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Abstract  
 

   One relevant problem in data quality is the presence 

of missing data. Despite the frequent occurrence and 

the relevance of missing data problem, many Machine 

Learning algorithms handle missing data in a rather 

naïve way. However, missing data treatment should be 

carefully thought, otherwise bias might be introduced 

into the knowledge induced. In this work we analyses 

the use of the Hot Deck and CLIP4 as an imputation 

method. Imputation is a term that denotes a procedure 

that replaces the missing values in a data set by some 

plausible values. Hot-deck imputation is a means of 

imputing data, using the data from other observations 

in the sample at hand. The algorithm CLIP4 first 

partitions data into subsets using a tree structure and 

then generates production rules only from subsets 

stored at the leaf nodes. The unique feature of the 

algorithm is generation of rules that involve 

inequalities. The algorithm works with the data that 

have large number of examples and attributes, can 

cope with noisy data, and can use numerical, nominal, 

continuous, and missing-value attributes. 

 

Keywords—Missing Value, Production Rule, Machine 

Learning, Imputation 

 

1. Introduction  
All Most of the real world databases are 

characterized by an unavoidable problem of 

incompleteness, in terms of missing or erroneous 

values. A variety of different reasons result in 

introduction of incompleteness in the data. Examples 

include Manual data entry procedures, incorrect 

measurements, equipment errors, and many others. 

Existence of errors, and in particular missing values, 

makes it often difficult to generate useful knowledge 

from data, since many of data analysis algorithms can 

work only with complete data. Therefore different 

strategies to work with data that contains missing 

values and to impute or another words fill in missing 

values in the data are developed. 

      

Data quality is a major concern in Machine Learning 

— ML — and other correlated areas, such as Data 

Mining and Knowledge Discovery from Databases i.e. 

KDD. Despite the frequent occurrence of missing data 

in real world data sets, ML algorithms handle missing 

data in a rather naive way. Missing data treatment 

should be carefully thought, otherwise bias might be 

introduced into the knowledge induced. In most cases, 

data sets attributes are not independent from each other. 

Thus, through the identification of relationships among 

attributes, missing values can be determined. 

Imputation is a term that denotes a procedure that 

replaces the missing values in a data set by some 

plausible values. One advantage of this approach is that 

the missing data treatment is independent of the 

learning algorithm used. This allows the user to select 

the most suitable imputation method for each situation. 

In general two groups of algorithms used to 

preprocess databases that contain missing values can be 

distinguished. First group concerns unsupervised 

algorithms that do not use target class values. Second 

group are supervised algorithms that use target class 

values, and which are most commonly implemented by 

using supervised ML algorithms [6].The unsupervised 

algorithms for handling missing data range from very 

simple methods like Mean imputation to statistical 

methods based on parameter estimation are used to 

impute the values. 

The objective of this work is to analyses the 

performance of the Hot-Deck imputation Algorithm 

and CLIP4 algorithm   as an imputation method. The 

first method is unsupervised learning method which 

refers to the problem of trying to find hidden structure 

in unlabelled data. Since the examples given to the 

learner are unlabelled, there is no error or reward signal 

to evaluate a potential solution. The other method is a 
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Supervised learning method in which the data model is 

used to classify examples into a set of predefined 

classes, which in case of missing value imputation are 

just all distinct values of an attribute that has missing 

values. Second, during the testing step, the generated 

model is used to impute missing data for the testing 

data.  

 

2.  Hot-Deck imputation Algorithm [4] 
Hot-deck imputation is a means of imputing data, 

using the data from other observations in the sample at 

hand. This paper deals with a method of imputation we 

used for the Survey of Adults on Probation. In this 

method, we first attempt to impute race based on other 

variables in an observation. We impute the remaining 

missing race data, and age and gender, using the same 

variable in prior or latter observations in the data set. 

This method uses macro variables to subset the data 

into groups within which imputation is done. It also 

uses arrays to keep track of values to use for 

imputation. 

Database used for execution of this algorithm is the 

Survey database of Adults on Probation based on a 

sample of prisons from across the country. Inmates 

were selected using a roster filled out by a probation 

officer for the given prison. Each prison was considered 

a group (or ctrlnum), for imputation purposes. The 

probation officer filled out a questionnaire for each 

inmate. The questionnaire was later compared to one 

completed by the inmate. The imputation discussed 

here was for the data missing from the questionnaire 

filled out by the probation officer. 

    The imputation requirements for SAP are based 

on the data we need to impute, and the survey sample 

design. 

1. We impute age, race and gender independently. 

2. For race, we first try to base imputation on other  

    Data   (e.g.ethnicity) for the same person. 

3. We impute all remaining missing values using  

    only "good"  (Unimputed) data for another person 

    in the same group, or  Ctrlnum. 

4. We use each "good" data value only once for  

    imputation. 

5. We work backwards over the ctrlnum then, if  

    necessary, we  work forwards. 

6. If no "good" data can be used from within the  

   ctrlnum, we assign some type of "out of range"  

   value. 

 

            The imputation process is accomplished 

using four successive steps, taking into account the 

above requirements. First, we produce a data set 

containing the number of persons per ctrlnum. Next, we 

create macro variables for the ctrlnums, and number of 

persons per ctrlnum, using the output from the first 

step. As the first step in the actual imputation, we 

attempt to resolve race based on other data for the same 

person if possible. We finally use hot-deck imputation 

to fill in the remaining data, where possible. This is 

accomplished by first creating the necessary data and 

flag arrays for age, race and gender. For race, we create 

a new temporary flag array, so we can retain new race 

variable imputations. Finally, we work backwards and 

then forwards through a given ctrlnum, to impute data, 

by evaluating the data for other persons in the ctrlnum. 

Further details on these principles, including 

imputation through data step concepts, are given below. 

            To produce a data set containing the number 

of persons per ctrlnum, we "set" the original data set 

"by" ctrlnum. The data set is sorted by ctrlnum. Within 

each ctrlnum, we use a counter for the number of lines 

encountered (numlines), using first. Ctrlnum to 

initialize numlines. We retain the previous value with 

each datastep iteration, and output to the new data set 

only for the last. ctrlnum. In this way, we produce a 

new data set (sap1ctl). This data set contains one 

observation for each ctrlnum, with two variables: 

ctrlnum, and total number of persons in the ctrlnum, 

numlines. Next, we create macro variables for the 

above two variables and number of ctrlnums. Using a 

null datastep, we SET sap1ctl and use the call symput 

routine to create the macro variables &&ctrlnum&i and 

&&line&i for the ith observation in sap1ctl. On the last 

iteration of this datastep we again call the symput 

routine to create &n, the macro variable for the total 

number of ctrlnums encountered. The code for this 

section of the program is given below.  

 

 
 

    Table 1. Sample Database 
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The overall imputation process is done using a 

macro, "subseta", within which we work with each 

ctrlnum, one at a time. This is done with a %do loop 

using the macro Variable &n, defined above, for the 

number of ctrlnums in the sample. The last step in this 

macro is a proc append, which accumulates the 

component data sets for ctrlnums into a final dataset, 

sap1imp. Because we're using a PROC APPEND, if it 

is necessary to rerun the program,sap1imp must be 

deleted beforehand, since it is the base data added to, 

during the procedure. 

The first step in the imputation process is to attempt 

to resolve race based on other data for an observation. 

First, we subset the original data set, sap1e, BY 

ctrlnum, to get sap1e&i. We do this so we can use the 

automatic iteration indicator, _n_, in the next datastep 

in the race resolve process. In the next DATA step, 

using sap1e&i, we produce data sets of imputed race 

only (sap1r&i), and ctrlnum-level arrays of imputed 

race flags (sap1a&i). Each element in the array 

corresponds to a line where race has (or has not) been 

imputed. The final steps in the initial race resolve 

process are to MERGE sap1e&i with sap1r&i, and 

finally the resulting sap1e&i with sap1a&i. The code 

for this section of the program, the first part of the 

macro "subseta", is shown below. 

 

 
The remainder of the imputation process constitutes 

the hot deck portion, i.e., the part where we use the 

corresponding data from previous or latter observations 

in a given group. The first step in this part is to create 

ctrlnum-level arrays for race, age and gender, to be 

included on each person's observation. We use sap1e&i 

from the last step as input, and use ctrlnum as the BY 

variable. On each iteration, we feed the value of a 

demographic variable into the array, and RETAIN the 

values of the array over iterations. After the last case of 

a ctrlnum, we output. In this way, we obtain a new data 

set sap1b&i, containing one observation for each 

ctrlnum, with one variable for each of the elements in 

the three arrays. 

     The new version of sap1e&i resulting from this 

step contains the ctrlnum-level arrays for race, age and 

gender. We MERGE sap1b&i with sap1e&i from 

above, BY ctrlnum, to get a new version of sap1e&i, 

with an observation for each person. Each person 

observation has all values for all other persons in the 

ctrlnum, for each of the three demographic variables. 

The code for this section of the program is shown in 

below.  
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The next step is to create flags to indicate whether 

an observation has been used for imputation. This is 

done in the usual manner of creating arrays, and we 

will again RETAIN the value of each element over 

iterations. Because we have to RETAIN values, it is 

necessary to create a new "temporary" race array 

(trcfl{}). This is because variables created in previous 

data steps cannot be retained in the present one. See   

the code for this. 

 

For the hot-deck imputation of any of the three 

demographic variables, if the variable is blank, we 

work backwards, and then forwards through the 

ctrlnum,for _n_>1, until we find an acceptable value. 

We work forward only, if the blank value occurs for the 

first person in the ctrlnum. We use the same "insertion 

code" for each of the three possible success situations: 

for _n_>1, working backwards, and then forwards; and 

for _n_=1,working forward only. For each observation, 

we are "looping" over the elements of the "retained" 

flag arrays, so we know if a previous "good" 

observation's value has already been used. If we don't 

have success in a ctrlnum, we code an out of range 

value. We repeat the same imputation process for each 

of the three demographic variables in each datastep 

iteration. The code for this is given below. The code is 

shown for the variable AGE that for the other two 

variables is similar. 

 
 

An example of how the imputation process works is 

shown below, for ctrlnum "2001". Some of the AGE 

data in this example is fabricated, to more fully 

illustrate how the algorithm executes. I show the 

demographic variable of AGE only, for simplicity of 

observing the working process. This example contains 

basically four sets of imputations, three of which occur 
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within lines 001-014. The last set occurs for lines 075-

076. The first imputation occurs for line 001.Since we 

cannot work backward, we must take the AGE value 

for the next line, 002. The AGE value for line 004 can 

be imputed using that for line 003, so we use it. We 

must impute for lines 006-010 using the backward 

forward approach. Line 005 is the only one of the 

previous observations in the ctrlnum which has a 

"good" value of AGE which has not already been used 

for imputation. Therefore, its value is the only one of 

the beforehand ones we can use. For the remainder of 

the lines in the sequence (007-010), we work 

successively forward, using the AGE values from lines 

011-014, respectively. The last set of imputations for 

ctrlnum "2001" occurs for lines 075-076. These can be 

done using the simple "backward" approach. The AGE 

values for lines 074 and 073 are assigned to lines 075 

and 076, respectively. 

Table 2. Database Before and after Imputation 

 

CTRLNUM 2001 – Before Imputation 

 
 

 

 

 

2. CLIP4 Algorithm [1]   

CLIP4 is a hybrid algorithm that combines ideas of two 

families of inductive ML algorithms, namely the rule 

algorithms and the decision tree algorithms. It uses rule 

generation schema from AQ algorithms. It also uses the 

tree growing technique that divides training data into 

subsets at each level of the tree, and pruning. To 

describe the algorithm we first introduce some 

notations. Let us denote the set of all training examples 

by S. The sets of the positive examples, SP, and SN the 

negative examples, SN, must satisfy these properties: 

Sp U Sn= S, SP ∩SN= Ǿ, SN# Ǿ, and SP # Ǿ. The 

positive examples are those that describe the class for 

which we currently generate rules, while the negative 

examples are all remaining examples. 

The CLIP4 algorithm generates rules in the form of: 

IF(s1 ^ _ _ _ ^ sm)THEN class = classi; where si =[aj # 

vj] is a selector. We define SP and SN as matrices 

whose rows represent examples and columns 

correspond to attributes. Matrix of the positive 

examples is denoted as POS and the number of positive 

examples by NPOS, while matrix and the number of 

negative examples as NEG and NNEG, respectively. 
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Positive examples from the POS matrix are described 

by a set of values: posi[j] where j = 1 . . . K, is the 

column number, and i is the example number (row 

number in the POS matrix). The negative examples are 

described similarly by a set of negi[j] values. CLIP4 

also uses binary matrices (BIN) that are composed of K 

columns, and filled with either 1 or 0 values. Each cell 

of the BIN matrix is denoted as bini[j], where i is a row 

number and j is a column number. These matrices are 

results of operations performed by CLIP4, and are 

modeled as the SC problem.  

The positive data is partitioned into subsets of similar 

data in a decision-tree like manner. Each node of the 

tree represents one data subset. Each level of the tree is 

built using one negative example to find selectors that 

can distinguish between all positive and this particular 

negative example. The selectors are used to create new 

branches of the tree. During tree growing, pruning is 

used to eliminate noise from the data, to avoid its 

excessive growth, and to reduce execution time. A set 

of best terminal subsets (tree leaves) is selected using 

two criteria. First, large subsets are preferred over small 

ones since the rules generated from them can be 

―stronger‖ and more general, while all accepted subsets 

(between them) must cover the entire positive training 

data. Second, we want to use the completeness 

criterion. To that end, we first perform a back-

projection of one of the selected positive data subsets 

using the entire negative data set, and then we convert 

the resulting matrix into a binary matrix and solve it 

using the SC method. The solution is used to generate a 

rule, and the process is repeated for every selected 

positive data subset. 

A set of best rules is selected from all the generated 

rules. Rules that cover the most positive examples are 

chosen, which promotes selection of general rules. If 

there is a tie between ―best rules‖ the shortest rule is 

chosen, i.e. the rule that uses minimal number of 

selectors.  

 
 

Fig.1. The low-level example of rule generation 

 

Fig 2. The high-level example of rule generation by 

CLIP4 
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3. Comparative Study of Experimental   

    Result 

 
The The experiments were performed using different 

datasets and the different missing data imputation 

algorithms. The selected datasets originally do not 

contain missing values. The missing data were 

introduced artificially, using the MCAR model, into 

each of the datasets. As a result missing values were 

introduced into all attributes, including class attribute. 

The missing data was artificially generated to enable 

verification of the quality of imputation, which was 

performed by comparing the imputed values with the 

original values. Each dataset is described by a set of 

characteristics. The selected datasets cover entire 

spectrum of values for each of the characteristics. 

Following graphs shows the performance of different 

imputation algorithm on different dataset for different 

characteristics. 

 
 

Fig.3. Accuracy against amount of missing values 

 

 
 Fig.4. Normalized rank of the average imputation 

accuracy versus the number of example 

 
Fig.5. Normalized rank of the average 

imputation Accuracy vs. the average number of 

examples / class 

 
Fig.6. Normalized rank of the average imputation 

accuracy vs. number of attributes 

 

accuracy versus the number of examples, Normalized 

Fig.3 to Fig.6 compare two missing data imputation 

methods based on the Accuracy against amount of 

missing values, Normalized rank of the average 

imputation rank of the average imputation accuracy vs. 

the average number of examples / class and Normalized 

rank of the average imputation accuracy vs. number of 

attributes. The normalized rank enables side by side 

comparison of the imputation methods, which is 

independent of the quality of the considered datasets. 

Figure above shows that the unsupervised imputation 

methods are more stable comparing to the supervised 

methods. The main reason is that the supervised 

methods must have a training dataset of proper quality 

to develop an accurate model that is used to impute the 

missing information. On the other hand, the 
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unsupervised imputation methods are less sensitive to 

the amount of missing values. The results of the 

experiments show the superiority of supervised 

imputation methods. We also note that the 

unsupervised methods are more stable with respect to 

increasing amount of missing information. 

          Their performance decreases slower than the 

performance of the supervised methods. It can be 

expected that their performance may be better for 

databases with large amounts of missing values. The 

results also indicate that unsupervised imputation 

methods do not depend on the size of the input data, 

both in terms of the number of the attributes and the 

number of examples. On the other hand, the supervised 

imputation methods improve their performance with 

the increasing size of the input data. 

 

4. Conclusion 
        Supervised method like CLIP4 perform better for 

databases with large amounts of missing values. 

Unsupervised imputation methods do not depend on the 

size of the input data, both in terms of the number of the 

attributes and the number of examples. On the other 

hand, the supervised imputation methods improve their 

performance with the increasing size of the input data. 

          Unsupervised imputation methods are more stable 

comparing to the supervised methods. The main reason 

is that the supervised methods must have a training 

dataset of proper quality to develop an accurate model 

that is used to impute the missing information. On the 

other hand, the unsupervised imputation methods are 

less sensitive to the amount of missing values. The 

results of the experiments show the superiority of 

Supervised imputation methods.  
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