
An Approach to Detect Clones in Class Diagram

Based on Suffix Array

Amandeep Kaur,

Computer Science and Engg.

Department,

BBSBEC Fatehgarh Sahib, Punjab,

India.

Manpreet Kaur ,

Computer Science and Engg.

Department,

 BBSBEC Fatehgarh Sahib, Punjab,

India.

Harjot Kaur,

Computer Science and Engg.

Department,

BBSBEC Fatehgarh Sahib,

 Punjab, India.

Abstract— Copy-paste is becoming a very usual practice in

software development. Copying a code in one or more place

without any change is mainly known as software cloning and the

pasted part of code is called clone. Clones in code increase the

maintenance cost, resource requirements and make code more

error prone. So detection and removal of clone is very important

for source code. Models are also affected by the cloning problem.

Model Driven Engineering now becomes a standard and

important framework in software research area. Unpredicted

copy of model elements leads to various difficulties. Models

consists design level similarities and are in the same way harmful

for software maintenance as code clones are. Therefore, clones

are required to be identified from models. Class diagram is the

main aspect of modeling and used to describe the static view of

an application. Class diagram contains redundant elements

which increase complexity of the class diagram as well as

maintenance effort. Code quality can be improved if clones are

detected from the class diagram. Current work aims to find

clones in class diagram using an approach based on suffix array.

Firstly, diagram is encoded as XML file and then tokens are

extracted. Suffix array is used to compare tokens and matched

tokens are known as clones.

Keywords— clone; code clones; model clones; class diagram;

complexity; Suffix array.

I. INTRODUCTION

According to Rattan et al. [15] and Roy and Cordy

[19], repeating existing code and pasting them with

or without changes into different sections of code is a

common process in software system development. The copied

code is termed as code clone and therefore the process is

named code cloning.

Code clones have high impact on software quality. Biggest

difficulty in code clones is that, these are only linked by their

similarity and do not have any implicit or explicit link

between them which makes software code clones difficult to

detect [10]. When we make changes or updations at one place,

other similar things remains unchanged accidently that

deteriorates the code quality. Therefore, it is very important to

find related fragments. However, Storrle [20] had mentioned

code duplication or cloning as a form of software reuse and

had concluded that software code can be shrinked to a

percentage on doing exact matching. In today’s technology,

software reuse is highly supported by open source software.

A. Reasons for Software clones

There are various reasons due to which clones occurs. Rattan

et al. [15] and Roy and Cordy [19] mentioned different

reasons as follows:

 Lack of time: Programmers are bound to do copy-

paste to meet hard time constraints.

 System’s Complexity: Adopting a new system or

understanding a complex system only promotes

coping existing functionality, code and logic.

 Language loopholes: Due to limitations in

programming language, programmers are forced to

do copy paste. Many of the languages lack inherent

support for code reuse. These loopholes become

limitations of a programmer.

 Fear of adaptability of fresh code: Rattan et al. [15]

identified that for programmer adopting a new ideas

always have fear of getting wrong and lengthy code,

which will again lead to reuse of existing code.

 Lack of abstraction: Programmer ignores or avoids

abstraction of program due to time limits. Delay

refactoring will give rise to high maintenance cost.

B. Advantages and disadvantages of clones

There are some positive points considered by Rattan et al. [15]

and Storrle [20] to have clones:

 Sometimes use of templates are encouraged in

programming paradigms.

 Hard time constraints have only option to use the

existing functionalities.

 Overhead of procedure calls promotes code

duplication.

Rattan et al. [15] and Storrle [20] had mentioned problems

associated with clone presence, some of them are following:

 High maintenance cost and efforts.

 Increased probability of bug propagation.

 Wrong effect on design.

 Wastage of resources.

 Bad impact on system understanding.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

1

The rest of the paper is organized as follows. Section II

presents the background. In Section III, we have described the

methodology to detect clones in class diagram using suffix

array. In Section IV results are discussed. Section V gives the

related work and Section VI concludes the current work and

gives future directions.

II. BACKGROUND

A. Cloning in Models

According to Storrle [20] and Roy and Cordy [18], as the

source code clone detection is large problem for code based

development, the same problem also occurs for copied parts of

models in model based development. Due to significant

difference between programming languages code and models,

clone notations and algorithms are difficult to directly transfer

between them. Unexpected overlaps and duplications in

models are termed as model based clones [11].

The various challenges in detecting model clones mentioned

by Storrle [20] are:

 To derive a practical definition of model clone.

 To develop and implement an algorithm to detect

model clones.

B. Code Clones versus Model Clones

 Identification: Source code are easily identified by

names and procedures used whereas models use internal

identifiers which are equal but not identical.

 Structure: Code is represented as a directory tree of text

files or long characters of tokens, on other side models

have graph like structure. Tools are used to represent

models, so it is important to consider tool-specific

representation into account.

 Type Categorization: Roy et al. [17] and Storrle [20]

mentioned different types of clones as given in Table 1.

Table1. Types of code clones and model clones

 Code Clones Model Clones

Type I:
Exact

Clone

A copy that is
identical except most

of changes in

whitespaces and
comments.

Type A:
Exact

model

 clone

A copy that is
identical except from

secondary notations

or internal identifiers.

Type II:

Renamed

Clone

A copy with consistent

changes to identifiers,

variables types or
functions names.

Type B:

Modified

model
clone

A copy with changes

to the element names

attributes and parts.

Type III:

Parameter
clone

A copy allowing

changes, additions or
removal of statements.

Type C:

Renamed
model

clone

A copy that allows

actual changes in
additions or removal

of parts.

Type IV:

Semantic
clone

A copy of code that

performs same
function but different

syntactic variants are
used.

Type D:

Semantic
model

clone

A copy in content,

those are due to
model part copying

or language
constraints.

C. Various Clone Detection Techniques

There are various clone detection techniques available. The

only difference between these techniques is the granularity

level of clone. Rattan et al. [15] and Roy et al. [17] proposed

some of them as follows:

1) Text-Based Clone Detection: In this technique, the

source program is taken as sequence of lines. As

discussed by Roy et al. [17], two code fragments

which are similar in terms of texts or strings are

known as code clone. Tools available for text based

detection are: Duploc, DuDe(line based comparison),

Simian(detection in different programming

languages), SDD (Clone detection in large systems),

NICAD (Hybrid clone detector with high precision

and recall).

2) Token-Based Clone Detection: Tokens are

considered better for comparison according to Roy

and Cordy [23]. Source program is transformed into

sequence of tokens for comparison. Suffix tree and

Suffix array is used mostly as data structure in token

based detection. Suffix arrays are considered prior to

suffix tree in term of space requirements. CCFinder

is a tool which uses suffix tree to find similar tokens.

CP-Miner is another token based tool that detects

structural clones with high abstraction repeated

tokens. Suffix array is widely accepted by many

other tools like SHINOBI.

3) Tree Based Clone Detection: Rattan et al. [14, 15]

mentioned that tree based clone detection transforms

the source code into tree structure. Similar subtrees in

the tree are searched using tree matching techniques

and reported as clones. Addition or removal of sub-

parts i.e. Type 3 clones are easily detected by tree

based clone detection.

4) Graph Based Clone Detection: Pham et al. [12] and

Rattan et al. [15] mentioned that the semantic

information of source code is represented by Program

Dependency Graph (PDG). On obtained PDG,

subgraph isomorphism is applied to detect similarity.

Duplix and PDG-DUP are the tools for finding

similar subgraphs.

5) Metrics based clone detection: Various similarity

based metrics are applied to suitable form of data

structures to perform clone detection. CLAN uses

metrics obtained from AST of source code [15].

III. RESEARCH METHODOLOGY

Class diagram is created using UML modeling tool

MagicDraw. The model is converted to XML document. The

document is parsed to extract the tokens (i.e meaningful

information) which are then matched using suffix array.

Similar tokens are categorized as clones. Clone analysis is

carried out to get numbers of clones and number of instances

of each clone. Clusters, the group of clones repeated, are also

reported with their occurrence value. Clone coverage and

percentage of class similarity is also calculated from the clone

detection results. Fig.1 gives the overview of methodology

followed.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

2

Fig.1 Steps of the Methodology

Fig.2 shows us with the interface of our tool. In step 1,

we browse the XML file which is representation of class

diagram from which we want to detect clones. Then

using button ‘Start Clones Detection’, clone detection

process is started. To check the report, button named

‘View Report’ is used. ‘Exit’ button can be used to exit

the tool.

Fig.2 Interface of tool

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section discusses the results obtained after clone

detection in UML class diagram. The methodology is

explained in section 3. The class diagram of library

management system is taken as a subject system which has 31

classes with 271 attributes and 62 operations. This UML class

diagram is given as input to the clone detection approach

based on suffix array. The clone detection results are

presented on the basis of following parameters:

a) Clone Candidates and their instances.

b) Clone Clusters

c) Clone Coverage

d) Class Similarity

e) Memory

f) Runtime

A. Candidates

This parameter gives the number of clones detected from class

diagram. The tokens are extracted from XML file of class

diagram of library management system which are compared

using clone detection approach based on suffix array. Similar

tokens are reported as clones.

Clone Candidates: 65

1) Clone Instances: Clone instances parameter specifies

the total number of occurrences of each clone which are

present in various classes. Fig.3 shows the clones with

their respective instances. Clones are differentiated from

each other by using clone id. Clone id is an integer

number assigned to each detected clone to give unique

identification. Fig.3 shows clone with clone id 50 has

maximum number of instances i.e. 26

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

N
o

. o
f

In
st

an
ce

s

Clone ID

Clone Details

Fig.3 Instances of various Clones

Table 2 provides us information about clones and their

instances exist in various ranges. It has been clearly shown

that 36 clones have 2 to 6 instances and there are 7 clones

having more than 17 instances.

Table 2. Number of Clones and their Instances

Clone Instances No. of Clones

2-6 36

7-11 18

12-16 4

>17 7

B. Clone Clusters

Clone cluster defines the group of clones repeating together in

various classes. Clusters are helpful to find maximum

similarity in the classes. Table 3shows various clusters with

their Id’s, length (number of clones in the cluster) and

instances (number of occurrences). Results show that the

biggest cluster having 14 elements is repeated in two classes.

Most of the clusters are of length two. Cluster having Cluster

id 20 is of length three which is repeating in 25 classes.

Cloned elements present in clone cluster can be put into super

class to remove the redundancy in various classes. Fig.4

shows graph representation of clone clusters.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

3

Table 3.Clone Cluster Details

Cluster ID Cluster Length No. of Instances

1 14 2

2 8 2

3 3 2

4 4 2

5 2 2

6 7 2

7 2 2

8 11 2

9 2 2

10 2 3

11 2 3

12 3 3

13 13 8

14 2 8

15 8 8

16 7 9

17 6 10

18 2 21

19 2 22

20 3 25

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19

N
o

. o
f

In
st

an
ce

s

Cluster ID

Clone Cluster Details

Fig.4 Clone clusters with their instances.

C. Clone Coverage

Clone coverage parameter gives the percentage of clones

associated with a class. This parameter helps us to know the

extent of cloning in various classes of our subject system.

Table 4 shows clone coverage of each class. Clone coverage is

calculated from cloned elements to the total elements of the

class.

Results of clone coverage, as shown in Table 4 report

maximum clone coverage i.e. 90% in the class having class id

7 and minimum clone coverage .04% in class with class id 27.

It has been shown that there are four classes without clones i.e

0% clone coverage. Clone coverage helps us to check the

extent of cloning in each class.

Table 4. Clone Coverage

Class ID Clone Coverage

1 53%

2 57%

3 34%

4 48%

5 85%

6 62%

7 90%

8 76%

9 35%

10 69%

11 70%

12 72%

13 72%

14 72%

15 69%

16 76%

17 86%

18 52%

19 62%

20 73%

21 64%

22 73%

23 64%

24 71%

25 54%

26 72%

27 .04%

28 0%

29 0%

30 0%

31 0%

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

4

24

16

12
11

17

15

18

13

6

20

21
21

21

21

18

13

6

11

23
19

9

19

9

20

7

21

4
0
0

0

0

45

28

36

23

20

24

20
17
17

29

30

29

29

29

26
17

7

21

37

26

14

26

14

28
13

29

91

10

1

1

13

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7
8
9

10

11

12

13

14

15
16
17

18

19

20

21

22

23

24
25

26

27

28

29

30

31
Total Elements
Total Clones

Fig.5 Details of cloned elements w.r.t. total number of elements of class.

D. Class Similarity

Class similarity parameter defines the percentage of similar

tokens between two classes. Table 5 gives the detail about

percentage of similarity and number of classes lying in that

percentage. Maximum numbers of classes are 70 to 80 %

similar to each other. There is no class which is having more

than 90% similarity.

Table 5.Class Similarity between classes

Class Similarity No. of Classes

51% - 60% 7

61% - 70% 13

71% - 80% 21

81% - 90% 6

91% - 100% 0

Fig.7 Results summary

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

5

Fig.6 Class Comparison View

Fig.6 is the class comparison view showing the token

comparison between two classes and the matched tokens i.e.

clones between them.

E. Result Summary

As shown in interface of tool, after completing the clone

detection phase, report of results are prepared. Fig.7 is the

summary of result showing all the important fields. It presents

us with the number of clones, clone ID`s, number of clone

instances of each clone, Clusters with their elements and

number of instances. The report is very useful to summarize

the results.

Fig.7 Results summary

F. Memory

This parameter specifies the space used by the clone detection

approach.

Used memory: 38 MB.

G. Runtime

This parameter specifies the time taken by the clone detection

approach to give various results.

Run time: 253 sec.

V. RELATED WORK

Storrle [20] presented a formal definition of model clones,

fragments and clone group. He proposed a clone detection

algorithm for UML domain models. According to him, as

code clones are problem for code base development, model

clones are also increasing problems in model based

development. He proposed a model element heuristics and

clone detection algorithm based on detailed study of actual

model structures. He implemented the approach in MQlone tool.

According to the approach, UML models are seen as a set of

heavy nodes that carry major information not similar as graphs

with light nodes. Therefore, graph based clone detection

cannot be applied to the UML domain model.

He defined four heuristics to find the similarity. First is the

Name approach that looks for name similarity only but not

provides good detection results. Second heuristic is Name2, it

performed best in terms of quality and run time comparing all

kind of attributes not just name. Third is INDEX, that defines

similarity heuristics to apply on model elements but with

shorter identifier but it will not work for long identifiers and

XMI models. Last, INDEX-2 is defined which replace all the

identifiers with their element name before heuristics are

applied. In nutshell, NAME-2 provides the best result in terms

of precision and false positives. The study can be applied to

all kinds of UML models (e.g. Class diagrams, state machines,

activity diagrams). Small and medium sized models works

well with the approach, large models are yet to be run on the

approach.

Clones exist in software due to copy paste and hard time

constraints. Rattan et al. [15] presented the standard literature

review on code clone detection. Empirical evaluation of clone

detection tools and technique is presented with comparison.

They presented the study with nine different types of clones,

thirteen intermediate representations and twenty four match

detection techniques. The emphasis of the study is to increase

awareness of the potential benefits of software clone

management. The presented study firstly defines the current

status of clone detection in software field. They describe

various intermediate representations or transformation

techniques with code granularity levels e.g. set of statements,

set of tokens, set of methods, set of blocks, set of procedures.

Also various match detection techniques are defined with

clone granularity level. The most frequently occurring match

detection techniques are suffix tree, suffix array, metric and

feature vector clustering.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

6

They presented the list of tools with the methodology adopted

e.g. (CCFinder takes tokens as input and matching is carried

out with suffix tree). Comparison and evaluation of various

clone detection tools and techniques are done to identify an

efficient clone detector. They enlisted the tool comparison

with the outcome or results in terms of precision, recall, no. of

candidates, true negatives, false position, rejected candidates.

They have extended the study from code clone detection to

model based clone detection.

UML models are also affected by cloning. Rattan et al. [16]

introduced an approach to detect clones in UML models.

According to them, the motive behind this work is to attain

high level of abstraction in model driven software process to

avoid complexity and high rate of duplication in models due

to increasing size of models and to support the study of clone

detection in UML models. They have defined the definition,

background and general theories on model clones and model

clone detection. According to them, reasons of clones in

models are copy/paste, language limitation, complexity and

time constraints. Their proposed technique is scalable to

implement and only relevant tokens are extracted from XMI

file and are stored in tree. Only relevant clones are reported as

we are storing key elements of UML diagram. Future scope of

the study is to extend the prototypical implementation and

display the results of clone detection in more user friendly

manner. The proposed technique can be extended to large

class diagrams, state chart diagrams and activity diagrams [16].

Deissenboeck et al. [4] proposed an approach to automatically

identify duplicates in graphic models. The proposed tool is

applied on case study of BMW group. They have illustrated

various challenges raised when model clone detection is

carried out and also presented methods to address these

challenges. They proposed model clone detection algorithm,

which reports full names of affected model elements. The

Clone groups are inspected and accessed to find out the

relevance output.

The tool provides the model clone detection with the

integrated environment having visualizing effect of detection

results. Clone group is easily inspected and highlighted clone

instances with their location and extent are shown. They have

presented the technique to improve scalability of subsystem,

to improve relevance of the detected clones by providing

specific ranks and easy clone inspection.

Deissenboeck et al. [5], presented an approach for the

automatic detection of clones in large models. Their approach

is based on graph theory and is applied to graphical data flow

languages. They have taken the industrial case study MIN and

demonstrate the applicability of their approach on

Matlab/Simulink models. Matlab/Simulink models are widely

used in model-based development of embedded systems in the

automotive domains. In the case of embedded systems, main

part of the code is generated from the domain-specific

modeling languages. To support model based development

and maintenance, it is very essential to detect clones in models.

They proposed solution for the increasing size and complexity

of products that relies on model-based development methods.

Their technique contains an algorithm and corresponding tool

to identify similarity in a model based graphs having weight

based filtering heuristics that provide relevant output. Future

work is proposed to improve the results by fine tuning the tool

and algorithm. Further implementation have to be carried out

on larger case studies to get better understanding of strengths

and weakness of proposed algorithm.

VI. CONCLUSION AND FUTURE SCOPE

Large adaptability of model based development in software

field is promoting model based clone detection. In this work,

we are detecting clones in class diagram by using suffix array

and analyzing various results of clone detection.

The present work reports that class diagram contains number

of redundant elements. Similar attributes or operations present

in two different classes are known as clones. The result has

shown that there are number of clones present at multiple

places in the class diagram. These clones can affect quality of

source code generated from that class diagram and hence

increases maintainability. The result has shown that there are

clone clusters present in class diagram. Clusters are helpful to

get idea of clones repeated always together. These clone

clusters are good candidates for making super class so that

unnecessary redundancy can be removed from class diagram.

We report clone coverage which helps to know the extent of

cloning in various classes. Maximum clone coverage is 90%

and there are 4 classes having no clones. Class similarity is

also being calculated which reports that 21 classes of the

subject system are 71-80% similar.

So we can conclude that finding redundancy or clones from

the class diagram will help the developer to know the extent of

cloning in class diagram and clones can be removed to

improve the maintenance effort because maximum developers

interact with the system through diagrams only. Awareness of

clones will help in developing reusable mechanism. Hence it

is concluded that detecting clones in models reduces clones in

codes which reduces error and maintenance cost.

In future, our present work can be used to explore clone

detection in state chart, activity diagram and sequence

diagrams. We can also rate reported clones as relevant or

irrelevant so that maintainer can have more useful information.

Class diagram with large number of classes can also be taken

to check the working of our approach. Categorization of

clones into various types can also be done.

REFERENCES
[1] H.B. Abdul and S. Jarzabek, “Detecting Higher-level Similarity

Patterns in Programs” ESEC-FSE’05, ACM, Lisbon, Portugal,

2005.

[2] H.B. Abdul, S.J. Puglisi, W.F. Smyth, A. Turpin and S.

Jarjabek, “Efficient Token Based Clone Detection with Flexible

Tokenization” , ESEC/FSE’07, ACM, Cavtat Croatia, 2007.

[3] E.P. Antony, M.H. Alafi and J.R. Cordy, “An-Approach to

clone detection in Behavioral Models” Queen’s university,

Kingston, Canada, AAC-WCRE, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

7

[4] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler and B.

Schaetz, “Model Clone Detection in Practice”, IWSC`10, Cape

Town, South Africa, pp.37-44, 2010.

[5] F. Deissenboeck, B. Hummel, E. Juergens, B. Schatz, S.

Wagner, J.F. Giard and S. Teuchert, “Clone Detection in

Automotive model-Based Development” ICSE` 08,ACM,

Leipzig,Germany.pp.603-612, 2008.

[6] R. Falke, R. Koschke and P. Frenzel, “Empirical Evaluation of

Clone Detection Using Syntax Suffix Trees”, Empirical

Software Engineering, vol. 13, no. 6, pp. 601-643, 2008.

[7] B. Hummel, E. Juergens, and D. Steidl, “Index-Based Model

Clone Detection”, Proceedings of 5th International Workshop

on Software Clones, Honolulu, USA, pp-21-27, 2011.

[8] H.J. Lin and L.F. Peng, “Quick Similarity Measurement of

Source Code based on Suffix Array”, International Conference

on Computational Intelligence and Security” ,DOI

10.1109/CIS.2009.175, 2009.

[9] H. Liu, M. Zhiyi, L. Zhang and W. Shao, “Detecting

Duplications in Sequence Diagrams Based on Suffix Trees”

Software Institute, School of Electronics Engineering and

Computer SciencePeking University, Beijing , China.

[10] M. Kaur, D. Rattan, R. Bhatia and M. Singh, “Comparison and

Evaluation of Clone Detection Tools: An Experimental

Approach” CSI journal of computing, vol.1, no. 4, pp. 44-55,

2012.

[11] M. Kaur, D. Rattan, R. Bhatia and M. Singh, “Clone detection

in Models : an Empirical Study” , 3rd IBM Collaborative

Academia Research Exchange(I-CARE), New Delhi, India, Oct

2011.

[12] N.H. Pham, A. H, T.T. Nguyen, J.M. Nguyen, Kofahi and T.N.

Nguyen,“ Complete and Accurate Clone Detection in Graph-

based Models”, ICSE’09,Vancouver,Canada, IEEE, 2009.

[13] H. Petresen, “Clone Detection in Matlab Simulink Models”,

IMM-M.Sc, Berlin, 2012.

[14] H.C. Purchase, L. Colpoys, M. McGill, D. Carrington and C.

Britton, “UML class diagram syntax: an empirical study of

comprehension”, Australian Symposium on Information

Visualization, Sydney,vol.9, 2001.

[15] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection:

A systematic review”, Information and Software Technology

vol.-55, pp.1165-1199., 2013.

[16] D. Rattan, R. Bhatia and M. Singh, “ Model Clone detection

based on tree comparison”, IEEE , 2012.

[17] C.K. Roy, J.R. Cordy and R. Koschke, “Comparison and

Evaluation of Code Clone Detection Techniques and Tools: A

Qualitative Approach”, Science of Computer Programming,

vol.74, no. 7, pp. 470-495, 2009.

[18] C.K. Roy, J.R. Cordy and R. Koschke, “An Empirical Study of

Function clones in Open Source Software Systems”,

Proceedings of 15th Working conference on Reverse

Engineering, pp-81-90, 2008.

[19] C.K. Roy, J.R. Cordy and R. Koschke, “A Survey on Software

Clone Detection Resarch”, Technical Report 2007-541, Queen’s

University at Kingston Ontario, Canada, 2007.

[20] H. Storrle, “ Towards Clone Detection in UML domain

models”, DOI:10.1007/s10270-011-0217-9.

[21] T. Yamashina, K. H.Uwano, Y.Kamei. Fushida, M. Nagura, S.

Kawaguchi and H. Lida, “Shinobi: A Real Time Code Clone

Detection Tool for Software Maintenance”, nasa institute of

science and technology.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

8

