
An Approach to Enhance Security in Public

Cloud Environment using HCS

P. Abinaya1

P. Pavithra2

P. Suganya3

Dept of Information Technology Dept of Information Technology Dept of Information Technology

E.G.S.Pillay Engineering College E.G.S.Pillay Engineering College E.G.S.Pillay Engineering College

Nagapattinam, Tamilnadu,

 India.

Nagapattinam, Tamilnadu,

India.

Nagapattinam, Tamilnadu,

 India.

Abstract: Cloud computing is a representation of a movement

towards the intensive, large scale specialization. It not only

provide convenience and efficiency problems, but also create

great challenges in the field of data security and privacy

protection. To improve the security of information exchange

and storage over public clouds is achieved through encryption

and deduplication techniques. To encrypt data and key using

hybrid cryptosystems and OpenStack swift algorithm.

Keywords- Cloud Storage, Data Security, Deduplication,

Confidentiality

1 INTRODUCTION

Nowadays, the explosive growth of digital contents

continues to rise the demand for new storage and network

capacities, along with an increasing need for more cost

effective use of storage and network bandwidth for data

transfer

As such, the use of remote storage systems is gaining an

expanding interest, namely the cloud storage based

services, since it provides cost efficient architectures. These

architectures support the transmission, storage in a multi-

tenant environment, and intensive computation of

outsourced data in a pay per use business model.For saving

resources consumption in both network bandwidth and

storage capacities, many cloud services, namely Dropbox,

wuala and Memopal, apply client side deduplication ([5],

[10]). This concept avoids the storage of redundant data in

cloud servers and reduces network bandwidth consumption

associated to transmitting the same contents several times.

Despite these significant advantages in saving resources,

client data de duplication brings many security issues,

considerably due to the multi owner data possession

challenges [10]. For instance, several attacks target either

the bandwidth consumption or the confidentiality and the

privacy of legitimate cloud users. For example, a user may

check whether another user has already uploaded a file, by

trying to outsource the same file to the cloud.

Recently, to mitigate these concerns, many efforts have

been proposed under different security models ([3],[8],

[12], [13], [16]). These schemes are called Proof of

Ownership systems (PoW). They allow the storage server

check a user data ownership, based on a static and short

value (e.g. hash value). These security protocols are

designed to guarantee several requirements, namely

lightweight of verification and computation efficiency.

Even though existing PoW schemes have addressed various

security properties, we still need a careful consideration of

potential attacks such as Data Leakage and poison attacks,

that target privacy preservation and data confidentiality

disclosure.

This paper introduces a new cryptographic method for

secure Proof of Ownership (PoW), based on the joint use of

convergent encryption [15] and the Merkle- [11], for

improving data security in cloud storage systems, providing

dynamic sharing between users and ensuring efficient data

duplication.

Our idea consists in using the Merkle-based Tree over

encrypted data, in order to derive a unique identifier of

outsourced data. On one hand, this identifier serves to

check the availability of the same data in remote cloud

servers. On the other hand, it is used to ensure efficient

access control in dynamic sharing scenarios.

The remainder of this work is organized as follows. First,

Section II describes the state of the art of existing schemes,

introducing the general concept of PoW protocols and

highlighting their limitations and their security challenges.

Then, Section III introduces the system model. Section IV

present sour secure PoW scheme and gives a short security

analysis. Finally, a performance evaluation is presented, in

Section VI before concluding in Section VII.

II. RELATED WORKS AND SECURITY ANALYSIS

 The Proof of Ownership (PoW) is introduced by Halevi

[8]. It is challenge-response protocol enabling a storage

server to check whether a requesting entity is the data

owner, based on a short value. That is, when a user wants

to upload a data file (D) to the cloud, he first computes and

sends a hash value hash= H(D) to the storage server. This

latter maintains a database of hash values of all received

files, and looks up hash. If there is a match found, then D is

already outsourced to cloud servers. As such, the cloud

tags the cloud user as an owner of data with no need to

upload the file to remote storage servers. If there is no

math, then the user has to send the file data (D) to the

cloud.

This client side deduplication, referred to as hash-as-

aproof[16], presents several security challenges, mainly

dueto the trust of cloud users assumption.This Section

presents a security analysis of existing PoWschemes.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

1

A. Security Analysis

Despite the significant resource saving advantages, PoW

schemes bring several security challenges that may lead

tosensitive data.

 Data confidentiality disclosure – hash-as a-proof

schemes (e.g. Dropbox) introduce an important data

confidentiality concern, mainly due to the static proof

client side generation. For instance, if a malicious user has

the short hash value of an outsourced data file, he could

fool the storage server as an owner trying to upload the

requested data file. Then, he gains access to data, by

presenting the hash proof. As such, an efficient PoW

scheme requires theuse of unpredictable values of

verifications.

 Privacy violation – sensitive data leakage is a

critical challenge that has not been addressed by Halevi et

al.in [8].That is, cloud users should have an efficient way

to ensure that remote servers are unable to access

outsourced data or to build user profiles._ Poison attack –

when a data file D is encrypted on the client side, relying

on a randomly chosen encryption key, the cloud server is

unable to verify consistency between the uploaded file and

the proof value hash.In fact, given a pair (hashD;Enck(D)),

the storage server cannot verify, if there is an original data

file D, that provides a hash value hash. As such, a

malicious user can replace a valid enciphered file with a

poisoned file. So, a subsequent user looses his original

copy of file, while retrieving the poisoned version.

B. Related Works In 2002, Douceur et al. [4] studied the

problem of deduplication in multi-tenant environment. The

authors proposed the use of the convergent encryption, i.e.,

deriving keys from the hash of plaintext. Then, Storer et al.

[13] pointed out some security problems, and presented a

security model for secure data deduplication. However,

these two protocols focus on server-side deduplication and

do not consider data leakage settings, against malicious

users.

In order to prevent private data leakage, Halevietal. [8]

proposed the concept of Proof of Ownership(PoW),while

introducing three different constructions, in terms of

security and performances. These schemes involve the

server challenging the client to present valid sibling paths

for a subset of a Merkle tree leaves [11].The first scheme

applies erasure coding on the content of the original file.

This encoded version is the input for construction of the

Merkle tree. The second purpose pre-possesses the data file

with a universal hash function instead of erasure coding.

The third construction is the most practical approach.

Halevi et al. design an efficient hash family, under several

security assumptions. Unfortunately, the proof assumes that

the data file is sampled from a particular type of

distribution. In addition, this construction is given in

random oracle model, where SHA256 is considered as a

random function. Recently, Ng et al. [12] propose a PoW

scheme overencrypted data. That is, the file is divided into

fixed-size blocks, where each block has a unique

commitment. The hash-tree proof is then built, using the

data commitments. Hence, the owner has to prove the

possession of a data chunk of a precise commitment, with

no need to reveal any secret information. However, this

scheme introduces a high computation cost, as requiring

generation of all commitments, in every challenging proof

request. In [3], the authors presented an efficient PoW

scheme.

They use the projection of the file into selected bit-position

as a proof of ownership. The main disadvantage of this

construction is the privacy violation against honest but

curious storage server. In 2013, Jia et al. [16] address the

confidentiality preservation concern in cross-user client

side deduplication of encrypted data files. They used the

convergent encryption approach, for providing

deduplication under a weak leakage model.Unfortunately,

their paper does not support a malicious storage server

adversary.

C. Threat Model

For designing a secure client-side deduplication scheme,we

consider two adversaries: malicious cloud user and honest

but curious cloud server.

 malicious user adversary – the objective of a

malicious user is to convince the cloud server that

he is a legitimate data owner. That is, we suppose

that the adversary successes to gain knowledge of

an arbitrary part of D. This information is then

used as a challenging input to the POW protocol.

 curious cloud server adversary – this storage

server honestly performs the operations defined by our

proposed scheme, but it may actively attempt to gain the

knowledge of the outsourced sensitive data. In addition,he

may try to build links between user profiles and accessed

data files.

III. SYSTEM MODEL

Figure 1 illustrates a descriptive network architecture for

cloud storage. It relies on the following entities for the

good management of client data:

 Cloud Service Provider (CSP): a CSP has

significant resources to govern distributed cloud

storage servers and to manage its database servers.

It also provides virtual infrastructure to host

application services. These services can be used

by the client to manage his data stored in the cloud

servers.

 Client: a client makes use of provider’s resources

to store, retrieve and share data with multiple

users. A client can be either an individual or an

enterprise.

 Users: the users are able to access the content

stored inthe cloud, depending on their access

rights which are authorizations granted by the

client, like the rights to read, write or re-store the

modified data in the cloud.These access rights

serve to specify several groups of users. Each

group is characterized by an identifier IDG and a

set of access rights.

In practice, the CSP provides a web interface for the client

to store data into a set of cloud servers, which are running

in a cooperated and distributed manner. In addition, the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

2

web interface is used by the users to retrieve, modify and

restore data from the cloud, depending on their access

rights. Moreover, the CSP relies on database servers to map

client identities to their stored data identifiers and group

identifiers.

IV. NEW INTERACTIVE PROOF OF OWNERSHIP

SCHEME

Our secure client-side data deduplication scheme is based

on an original use of the convergent encryption [15]. That

is, on one hand, when a data owner wants to store a new

enciphered data file in remote storage servers

he has first to generate the enciphering key. This data

encrypting key is derived by applying a one way hash

function on data content.After successfully encrypting the

file data, the client

Fig. 1: Architecture of cloud data storage

has to generate the data identifier of enciphered data, in

order to check its uniqueness in cloud database, before

uploading the claimed file. This data identifier is computed

by using a Merkle hash tree, over encrypted contents.Then,

for subsequent data outsourcing, the client is not required

to send the same encrypted data. However, he has to

substitute a client-server interactive proof scheme (PoW),

in order to prove his ownership [7].On the other hand, to

protect data in public cloud servers from unauthorized

entities, the client has to ensure that only authorized users

are able to obtain the decrypting keys. As such, the data

owner has to encrypt the data deciphering key, using the

public key of the recipient user. This key is, then,

integrated by the data owner in user metadata, ensuring

data confidentiality against malicious users, as well as

flexible access control policies. To illustrate our solution

for improving data security and efficiency, we first present

the different prerequisites and assumptions. Then, we

introduce three use cases for storing, retrieving and sharing

data among a group of users.

A. Assumptions

Our solution considers the following assumptions. First, we

assume that there is an established secure channel between

the client and the CSP. This secure channel supports

mutual authentication and data confidentiality and integrity.

Hence, after successfully authenticating with the CSP,

these cloud users share the same resources in a multi-tenant

environment.

Second, our solution uses the hash functions in the

generation of the enciphering data keys. Hence, we assume

that these cryptographic functions are strongly collision

resistant, as it is an intractable problem to find the same

output for different data files.

B. Prerequisities

Merkle Hash Tree – a Merkle tree MT provides a succinct

commitment, called the root value of the Merkle tree, to a

data file. That is, the file is divided into blocks, called tree

leaves, grouped in pairs and hashed using a collision

resistant hash function. The hash values are then grouped in

pairs and the process is repeated until the construction of

the root value. The Merkle tree proof protocol requires that

the prover has the original data file. That is, the verifier

chooses a number of leaf indexes and asks the verifier to

provide the corresponding leaves. As such, the verifier has

to send these leaves with a sibling valid path.

Interactive Proof System [7] – this proof system is an

interactive game between two parties: a challenger and a

verifier that interact in a common input, satisfying the

correctness properties (i.e. completeness and soundness).

In the following, we introduce our client-side deduplication

construction, based on three different scenarios: storage,

backup and sharing schemes.

C. Cloud Data Storage

When a client wants to store a new data file f in the cloud,

he derives the enciphering key kf from the data contents,

based on a one-way hash function H(). Note that data are

stored enciphered in cloud servers, based on a symmetric

algorithm. Hence, the data owner has to encipher the data

file that he intends to outsource. Then, he generates the

data identifier MTf . That is, it is the Merkle Tree over

encrypted data. This identifier, associated to the file, must

be unique in the CSP database. Thus, the client starts the

storage process by sending a ClientRequestVerif message

to verify the uniqueness of the generated MTf to his CSP.

1) New Data File Storage:The storage process consists in

exchanging the four following messages:

 ClientRequestVerif : this first message contains

the generated data identifier MTf , associated to a nonce n.

Note that the nonce is used to prevent from replay attack or

potential capture of the data identifier. This message is a

request for the verification of the uniqueness of the MTf .

The CSP replies with a ResponseVerif message to validate

or unvalidate the claimed identifier. Note that if the sent

identifier exists, the client has to perform a subsequent

upload extra-proof procedure with the provider (cf, Section

IV-C2). Once the verification holds, the cloud server asks

the client to send only the access rights of authorized users.

 ResponseVerif:this acknowledgement message is

generated by the CSP to inform the client about the

existence of the requested MTf in its database.

 ClientRequestStorage: this message is sent by the

client. If the file does not exist in the cloud servers, the

client sends the file that he intends to store in the cloud,

and the data decrypting key kf enciphered with the public

keys of authorized users. Then, the enciphered kf is

included in the meta data of the file and it serves as an

access rights provision.

 ResponseStorage: this acknowledgement message,

sent by the CSP, is used to confirm to the client the success

of his data storage.This message contains the Uniform

Resource Identifier(URI) of the outsourced data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

3

2) Subsequent Data File Storage:When a client wants to

store a previous outsourced data file, he sends the data file

identifier MTf to the cloud provider. Since the claimed

identifier in cloud database, the cloud has to verify that the

requesting entity is a legitimate client. That is, the

subsequent data storage procedure include these four

messages:

 ClientRequestVerif: a subsequent data owner

includes in this first message the generated data identifier

MTf , associated to a nonce n, in order to check its

uniqueness in cloud database.

 OwnershipRequest: this message is sent by the

CSP, to verify the client’s data ownership. It contains

random leaves’ indices of the associated Merkle tree of the

requested file. Upon receiving this message, the client has

to compute the associated sibling path of each leaf, based

on the stored Merkle tree, in order to prove his ownership

of the requested file.

 ClientResponseOwnership: in his response, the

client must include a valid sibling path of each selected

leaf. The CSP verifies the correctness of the paths provided

by the client. We must note that this data subsequent

storage process stops if the verification fails.

 ResponseStorage: if the data ownership

verification holds, the CSP sends an acknowledgement, to

confirm the success of storage, while including the URI of

the requested data.

D. Cloud Data Backup

The data backup process starts when the client requests for

retrieving the data previously stored in the cloud. The data

backup process includes the following messages:

 ClientRequestBackup: it contains the URI of the

requested data that the client wants to retrieve. Upon

receiving this client request, the CSP verifies the client

ownership of the claimed file and generates a

ResponseBackup message.

 ResponseBackup: in his response, the CSP

includes the encrypted outsourced data kf (f). Upon

receiving the ResponseBackup message, the client first

retrieve the file metadata and deciphers the data decrypting

key kf , using his secret key. Then, he uses the derived key

to decrypt the request data file.

E. Cloud Data Sharing

We consider the data sharing process, where the client

outsources his data to the cloud and authorizes a group of

users to access the data. Next, we refer to these user(s) as

the recipient(s) and to the data owner as the depositor. We

must note that our proposal does not require the recipients

to be connected during the sharing process. Indeed,

recipients’ access rights are granted by the data owner and

managed by the CSP. That is, these access rights are also

included in the meta data file. In addition, the CSP is in

charge of verifying each recipient access permissions

before sending him the outsourced data.In practice, each

recipient is assumed to know the URI of the outsourced

data. This URI distribution problem can be solved in two

ways. Either the depositor sends the URI to the recipient as

soon as he stores data or a proxy is in charge of distributing

the URIs. Once the depositor stored the data with the

authorized access rights of the group, each member of the

group can start the data sharing process based on the two

following messages:

 UserRequestAccess: This message contains the

URI of the requested file. When receiving this message, the

CSP searches for the read/write permissions of the

recipient, and then, he generates a Response Access

message.

 ResponseAccess: the CSP includes, in its

response, the enciphered file kf (f). Upon receiving this

message,each recipient retrieves the data decrypting key

from user metadata. That is, he deciphers the associated

symmetric key with his own private key. Then, he performs

a symmetric decryption algorithm to retrieve the plaintext.

Our proposal provides a strong solution to improve the

confidentiality of data in the cloud. In addition, the access

to outsourced data is controlled by two processes. First,

there is a traditional access list managed by the CSP.

Second, the client has to own the private decrypting key to

get the secret needed to retrieve the symmetric key

compulsory needed to decipher data.

V. CONCLUSION

The growing need for secure cloud storage services and the

attractive properties of the convergent cryptography lead us

to combine them, thus, defining an innovative solution to

the data outsourcing security and efficiency issues.

Our solution is based on a cryptographic usage of

symmetric encryption used for enciphering the data file and

asymmetric encryption for key, due to the highest

sensibility of these information towards several intrusions.

In addition, thanks to the Merkle tree properties, this

proposal is shown to support data deduplication, as it

employs an pre-verfication of data existence, in cloud

servers, which is useful for saving bandwidth. Besides, our

solution is also shown to be resistant to unauthorized

access to data and to any data disclosure during sharing

process, providing two levels of access control verification.

Finally, we believe that cloud data storage security is still

full of challenges and of paramount importance, and many

research problems remain to be identified.

REFERENCES

[1] https://github.com/openstack/swift.

[2] L. Ben. On the implementation of pairing-based cryptosystems,
2007.

[3] R. Di Pietro and A. Sorniotti. Boosting efficiency and security in

proof of ownership for deduplication. In Proceedings of the 7th
ACM Symposium on Information, Computer and Communications

Security, ASIACCS ’12, pages 81–82, New York, NY, USA, 2012.

ACM.
[4] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.

Reclaiming space from duplicate files in a serverless distributed file

system. In In Proceedings of 22nd International Conference on
Distributed Computing Systems (ICDCS, 2002.

[5] M. Dutch. Understanding data deduplication ratios. SNIA White

Paper, June 2008.
[6] T. G. et al. GNU multiple precision arithmetic library 4.1.2,

December 2002.

[7] O. Goldreich. Foundations of Cryptography: Basic Tools.
Cambridge University Press, New York, NY, USA, 2000.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

4

[8] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of

ownership in remote storage systems. In Proceedings of the 18th

ACM conference on Computer and communications security, CCS

’11, pages 491–500, New York, NY, USA, 2011. ACM.

[9] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2003.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

5

