
An Automated Test Execution Kernel for

Spacecraft Checkout Operation

Abhijith. R

Project Trainee, SCG

ISRO Satellite Centre

Bangalore, India

Viswanathan. P. C
Scientist/Engineer-SD, SCG

ISRO Satellite Centre

Bangalore, India

G. Raghavendra Rao
Professor & Head, Dept. of CSE

The National Institute of Engineering

Mysore, India

Sheena Jose
Scientist/Engineer-SF, SCG

ISRO Satellite Centre

Bangalore, India

Abstract— Automation plays a critical role in spacecraft

checkout operations. Automatic Checkout Software System

(ACSS) is a set of software products developed for the

automation of spacecraft checkout operations. The Test

Execution Kernel is a part of ACSS that coordinates with

testing of spacecrafts during checkout operations. The Test

Execution Kernel at the core of ACSS will carry out the actual

automatic execution of test procedures. The previous systems

support automation of Integrated Spacecraft Test (IST)

limiting on one side manual operation requirements. Is the

extent of automation sufficient even if the complexity rises in

the checkout operations? Hence, developing a completely

automated test execution kernel is important in spacecraft

checkout operations. Thus, this problem is investigated in this

paper. Firstly, complete automation of spacecraft checkout

operations is proposed. A critical part in ACSS that should be

automated is then analyzed. The Test Execution Kernel is

found to be the critical part of automation and it shall be

automated to a larger extent that assures automatic execution

of all complex test procedures in checkout operations and

repetition of tests as required by various phases of testing the

spacecraft. The resulting implementation ensures the correct

and error free operation of spacecrafts.

Keywords-Automation; Automatic Checkout Software System;

Integrated Spacecraft Test; Spacecraft; Spacecraft Checkout

Operation; Testing; Test Execution Kernel

I. INTRODUCTION

Spacecrafts undergo extensive testing by monitoring
thousands of parameters as a part of ground checkout before
launch. Spacecraft checkout activities are automated to a
greater extent through a set of software products under the
name Automatic Checkout Software System (ACSS). ACSS
is housed in the Spacecraft Checkout Computer (SCC) that
runs as a checkout server. ACSS will acquire the spacecraft
parameters in real time.

The Test Execution Kernel at the core of ACSS will

carry out the automatic execution of test procedures as a
part of checkout operation with minimum manual
operations. This paper discusses the idea of completely
automating the Test Execution Kernel by assigning the
execution of all complex test procedures and manual

operations to the automatic engine. Further, the automated
Test Execution Kernel operates without placing any
restriction on the current execution status of ACSS. The
spacecraft test procedures are prepared using Checkout
Command Language (CCL). CCL provides structured
programming constructs and a versatile instruction set
tailored to the need of checkout operations.

The Objective of this paper is to describe an idea of
completely automating the spacecraft checkout operations
and thus, ensuring early detection of anomalies, automatic
test report generation, safety of the spacecraft and enabling
to achieve error free operation of spacecrafts.

II. EXISTING SYSTEM

A. Overview

The Test Execution Kernel in the first generation
Automatic Checkout Software System (ACSS v1.0) was
deployed on VAX/VMS system. Later, in second generation
Automatic Checkout Software System (ACSS v2.0) was
realized on a DEC alpha based hardware platform under
digital UNIX operating system [1]. The subsequent versions
of the Automatic Checkout Software System (ACSS v2.1 -
ACSS v2.9) were realized on an AMD-64 Opteron/Athlon
processor based system which is based on the innovative
AMD-64 technology [2][3][4]. This provided a multi
vendor, low cost and high performance environment, an
effective alternative to RISC based DEC alpha platforms.

The existing Test Execution Kernel is an application at
the heart of the Spacecraft Checkout System (SCS) provides
a set of services to carryout spacecraft checkout operations
with a configurable level of automation, limiting on one
side manpower requirements and to the complexity of the
whole system to automated processes [5][6].

The existing Test Execution Kernel supports automation
of Integrated Spacecraft Test (IST) to certain extent.
However, there is a scope for more improvements and more
automation of most of the manual operations.

B. Disadvantages

 Limited automation and demands manual
operations during testing.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

497

 No standard templates for the test results. The
approach of testing varies from one tester to
another.

 Lacks performance, reliability and maintenance due
to the change in environment where the software
functions.

 Phasing out of systems running on DEC alpha
based platform.

 Outdated hardware components.

III. PROPOSED SYSTEM

A. Overview
The proposed Test Execution Kernel for spacecrafts is

designed using a multi threaded approach. The proposed
system includes open system architecture with all the
interfaces standardized. This uses well proven Checkout
Command Language (CCL) for preparing test procedures in
advance, very versatile data processing, presentation and
analyzing tools [7]. The proposed Test Execution Kernel
will have interface with checkout equipments such as
telecommand encoder, various simulators, payload checkout
system and so on.

The overall functionality of the proposed Test Execution
Kernel shall be implemented using four different units.

 Controller.

 CCL Execution Unit

 Interrupt Handler

 Background Task

Fig. 1. Architecture of the test execution kernel

B. Controller

The controller is the major component of the Test
Execution Kernel which coordinates the execution of test
procedures and instructions by interacting with the test
schedule manager [7], interrupt handler and CCL execution
unit. The major activity of the controller is to initiate the
execution of test procedures and dispatching it to the CCL
execution unit. The controller will receive the inputs for
initiating the execution of test procedures from either the
test schedule manager or the interrupt handler.

The controller will keep track of the execution status of
test procedures for updating the user interface with the

current status. Further, the controller has the capability to
keep track of the transition of test procedures by saving and
retrieving the context of the currently running test
procedures, suspending-resuming and terminating the
execution.

The controller will also perform the management of
background tasks by initiating the task, allocating resources
for it, checking its status and terminating the task. The logs
of all activities carried out by the controller will be
maintained for future reference and prerequisite checks.
These logs can be used by test schedule manager and other
checkout applications.

The role of the controller will not only be execution
sequencing, but it will also do the execution control. The
Execution control function ensures veracity of execution of
the instructions in the test procedures by proper parse,
dispatch and flow-control within the test procedure.

C. CCL Execution Unit

The CCL execution unit is responsible for parsing and
executing all the CCL instructions of test procedures by
interacting with controller and interrupt handler of the Test
Execution Kernel.

The major activity of CCL execution unit is to receive
the CCL instructions from controller, validate them with
respect to syntax and execute the instructions. The
execution status will be made available in test execution
status region of the user interface.

Upon successful execution, the CCL execution unit
waits for the controller to receive next instructions to be
parsed. Any error during the execution of a CCL instruction
will be sent to the interrupt handler. Further, the appropriate
error handling routine for that error condition will be
initiated by the interrupt handler.

D. Interrupt Handler

The interrupt handler will perform the handling of
various alerts, indications and anomalies simultaneously
with the execution of the test procedures. The interrupt
handler works along with the controller to accomplish its
tasks. There will be many sources that generate interrupts.
The interrupt behaviors will be asynchronous, i.e. sources
can generate interrupts at any point of time. The sources of
interrupts can include background tasks, CCL execution
unit, user, various anomaly notifying services and so on.

The interrupt handler will communicate with controller
for suspending/resuming/aborting the currently executing
test procedure. The interrupt servicing will be carried out at
the end of execution of the current CCL instruction that is
being parsed. Priority will be assigned to every interrupt
generated.

E. Background Task

The primary function of background task is to monitor
the subsystem telemetry/telecommand parameters during
testing and thereby validating them by applying various
types of user defined computations/processing on them.
These computations include trend analysis, statistical
computations, mathematical computations etc. Background
tasks will continuously monitor various health parameters
of the spacecraft. The background task will put the
spacecraft in safe condition by taking predefined actions if
the monitored parameters go beyond safe limits. Further, it
notifies the user with a message about the action taken.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

498

Background tasks will be activated automatically by the
test procedure or by the user. Any number of background
tasks can be created and terminated dynamically at any time
of execution of test procedures. Once a background task is
activated, it will perform all the computations and it will
update the result tables for test report generation.

F. Advantages

 Error free spacecraft testing with negligible human
intervention.

 Reduction of integrated spacecraft testing time by
more than 50%.

 Standard way of testing enforced across the
spectrum of spacecrafts.

 Standard templates for test reports.

 Early detection of anomalies and ensures safety of
spacecrafts.

IV. IMPLEMENTATION

The Test Execution Kernel was designed and developed
for the complete automation of IST. The IST automation
made the spacecraft testing faster, error-free and also
achieved complete elimination of manual operations.
Consider asynchronous activities that will be performed
during spacecraft checkout operation.

Fig. 2. Implementation of the test execution kernel

A pre-planned sequence of testing activities will be
embedded in a test schedule file i.e. unified-sada.sch and it
is submitted for automatic execution. The test schedules are
organized according to sub-system testing. Each spacecraft
sub system will have a specific test schedule for execution.
The major component of the test schedule is the names of
test procedures to be executed by the Test Execution Kernel
for the particular sub system of the spacecraft. The test
schedule manager will dispatch the test procedure file
names to the controller of the Test Execution Kernel as and
when they are required to be executed as per the schedule
definition. During the schedule execution, there will be

occasions when the user wish to intervene and execute
certain commands or test procedures interactively by
activating the user interaction mode.

Each test procedure that is encountered in the schedule
file is stored in a test procedure queue. Later, the test
procedures from the test procedure queue are loaded one by
one onto the execution area for automatic execution. E.g.
ssada-m-acqr.tst file is currently executing as the active test
procedure on the execution area. Every line of the test
procedure is passed to the CCL execution unit for executing
the CCL instructions. The status of execution is updated in
the test procedure queue after the completion of execution

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

499

of the corresponding test procedure. The next test procedure
in the queue is then loaded for execution. This process
repeats until the completion of execution of all the
instructions in the schedule file.

There will be multiple alert and notification tasks such
as background tasks running in parallel with the scheduled
spacecraft testing. These notifications are made visible to
the user on the Alarm region of the user interface. All the
implemented test execution activities are asynchronous.
These activities take place until all the schedule files are
completely executed.

V. CONCLUSION

In this paper a completely automated test execution
kernel was proposed for spacecraft checkout operations.
The automation of the same was designed and developed. It
comprehensively enabled error free operation of the
spacecraft. Automatic test report generation was also made
possible by executing the test procedures using automated
test execution kernel. Further, better performance, reliability
with respect to change in environment of testing the
spacecrafts was achieved.

ACKNOWLEDGMENT

The authors would like to thank Mrs. Usha Bhandiwad,
Division Head, Checkout Simulator and Automation
Division, Spacecraft Checkout Group and Mr. K.B.Anantha
Rama Sarma, Group Director, Spacecraft Checkout Group,
ISRO Satellite Centre, Bangalore, India for their generous
support. This work was supported in part by a grant from
ISRO Satellite Centre.

REFERENCES

[1] Automatic Checkout Software System (ACSS v2.0) and test
document for IRS-P4, ISRO-ISAC-IRS P4-TE-0256, August 1998.a

[2] Automatic Checkout Software System (ACSS v2.4) features for
INSAT-3A, ISRO-ISAC-T04-4102-02, December 2001.

[3] Software Requirements Specification for Automatic Checkout
Software System (ACSS v2.8), ISRO-ISAC-Chandrayan1-PR-1013,
October 2006.

[4] Automatic Checkout Software System (ACSS v2.8) updates for
Chandrayan-1, ISRO-ISAC-Chandrayan1-PR-2017, March 2009.

[5] Work proposal of automated database manager, ISRO-ISAC-T04-
4105-02, May 2013.

[6] System Requirements Specification for ADMS v1.0, ISRO-SCG-
CSAD-SW-ACSS-1302, June 2013

[7] Software Requirements Specification for Automatic Checkout
Software System (ACSS v3.0), ISRO-SCG-CSAD-SW-2013-06
v1.0, October 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030637

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

500

