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Abstract - The effect of Coriolis force and gravity modulation 

of small amplitude on a weak electrically conducting 

Boussinesq- Stokes suspension is investigated by using regular 

perturbation method to arrive at an expression for the 

correction Rayleigh number.  The Venezian approach is 

adopted in arriving at the critical Rayleigh and wave number 

for small amplitudes of gravity modulation.  The effect of role 

of Couple stress parameter, Taylor number and Hartmann 

number on the onset of convection is studied.  The system is 

most stable with respect to gravity modulation. 
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INTRODUCTION 

 The last century saw a thorough understanding of 

the principles of fluid mechanics and knowledge of how to 

apply them to many practical problems. Aeronautical, 

biomedical, civil, marine and mechanical engineers as well 

as astrophysicists, geophysicists, space researchers, 

meteorologists, physical oceanographers, physicists and 

mathematicians have used this knowledge to tackle a 

multitude of complex flow phenomena.  An important class 

of fluid differs from that of Newtonian fluids, in that the 

relationship between the shear stress and flow field is more 

complicated. Such fluids are non-Newtonian. 

 Couple  stress  is  the  consequence  of  assuming  

that  mechanical  action  of one part of a body on another 

across a surface is equivalent to a force and moment 

distribution. Couple stress fluid theory developed by 

Stokes[1], is one among the polar fluid theories which 

considers couple stresses in addition to the classical 

Cauchy stress. It is the simplest generalization of the 

classical theory of fluids which allows for polar effects 

such as the presence of couple stresses and body couples. 

This fluid theory is discussed in detail by Stokes[2] in his 

treatise “Theories of fluids with microstructure” wherein he 

also presented a list of problems discussed by researchers 

with reference to this theory. The first paper on Rayleigh-

Benard situation in Boussinesq-Stokes Suspension is by 

Siddheshwar and Pranesh[3]. They investigated the effect of 

Raleigh–Benard situation in Boussinesq–Stokes 

suspensions using both linear and non-linear stability 

analyses. Some of the problems of recent interest can also 

be seen in Neduvinamani et al[4]. 

Convection in porous media has recently been 

studied since it has many practical, especially biological 

significance. Bhadauria B. S, Sherani and Md. Aalam[5] 

investigated the effect of gravity modulation on the onset 

of Darcy convection in a rotating porous medium. It was 

concluded that gravity modulation delays the onset of 

convection as does rotation. T. Sivakumar and S. 

Saravanan[6] investigated the effect of Gravity Modulation 

on the Onset of Convection in a Horizontal Anisotropic 

Porous Layer. A linear stability theory was used to 

investigate the effect of gravity modulation on the onset of 

convection in a homogeneous anisotropic porous layer 

heated from above. The Brinkman model with anisotropic 

permeability was considered. Free-convection flow past an 

infinite vertical porous plate with periodic suction and 

gravity modulation was investigated by S.  Baljinder[7]. The 

double-diffusive convection in a horizontal layer of 

nanofluid under rotation in a porous medium was studied 

by Rana et al.[8] using the Darcy model.  For the case of 

stationary convection, it was observed that rotation and 

solute gradient have a stabilizing effect on the system.  

Buoyancy-driven convection in microgravity 

resulting from gravity fluctuations has gained considerable 

attention owing to the possibility of conducting research in 

the low gravity environment of space, and because of 

interest in the fundamental effects of gravity modulation on 

fluid systems. The effect of such forces on fluid motion is 

known as Gravity Modulation or g-jitter induced flow and 

it comes from crew motions, mechanical vibrations (pump, 

motors, and excitations of natural frequencies of space craft 

structure), atmospheric drag, solar drag, earth's gravity 

gradient and other sources.  

         An extensive overview of the above and other sources 

of unsteady gravitational accelerations, derived from 

estimates based on measurements in the space lab 

engineering model, have been documented by Gresho and 

Sani[9]. The fluctuating accelerations act on density 

gradients in the fluid caused by heat and/or mass transfer 

between the fluid and boundaries, producing convective 
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motions. These motions may increase heat transfer 

significantly. Previous studies of buoyancy-induced fluid 

motion and heat transfer resulting from gravity modulation 

under microgravity have focused on a few basic fluid 

systems, as well as some specific applications. If an 

imposed modulation can destabilize another stable state, 

then there can be a major enhancement of heat, mass and 

momentum transport. Consequently, this has led to 

research into the possibility of processing materials in 

space where the low-level background gravitational 

acceleration can eliminate buoyancy driven convection. 

However, research has shown that time-dependent 

accelerations or g-jitter of substantial amplitude resulting 

from orbital maneuvers and inherent mechanical vibrations 

may alone induce buoyant convection.  It is also of interest 

to understand how vibration might be used to control 

convective instabilities.   

 
 

MATHEMATICAL FORMULATION 

Equation of continuity:  
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Equation of conservation of energy:
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Equation of state: 

 )(1 00 TT  
          (4) 

where, q  is the velocity, p pressure, H  magnetic field, B magnetic  induction,  T  temperature,   density , g  acceleration 

due to gravity,  thermal conductivity,  coefficient of thermal expansion,
0  reference density,

0T  reference temperature, m  

magnetic permeability,  dynamic viscosity,   couple stress viscosity, µeff effective viscosity, 𝜎 electrical conductivity,   

porosity and t time. The above equations are solved for free-free isothermal boundary conditions. The gravity modulation is 

considered as   𝑔⃗(𝑡) = 𝑔0(1 + 𝜀𝑐𝑜𝑠Ω𝑡)𝑘̂, where 𝜀 is the small amplitude and Ω is the frequency. 

Initially we assume that the fluid is at rest and is described by 
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When these quantities are substituted in the governing equations we get the following set of equations: 
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Solving eqn (3) using the boundary condition 0TTb   at z=0  and 1TTb    at z=d  we get,   
0Tz

d
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where,  )( 10 TTT 
 

Linear Stability Analysis 

Let the basic state be disturbed by an infinitesimal thermal perturbation. We now have, 

    ',',',',' 

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The prime indicates that the quantities are infinitesimal perturbations. 

Substituting these into governing equations and using the basic state equations, we get linearized equations governing the 

infinitesimal perturbations in the form: 
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The perturbation equations are non-dimensionalized using the following definitions: 
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Eqn (14) is used to get a set of dimensionless equations given below: 
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Where the non-dimensional parameters 
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are Prandtl number, Taylor number, Darcy-Rayleigh number, Coupling stress parameter, Hartmann  number, Darcy number 

respectively.  

On simplification, 
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Each of Tn  is required to satisfy the boundary conditions. The marginally stable solution of the problem is the general solution 

of the above equation i.e. ,)sin( )(
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The consequent equations when solved gives the correction Rayleigh number, R2c 
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RESULT AND DISCUSSIONS 

The value of R obtained by this procedure is the eigenvalue corresponding to the eigen function W 

that, though oscillating, remains bounded in time. Since R is a function of the horizontal wavenumber a 

and the amplitude of perturbation𝛿, we have  𝑅(𝑎, 𝛿) = 𝑅0(𝑎) + 𝛿2𝑅2(𝑎) . It was shown by Venezian[10] 

that the critical value is determined by 𝑂(𝛿2), by evaluating 
0R  and 

2R  at
 0a a . It is only when one 

wishes to evaluate 
4R  that 

2a must be taken into account where 
2a a minimizes

 2R .To evaluate the 

critical value of 
2R  one has to substitute 

0a a in R2, where 
0a  is the value at which 

0R given by equation 

is minimum. 
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Fig 1: Plot of correction Rayleigh number R2c  versus   for different values of  C 
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Fig 2: Plot of correction Rayleigh number R2c  versus   for different values of   M2 

 

𝑅2𝑐 

𝜔 

 

𝑀2 = 50,25,10 

𝐶 = 0.1, 𝑇𝑎 = 100, 𝑃𝑟 = 10, 𝐷𝑎 = 0.5 

𝑀2 = 10,  𝑇𝑎 = 100, 𝑃𝑟 = 10, 𝐷𝑎 = 0.5 

C = 0.1, 0.3, 0.5 ω 
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Fig 3: Plot of correction Rayleigh number R2c  versus   for different values of   Ta 
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Fig 4: Plot of correction Rayleigh number R2c  versus   for different values of Da 

 
We make an analytical study of the effect of Coriolis force 

and gravity modulation on the onset of convection in a 

weak electrically conducting couple stress fluid in a porous 

medium. Double diffusive convection in porous medium is 

studied under Coriolis force, gravity modulation and the 

inhibition of convection by suspended particles. It should 

be noted that gravity modulation affects the entire bulk of 

fluid between the boundary plates.  

 

The analysis presented in this dissertation is based 

on the assumption that the amplitude of the gravity 

modulating is small. The validity of the results obtained 

here depends on the value of the modulating frequency  . 

When 1 , the period of modulation is large. The 

gravity modulation affects the entire volume of the fluid, 

resulting in the growth of the disturbance. On the other 

hand, the effect of modulation disappears for the large 

frequency. This is due to the fact that the buoyancy force 

𝑇𝑎 = 500, 300, 100 

𝐶 = 0.1, 𝑀2 = 10, 𝑃𝑟 = 10, 𝐷𝑎 = 0.5 

𝑅2𝑐 

𝜔 

𝑅2𝐶  

𝜔 

2,1,5.0aD  

 

C = 0.1, Ta = 0, Pr = 10 , 𝑀2 = 10 
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takes a mean value leading to equilibrium state of the 

unmodulated case. In view of this, we choose only 

moderate value of   in our study. It must be noted here 

that because of the presence of suspended particles in the 

fluid and according to Einstein’s relation for viscosity, the 

value of Prandtl number is taken higher than those of clean 

fluid. 

 

CONCLUSION: 

  

Figure 1 is the plot of correction Rayleigh number R2c  

versus   for different values of   C. We see that as C 

increases the value of R2c becomes more and more 

negative. C is the indicative of the concentration of the 

suspended particles.  Therefore, the couple stress parameter 

stabilizes the system. 

Figure 2 is the plot of correction Rayleigh number 

R2c  versus   for different values of   M2. From the figure 

we observe that with increase in M2, R2c   becomes more 

negative. Magnetic field induces viscosity into the fluid 

and the magnetic lines are distorted. These magnetic lines 

hinder the growth of disturbances.  

 Figure 3 is the plot of correction Rayleigh number 

R2c  versus   for different values of   Ta. We note that as 

Ta increases, R2c  increases, that is it becomes less negative. 

This implies that rotation causes convection to delay.  

 Figures 4 is a plot of correction Rayleigh number 

R2c  versus   for different values of  Da.  From the graph 

it is clear that the Darcy number causes a delay in 

convection thus stabilizing the system. 
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