
An Alternate Binary Search Algorithm based on

Variable Checkpoint

Mohammad Zeeshan
Dept. of Computer Science &

Engineering

ASET, Amity University

Lucknow, India

Alpika Tripathi
Dept. of Computer Science &

Engineering

ASET, Amity University

Lucknow, India

Saba Khan
Dept. of Computer Science &

Engineering

ASET, Amity University

Lucknow, India

Abstract—This paper describes a new and innovative concept

of an alternate binary search algorithm. The proposed

algorithm finds the element on the basis of the possible location

of that element in the sorted list. A new formula based on VCP

is generated for searching the element. The complexity of

derived algorithm depends on the difference between elements

in the list. Better performance of the algorithm can be seen on

large data set.

Index Terms—Average Difference, Binary Search, Variable

Check Point.

I. INTRODUCTION

Searching an element in the list has ever been an important

task in Computer Science. There are basically few searching

algorithms in the literature. Mainly, Linear search and Binary

search algorithms are used widely. Linear Search is the

simplest one in which we check for the element linearly in

the list. It is easy to implement but its time complexity is

high. In Binary Search the necessary condition is that the

elements in the list should be in sorted order, and the search

is based on finding the mid-point and dividing the array in

two sub-arrays. Finding the mid-point is the core part of the

Binary Search Algorithm, but if the desired element is not

found at one stroke, it further divides the array into a sub

array and again repeats the same process. The complexity of

Binary Search is O(log2n), which increases with increase in

size of the list. This paper presents a new search algorithm

which will be based on positional weight of the desired

element.

The basic concept behind the proposed algorithm is that, if

there are n elements in the list, placed in sorted order then

there would be some possibility of occurrence of an element at

a particular location in that list.

II. LITERATURE SURVEY

The binary search has a great role in computer science. There

are various applications of binary search. Researchers have

done various changes in the technique to achieve the goal as

per the requirement. In the paper by In the paper by David

Dobkin et al. [2], Authors have demonstrated the usefulness

and efficiency of Binary search. Binary search is extended to

various multidimensional search problems. These new search

techniques can efficiently solve several important problems of

computer science. In the paper by Eitan Zemel [3], Author

analyzes the performance of randomized binary search.

Randomized binary search algorithm is used to find the global

optimum of a multimodal one dimensional function. In the

paper by Farhan A. baqai et al. [4], they integrate a higher

order measurement-based model for printer dot interactions

within the iterative direct binary search (DBS) halftoning

algorithm. They have presented an efficient strategy for

evaluating the change in computational cost as the search

progresses. Experimental results are used to show the efficacy

of the approach. In the paper by Ahmed Tarek [1], auther said

that binary search algorithm is fundamental method to the

study and analysis of Discrete Computational Structures. This

is an efficient searching technique due to its logarithmic time

complexity. It is used to identify the position of a key in a

sorted list. Often, database applications need searching for two

to more different key elements at the same iteration. Author

has changed the binary search algorithm for searching the

multiple items in one stroke. In the paper, X. L. Shi et al. [5],

authors investigated that in RFID system, tag collision is a

main problem for fast tag identification. On the basis of binary

search of backtracking, an enhanced binary anti-collision

search algorithm for radio frequency identification (RFID)

system is presented.

III. PROPOSED WORK

The concepts and processes used in the proposed work are

discussed below.

A. Methodology

In this paper, the proposed algorithm uses the list division

technique of traditional Binary Search algorithm. But the main

difference between both of them is that the proposed

algorithm finds a Variable Check Point instead of the

midpoint as in the traditional Binary Search. One more change

is done in the Binary Search Algorithm that the new proposed

algorithm checks both the upper and the lower element of the

array.

The concept behind the overall algorithm is that if the

array elements are sorted, then there would be some

possibility of a particular element to be at a specific location.

This specific location can be calculated by finding the

Average Difference (AD) between the array elements.

Average Difference (AD) plays vital role in calculating the

location of the desired element. The difference pattern creates

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090493

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

459

the Best, Average and Worst case for the proposed algorithm.

The details will be discussed in the other section.

The Variable Check Point (VCP) is calculated with the

help of Average Difference (AD). To find the Average

difference (AD), firstly the Range (R) is calculated. Range (R)

is the difference between the upper most and the lower most

element of the array.

Range (R) = Upper element - Lower element (1)

Range is divided by total number of gaps between the

array elements that is one less than total number of array

elements (N).

Number of Gaps = N – 1 (2)

Now the Range is divided by the number of gaps that is

the Average difference.

Average Difference (AD) = Range / N-1 (3)

After calculating the Average Difference (AD), the

Variable Check Point (VCP) is calculated. To do this the

Lower element is subtracted from the desired element that we

are searching for. And after that the resultant of this

subtraction is divided by the Average Difference. Now it is the

Variable Check Point (VCP).

VCP = (Desired element – Lower element) / AD (4)

The lower and upper element checking increases the

possibility of finding the key element at one stroke.

B. Proposed Algorithm

The above mention equation (1) for calculating the Variable

Check Point (VCP) is used in the new proposed algorithm.

Following notations are used in the algorithm:

key: The number searched for.

arr: Name of the array of list elements.

low: Lower-most index in the list.

up: Upper-most index in the list.

tag: Used as flag.

chk: index of Variable Check Point

gap: No. of Gaps between the list elements.

The proposed algorithm is as follows:

Algorithm alternate_binary_search

while key ≥ arr[low] and arr[up] ≥ key and low ≤ up do

 if arr[low] = key then

print low+1

tag ← 1

break

 else if arr[up] = key then

print up+1

tag ← 1

break

 else

chk ← (key-arr[low])*gap/(arr[up]-arr[low]

chk ← chk+low

if arr[chk] = key then

 tag ← 1

 print chk+1

 break

else if key < arr[chk] then

 up ← chk-1

 low ← low+1

else

 low ← chk+1

 up ← up-1

 end if

 gap ← up-low

end while

if tag ≠ 1 then

print not found

end if

The first line of the algorithm is for the while loop which

checks three conditions; first one is that the key is greater than

or equal to the lower most element (arr[low]) of the array,

second one is that the upper most element (arr[up])is greater

than or equal to the key and the third one is that the upper

index (up) is greater than the lower index (low) of the array.

The first two conditions stand to check whether the key

element is inside the list or not and the third one checks that

the low and up have crossed each other or not. If all the three

conditions are true, the control will enter inside the loop. The

second line of the algorithm checks if the lower most element

(arr[low])is the key element then it will show the location of

the lowest element and breaks the loop. If the condition is not

true then it will skip the above lines and jump to the 6th line

and checks whether the upper most element (arr[up]) is equal

to the key element.

If the key could not be found at lower most and the upper

most index location of the array list then the control comes to

the 11th line of the array where the Variable Check Point (chk)

is calculated. Line 12 sets the chk according to the lower index

(low) of the array. In line 13, control checks if the arr[chk] is

equal to the key.If not, line 17 checks whether the key is less

than the arr[chk]. If it is true then the upper most index is

shifted to one less than the chk, and the lower is also shifted

upward with one location.

If the condition in line 17 does not hold, then in line 21

and 22, the lower is shifted to chk+1 and up is shifted to one

less than itself. This shifting is done to set the lower and upper

of the sub array. The loop continues until any of the condition

is false. In line 4, 8 and 14; the tag sets itself 1 if the key is

found. Line 26 checks the value of tag. If tag is not equal to 1

then not found is shown.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090493

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

460

IV. EXPERIMENTAL RESULT

On a specified number of elements it is found that the

proposed algorithm, most of the times, is better than the

binary search algorithm. An array of size 100 has been taken

to analyze the output and the performance of the proposed

algorithm. We have taken 100 number starting from 0 to 4950.

When the input sequence with equal difference is given to the

array then the algorithms finds its each element at one stroke.

at the location 50 if we give a sudden hike then the algorithm

starts giving poor results. When we give the difference

between the elements according to the real time data then on

an average the algorithm takes 2.35 iterations to find an

element, where binary algorithm takes 5.8 iterations to find an

element.

Similar results have been found for the 1000 elements.

V. PERFORMANCE ANALYSIS

As the proposed algorithm is based on the Variable Check

Point, the location of the check point chk could be anywhere

in the array list. The algorithm finds the most possible location

of the key on the basis of the Average difference between the

list elements. It has been found that if the differences between

the list elements are more random or there is a sudden high

difference between two numbers, it disturbs the Average

difference at all and makes the worst case for the algorithm.

Fig. 1: Best, Average and Worst cases based on the differences between the
list elements

The proposed algorithm is different from the traditional

binary search algorithm, because the complexity of traditional

binary search depends on the probability that the key element

is at the midpoint or anywhere else.

The proposed algorithm can perform better in the worst

case of the traditional binary search if the differences between

the elements are equal or in a defined and limited range.

The performance of the proposed algorithm changes with the

change in differences between the elements. Differences, that

are approximately close and distributed throughout the array

makes the performance better.

 The proposed algorithm performs its best when the

differences are equal between the array elements, but the

condition is impractical. The pathetic condition occurs for

the algorithm in its worst case, when the elements are

increasing with the difference 1,

VI. COMPARATIVE ANALYSIS

In Comparative analysis of the proposed algorithm with

the traditional binary search algorithm, it can be seen that the

proposed algorithm works better than the traditional binary

search in its Best and Average case. Graph for each Best,

Average and Worst cases are given below in comparison with

binary search for the 100 elements for a specific range of

values.

A. Best case analysis

Best case for the proposed algorithm does not depend on

the position of the key element in the list, but on the

differences between the elements. Proposed algorithm can

search each element in one stroke if the differences between

elements are equal.

 Fig 2: New proposed algorithm’s Best case and the behavior

of Binary search

In the fig 2; X-axis shows the no. of elements in the list

and the Y-axis contains the no. of iterations to find an element

at a specific location. The behaviour of binary search remains

same for the same no. of elements, i.e. for the fixed no. of

elements it will always firstly search for the midpoint and then

move to left or right sub-list accordingly, but the proposed

algorithm behaves according to the difference between its

elements i.e. if the differences between the elements are equal

then it will strike on the exact location of key element.

It has been found that the average number of iterations

required to search an element in the array using the proposed

algorithm is 1, whereas for the binary search algorithm it is

more than 1 and increases logarithmically.

B. Average case analysis

For a specified number of elements, Binary search

algorithm works same, no matter where a specified element is

located and how much the difference between the elements is.

On the contrary, in the proposed algorithm, the differences

between elements plays vital role.

The average case for the proposed algorithm occurs when

the difference between the elements are not equal, but in a

specified range and distributed throughout the array.

0

1000

2000

3000

4000

5000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Best Average Worst

0

1

2

3

4

5

6

7

8

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

New Binary

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090493

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

461

Fig 3: Average case of new proposed algorithm and the Binary

In fig 3, the graph shows the comparison between Binary

search algorithm and the proposed algorithm. The results

tested on 100 specified value elements shows that the

proposed algorithm takes equal iteration to the binary search

element at few locations, and it can also take more iteration in

some cases but mostly it is taking less iteration than the

Binary search algorithm at most of the locations. If we

compute the average of total no. of iterations, then proposed

algorithm takes less iterations than the Binary search

algorithm.

On an average the proposed algorithm works better than

the Binary search algorithm in its average case.

C. Worst case analysis

The proposed algorithm performs badly in its worst case.

Worst case for the proposed algorithm occurs when the

numbers are increasing with the difference 1 from the starting

but at the middle location of the array there is an abrupt

extreme high increase in the difference, and after that sudden

difference the elements again start increasing with the

difference 1.

This condition becomes worst case for the proposed

algorithm.

Fig. 4 shows the graph for the performance of proposed

and binary search algorithm in the worst case.

Fig. 4: No. of iteration in Worst case for the proposed algorithm

In this condition the algorithm starts changing the check

point linearly up to n/2 in half of the array. Just after the

middle location the no. of iterations reduces to n/4 and starts

decreasing by 1 after each two elements. This wretched

behaviour makes the algorithm useless for the searching

problems. But the situation, in which the algorithm works

badly, is impractical in use.

VII. CONCLUSION AND FUTURE SCOPE

The proposed algorithm works better in case that the

differences between the array elements are not abruptly high.

So the proposed algorithm can be used where the database

values are in a approximately equal or in a limited range. The

real time data is normally matches this requirement of the

proposed algorithm.In future the work on the proposed

algorithm can be furnished more to match to the requirement

of the technology.

ACKNOWLEDGMENT

We would like to thank respected Mr. Aseem Chauhan,

Chancellor, Amity University, Lucknow and Maj. Gen. K.K.

Ohri AVSM (Retd.), Pro.Vice-Chancellor, Amity University,

Lucknow for providing excellent facilities in university

campus and their encouragement and advice. We would also

like to pay regards to Prof. S.T.H. Abidi, Director and Brig. U.

K. Chopra, Deputy Director, Amity University, Lucknow for

their valuable feedback.

REFERENCES

[1] Ahmed Tarek-A New Approach for Multiple Element Binary

Search in Database, INTERNATIONAL JOURNAL OF

COMPUTERS,Issue 4, Volume 1, 2007

[2] David Dobkin and R.J. Lipton, On some generalization of binary

serach, Sixth Annual ACM Symposium on theory of

computing, Washington, April 1974.

[3] Eitan Zemel-Random Binary Search-A Randomizing algorithm

for global optimization in R1*, Bonn Workshop on

Combinatorial optimization, June 1984.

[4] Farhan A. Baqai and Jan P. Allebach-PRINTER MODELS

AND THE DIRECT BINARY SEARCH ALGORITHM, 0-

7803-4428-6198, 1998 IEEE.

[5] X. L. Shi, F. Wei, Q. L. Huang, L. Wang, and X. W. Shi-Novel

Binary Search, Progress In Electromagnetics Research B, Vol.

9, 97–104, 2008.

0

1

2

3

4

5

6

7

8
1 7

1
3
1
9
2
5
3
1
3
7
4
3
4
9
5
5
6
1
6
7
7
3
7
9
8
5
9
1
9
7

New Binary

0

10

20

30

40

50

60

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

New Binary

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090493

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

462

