 

node for the past 𝑇𝑑𝑟𝑜𝑝  iterations, node 𝔦 drops that 

node from its list of neighbors. The integer parameter 

𝑇𝑑𝑟𝑜𝑝   is a design choice. 

 

 

 
 
Fig. 2. A graph describing a sensor network 𝒢 (left), and the 

associated fictitious electrical network 𝒢elec(right). s Amp 

current is injected into the electrical network through the 

“source node” (unfilled circle), and extracted through the 

“ground” node (filled triangle). The line segments in the 

electrical network are 1Ω resistors. 

 

To understand the state update law’s relation 

to the electrical analogy described earlier, given an 

undirected graph 𝒢(𝒱, ℰ), imagine a fictitious graph 

 𝒢elec
=(𝒱elec

, ℰelec 
) as follows: The node set of the 

fictitious graph is 𝒱elec
 =𝒱 ∪ {𝑔}, where g is a 

fictitious grounded node; and every node 𝒱 in  is 

connected to the grounded node g with a single edge, 

which constitute the extra edges in  ℰelec 
that are not 

there in ℰ . Now an electrical network  (𝒢elec
 ,1) is 

imagined by assigning to every edge of  𝒢elec
 a 

resistance of 1Ω  . Fig. 2 shows a graph 𝒢 and the 

corresponding fictitious electrical network (𝒢elec
,1). 

The state update law is simply an iterative procedure 

to compute the node potentials in the electrical 

network (𝒢elec
 ,1) in which s Ampere current is 

injected at the source node and extracted through the 

grounded node 𝑔. The potential of the grounded node 

𝑔 is held at 0. 

When the sensor network 𝒢 is connected, the 

state of a nodeconverges to its potential in the 

electrical network (𝒢elec
 ,1),which is a positive 

number. If a cut occurs, the potential of anode that is 

disconnected from the source is 0; and this is the 

value its state converges to. If reconnection occurs 

after a cut, the states of reconnected nodes again 

converge to positive values. Therefore, a node can 

monitor whether it is connected or separated from the 

source by examining its state. The above description 
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assumes that all updates are done synchronously. In 

practice, especially with wireless communication, an 

asynchronous update is preferable. The algorithm can 

be easily extended to asynchronous setting by letting 

every node keep a buffer of the last received states of 

its neighbors. If a node does not receive messages 

from a neighbor during the interval between two 

iterations, it updates its state using the last 

successfully received state from that neighbor. In the 

asynchronous setting every node keeps a local 

iteration counter that may differ from those of other 

nodes by arbitrary amount.  

     

 
       𝑎  𝒢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑢𝑡                     (b) 𝒢 𝑘 𝑓𝑜𝑟 𝑘 > 100 

 
       (c) state of node 𝓊                     (d) state of node 𝜈 

 

Fig. 3 shows the evolution of the node states in a 

network of 200 nodes when the states are computed using 

the update law described above.  
The source node is at the center. The nodes 

shown as red squares in Fig. 3b fail at k = 100, and 

thereafter they do not participate in communication or 

computation. Figs. 3c and 3d show the time evolution 

of the states of the two nodes 𝓊  and  𝜈, which are 

marked by circles in Fig. 3b. The state of node 𝓊  
(that is disconnected from the source due to the cut) 

decays to 0 after reaching a positive value, whereas 

the state of the node 𝜈  (which is still connected after 

the cut) stays positive. 
 

 

4.Distributed Cut Detection Algorithm 
4.1 DOS Detection 

 
When a node u is disconnected from the 

source, we say that a Disconnected from Source 

(DOS) event has occurred for u. The algorithm allows 

each node to detect DOS events. The nodes use the 

computed potentials to detect if DOS events have 

occurred (i.e., if they are disconnected from the 

source node). The approach here is to exploit the fact 

that if the state is close to 0 then the node is 

disconnected from the source, otherwise not. In order 

to reduce sensitivity of the algorithm to variations in 

network size and structure, we use a normalized state. 

DOS detection part consists of steady-state detection, 

normalized state computation, and 

connection/separation detection.A node keeps track of 

the positive steady states seen in the past using the 

following method. Each node 𝔦 computes the 

normalized state difference 𝛿𝑥𝑖(𝑘) as follows: 

 
                                                                                 (2) 

Where  𝜖zero  is a small positive number. A node 𝔦 
keeps a Boolean variable Positive Steady State 

Reached (PSSR) and updates PSSR(k)← 1 if 

 𝛿𝑥𝑖 𝑘  < 𝜖∆𝑥  for 𝜅 = k − Tguard  , k −

Tguard +1,…,k(i.e., for Tguard  consecutive iterations), 

where 𝜖∆𝑥  is a small positive number and Tguard  is a 

small integer. The initial 0 value of the state is not 

considered a steady state, so PSSR(𝑘)=0 for 𝑘 =
0,1, … , Tguard .  

Each node  keeps an estimate of the most 

recent “steady state” observed, which is denoted by 

𝑥𝑖
𝑠𝑠(𝑘). This estimate is updated at every time k 

according to the following rule: if PSSR(𝑘)=1, then 

𝑥𝑖
𝑠𝑠 𝑘 ← 𝑥𝑖 𝑘 ; otherwise 𝑥𝑖

𝑠𝑠 𝑘 ← 𝑥𝑖 𝑘 − 1  . It is 

initialized as 𝑥𝑖
𝑠𝑠(0) = ∞.Every node i also keeps a 

list of steady states seen in the past, one value for each 

unpunctuated interval of time during which the state 

was detected to be steady. This information is kept in 

a vector 𝑥𝑖
𝑠𝑠(𝑘) , which is initialized to be empty and 

is updated as follows: If PSSR(𝑘) = 1 but PSSR(𝑘 −
1) = 0, then 𝑥𝑠𝑠 𝑘  is appended to 𝑥𝑖

𝑠𝑠(𝑘) as a new 

entry. If steady state reached was detected in both 𝑘 

and  𝑘 - 1 (i.e., PSSR(𝑘) =  PSSR(𝑘 − 1) = 1, then the 

last entry of 𝑥𝑖
𝑠𝑠(𝑘)  is updated to 𝑥𝑖

𝑠𝑠(𝑘) . 

 

 
4.2 CCOS Detection 

 

When a cut occurs in the network that does 

not separate a node u from the source node, we say 

that Connected, but a Cut Occurred Somewhere 

(CCOS) event has occurred for u. detection of CCOS 

events by the nodes close to a cut, and the 

approximate location of the cut. By “approximate 

location” of a cut we mean the location of one or 

more active nodes that lie at the boundary of the cut 

and that are connected to the source. To detect CCOS 

events, the algorithm uses the fact that the potentials 

of the nodes that are connected to the source node also 

change after the cut. However, a change in a node’s 

potential is not enough to detect CCOS events, since 

failure of nodes that do not cause a cut also leads to 

changes in the potentials of their neighbors. 

Therefore, CCOS detection proceeds by using probe 

messages. 
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4.3 Probe Message Indication 

 

Probe messages that are initiated by certain 

nodes that encounter failed neighbors, and are 

forwarded from one node to another in a way that if a 

short path exists around a “hole” created by node 

failures, the message will reach the initiating node. 

The pseudo code for the algorithm that decides when 

to initiate a probe is included. Each PROBE message 

p contains the following information: 

1) A unique probe ID, 

2) Source Node id S 

3) Destination node, 

4) Path traversed (in chronological order), and 

5) The angle traversed by the probe message. 

The list of probes is the union of the probes it 

received from its neighbors and the probe it decided 

to initiate, if any probe is forwarded in a manner such 

that if the probe is triggered by the creation of a small 

hole or cut(with circumference less than 𝑙𝑚𝑎𝑥 ) the 

probe traverses a path around the hole in a counter-

clockwise (CCW) direction and     reaches the node 

that initiated the probe. Since it is only used to 

compute destinations of probe messages. 

The information required to compute and 

update these probe variables necessitates the 

following assumption for CCOS detection: 

Assumption 1. 1) The sensor network is a two-

dimensional geometric graph, with 𝑃𝑖 𝜖 𝐼𝑅2  denoting 

the location of the ith node in a common Cartesian 

reference frame; 2) Each node knows its own location 

as well as the locations of its neighbors. 

The location information needed by the 

nodes need not be precise, since it is only used to 

compute destinations of probe messages. The 

assumption of the network being 2D is needed to be 

able to define CW or CCW direction unambiguously, 

which is used in forwarding probes. At the beginning 

of an iteration, every node starts with a list of probes 

to process. The list of probes is the union of the 

probes it received from its neighbors and the probe it 

decided to initiate, if any. The manner in which the 

information in each of the probes in its list is updated 

by a node. 

 

 

5.Performance Evaluation  
 

Performance of the DCD algorithm was 

tested using MATLAB simulations . Two important 

metrics of performance for the DCD algorithm are 1) 

detection accuracy, and 2) detection delay. Detection 

accuracy refers to the ability to detect a cut when it 

occurs and not declaring a cut when none has 

occurred. DOS detection delay for a node 𝔦 that has 

undergone a DOS event is the minimum number of 

iterations (after the node has been disconnected) it 

takes before the node switches its 𝐷𝑂𝑆𝑖  flag from 0 to 

1. CCOS detection delay is the minimum number of 

iterations it takes after the occurrence of a cut before a 

node detects it. In detecting disconnection from 

source (DOS) events, two kinds of inaccuracies are 

possible. A DOS0/1 error is said to occur if a node 

concludes it is connected to the source while it is in 

fact disconnected, i.e., node 𝔦 declares 𝐷𝑂𝑆𝑖  to be 0 

while it should be 1. A DOS1/0 error is said to occur 

if a node concludes that is disconnected from the 

source while in fact it is connected. In CCOS 

detection, again two kinds of inaccuracies are 

possible. A CCOS0/1 error is said to occur when cut 

(or a large hole) has occurred but not a single node is 

able to detect it. A CCOS1/0 error is said to occur 

when a node concludes that there has been a cut (or 

large hole) at a particular location while no cut has 

taken place near that location.The algorithm’s 

effectiveness is examined by evaluating the 

probabilities of the four types of possible errors 

enumerated above, as well as the detection delays.  

 

6 System Implementation 
 

In this section, we describe the software 

implementation and evaluation of the DCD algorithm. 

In software the algorithm was implemented using the 

Dot Net(c#) language running on windows xp 

operating system. The system executes in two 

phases: the Reliable Neighbor Discovery (RND) 

phase and the DCD Algorithm phase. In the RND 

phase each node is connected to the source node. 

Upon receiving the message, the mote updates the 

number of beacons received from that particular 

sender. To determine whether a communication link is 

established, each mote first computes for each of its 

neighbors the Packet Reception Ratio (PRR), defined 

as the ratio of the number of successfully received 

beacons and the total number of  beacons sent by a 

neighbor. A neighbor is deemed reliable if the PRR > 

0:8. Next, the DCD algorithm executes. After 

receiving state information from neighbors, a node 

updates its state according to (1) in an asynchronous 

manner and broadcasts its new state. The state is 

stored in the database 

 

 

 7.Conclusion 
 

The DCD algorithm we propose here enables 

every node of a wireless sensor network to detect 

Disconnected from Source events if they occur. 

Second, it enables a subset of nodes that experience 

CCOS events to detect them and estimate the 

approximate location of the cut in the form of a list of 

active nodes that lie at the boundary of the 

cut/hole.The DOS and CCOS events are defined with 

respect to a specially designated source node. The 

algorithm is based on ideas from electrical network 

theory and parallel iterative solution of linear 
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equations.The algorithm works effectively with a 

large classes of graphs of varying size and structure, 

without requiring changes in the parameters. For 

certain scenarios, the algorithm is assured to detect 

connection and disconnection to the source node 

without error. A key strength of the DCD algorithm is 

that the convergence rate of the underlying iterative 

scheme is quite fast and independent of the size and 

structure of the network, which makes detection using 

this algorithm quite fast. Application of the DCD 

algorithm to detect node separation and reconnection 

to the source in mobile networks is a topic of ongoing 

research. 
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