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INTRODUCTION 

Total Domination is undefined for graphs with 

isolated vertices. The graph 𝐺 is a total domination edge 

critical or 𝛾𝑡 - critical for short, if the removal of any edge 

in the graph changes the total domination number, that is 

𝛾𝑡(𝐺 − 𝑒) ≠ 𝛾𝑡(𝐺) for every edge 𝑒 Є 𝐸(𝐺). Note that 

removing an edge from a graph cannot decrease the total 

domination number. Hence if 𝐺 is 𝛾𝑡  - critical, then 

𝛾𝑡(𝐺 − 𝑒) > 𝛾𝑡(𝐺) for every edge 𝑒 ∈ 𝐸(𝐺). Thus, every 

edge in a 𝛾𝑡  - critical graph is a critical edge. 

Let 𝐺 be a graph. A vertex 𝑣 of 𝐺 is said to be a 

pendant vertex (or leaf) if and only if it has degree 1. An 

edge of a graph is said to be pendant if one of its vertices is 

a pendant vertex. 

A tree 𝑇 ∈ 𝒯 if 𝑇 is a nontrivial star, or a double 

star, or if 𝑇 can be obtained from a subdivided star 𝐾1,𝑘
∗ , 

where 𝐾 ≥ 2, by adding zero or more pendant edges to the 

non-leaf vertices of 𝐾1,𝑘
∗ . A tree containing exactly one 

vertex that is not a pendant vertex is called a star. The 

double star 𝐷𝑆(𝑚, 𝑛) is a tree of diameter three such that 

there are 𝑚 pendant edges on one end of path 𝑃2 and 𝑛 

pendant edges on the other end. 

 

1. EDGE CRITICAL GRAPHS 

This Section computes a characterization of 𝛾𝑡-critical 

graph.  

Proposition 1.1 If 𝑆 is a minimal total dominating set of 

connected graph 𝐺, then for each vertex 𝑣 ∈ 𝑆, 
|𝑒𝑝𝑛(𝑣, 𝑆)| ≥ 1 or 𝐺[𝑆\{𝑣}] contains an isolated vertex.  

Lemma 1.1 If 𝐺 is a 𝛾𝑡-critical graph, then for every 𝛾𝑡(𝐺)-

set 𝑆, 𝐺[𝑆] is a galaxy of nontrivial stars. 

Proof Let 𝑆 be any 𝛾𝑡(𝐺) -set in the 𝛾𝑡-critical graph 𝐺, and 

let 𝐺𝑠=𝐺[𝑆]. Let 𝑒 be an arbitrary edge in 𝐺𝑆. If both ends 

of 𝑒 have degree at least 2 in 𝐺𝑆, then 𝑆 is a total 

dominating set in 𝐺 − 𝑒, and so 𝛾𝑡(𝐺 − 𝑒) ≤ |𝑆| = 𝛾𝑡(𝐺), 

contradicting the fact that 𝐺 is 𝛾𝑡-critical. Hence at least 

one end of the edge 𝑒 is a leaf in 𝐺𝑆, implying that 𝐺𝑆 is a 

galaxy of nontrivial stars.                                        

Theorem 1.2 A connected graph 𝐺 is 𝛾𝑡-critical if and only 

if 𝐺 ∈ 𝒯.  

Proof Assume that 𝐺 = (𝑉, 𝐸) is 𝛾𝑡-critical. Let 𝑆 be 

any 𝛾𝑡(𝐺)-set. By Lemma 1.1, 𝐺[𝑆] is a galaxy of 

nontrivial stars. If 𝑣 is a leaf in 𝐺[𝑆] and 𝑣 is adjacent to a 

vertex of degree at least two in 𝐺[𝑆], then by Proposition 

1.1,|𝑒𝑝𝑛(𝑣, 𝑆)| > 1. Thus, 𝑣 has an external private 

neighbor and is therefore adjacent to at least one vertex in 

𝑉\𝑆. For every edge 𝑒 of 𝐺, if 𝑆 is a total dominating set in 
𝐺 − 𝑒,then 𝛾𝑡(𝐺 − 𝑒) ≤ |𝑆| = 𝛾𝑡(𝐺),contradicting the fact 

that 𝐺 is 𝛾𝑡-critical. Hence for every edge 𝑒 of 𝐺, the set 𝑆 
is not a total dominating set in 𝐺 − 𝑒. This implies that 

𝑉\𝑆 is an independent set and that each vertex in 𝑉\𝑆 is 

adjacent to exactly one vertex of  𝑆 and is therefore a leaf 

in 𝐺. Thus since 𝐺 is connected, the subgraph 𝐺[𝑆] is 

connected. Hence, 𝐺[𝑆] is a star. If 𝐺[𝑆] = 𝐾2, then 𝐺 is 

either a star or a double star, and so 𝐺 ∈ 𝒯. Hence assume 

that 𝐺[𝑆] is a star 𝐾1,𝑘 where 𝑘 ≥ 2. As observed earlier, 

each leaf in the star 𝐺[𝑆] is adjacent to at least one vertex 

in 𝑉\𝑆. Let 𝐿 denote a set of 𝑘 vertices in 𝑉\𝑆 that 

dominate the set of 𝑘 leaves in 𝐺[𝑆]. Then, 𝐺[𝑆 ∪ 𝐿] =
𝐾1,𝑘

∗  and 𝐺 can be obtained from this subdivided star by 

adding zero or more pendant edges to each vertex of 𝑆. 

Thus, 𝐺 ∈ 𝒯. 

Now, assume that 𝐺 ∈ 𝒯. Let 𝐺 = (𝑉, 𝐸)and let 

𝑒 ∈ 𝐸. If 𝑒 is incident with a leaf in 𝐺, then 𝛾𝑡(𝐺 − 𝑒) =
∞, and so 𝑒 is a critical edge. Hence, assume that 𝑒 is not 

incident with a leaf in 𝐺. In particular, 𝐺 is not a star. If 𝐺 

is a double star, then 𝑒 joins the two central vertices of 𝐺. 
Thus, 𝛾𝑡(𝐺 − 𝑒) = 4 while 𝛾𝑡(𝐺) = 2, and so 𝑒 is a critical 

edge. Hence assume that 𝐺 is not a double star. Thus, 𝐺 is 

obtained from a star 𝑇 = 𝐾1,𝑘
∗ , for some 𝑘 ≥ 2, by adding 

at least one pendant edge to each leaf of 𝑇 and adding zero 

or more pendant edges to the center 𝑣 of the star 𝑇. Every 

edge in the set 𝐸\𝐸(𝑇) is incident with a leaf in 𝐺. Hence, 

by earlier assumptions,𝑒 ∈ 𝐸(𝑇). But then 𝛾𝑡(𝐺 − 𝑒) =
𝑘 + 2 while 𝛾𝑡(𝐺) = 𝑘 + 1 (irrespective of whether 𝑣 is a 

support vertex of 𝐺). Hence, once again, the edge 𝑒 is a 

critical edge. Therefore, 𝐺 is 𝛾𝑡-critical.                            
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2. VERTEX CRITICAL GRAPHS 

 When a vertex is removed from a graph, the total 

domination number may increase, decrease or remains 

unchanged. Here three sets namely 𝑉𝑇
+, 𝑉𝑇

− and 𝑉𝑇
0 in a 

graph are defined. All graphs are simple and a total 

dominating set contains at least two vertices. Also graphs 

considered have no isolated vertices. 

If 𝐺 is a graph then 𝑉(𝐺) will denote the vertex 

set of 𝐺. If 𝑣 is a vertex of 𝐺, then 𝐺 − 𝑣 will denote the 

subgraph obtained by removing the vertex 𝑣 from the 

graph. Let 𝐺 be a graph. A subset 𝑆 of 𝑉(𝐺) is said to  be a 

total dominating set in the graph 𝐺 if any vertex 𝑣 of the 

graph 𝐺 is adjacent to at least one vertex of the set 𝑆. A 

total dominating set 𝑆 in the graph 𝐺 is said to be a minimal 

total dominating set in the graph 𝐺 if for any vertex 𝑣 of 𝑆, 

𝑆 –  𝑣 is not a total dominating set in the graph 𝐺. 
 

Definition: Let 𝐺 be any graph. Then, 
  

𝑉𝑇
𝑖 = {𝑣 Є 𝑉(𝐺) / 𝐺 –  𝑣 has an isolated vertex}.                 

 𝑉𝑇
+ = {𝑣 Є 𝑉(𝐺) / 𝛾𝑇(𝐺 –  𝑣) > 𝛾𝑇(𝐺)}. 

𝑉𝑇
− = {𝑣 Є 𝑉(𝐺)/ 𝛾𝑇(𝐺 –  𝑣) < 𝛾𝑇(𝐺)}. 

   𝑉𝑇
0 = {𝑣 Є 𝑉(𝐺) /𝛾𝑇(𝐺 –  𝑣) = 𝛾𝑇(𝐺)}. 

 

Theorem 2.1 Let 𝐺  be any graph and 𝑣 Є 𝑉(𝐺)  such that 

𝑣 ∉ 𝑉𝑇
𝑖 . Then 𝑣 Є 𝑉𝑇

+ 
if and only if the following conditions 

are satisfied: 

(a) Every 𝛾𝑇-set of the graph 𝐺 contains 𝑣. 

(b) If 𝑆 is a subset of 𝑉(𝐺)– 𝑁[𝑣] such that |𝑆| = 𝛾𝑇(𝐺), 

then 𝑆 is not a  total dominating set in 𝐺– 𝑣. 
 

Proof The proof is standard and hence it is 

omitted.                                                                            
 

Theorem 2.2 Let 𝐺 be any graph and let 𝑣 Є 𝑉(𝐺) with 𝑣 ∉
𝑉𝑇

𝑖 . If for any 𝑤 Є 𝑁(𝑣), the subgraph induced by 𝑁(𝑤) 

is complete, then 𝑣 ∉ 𝑉𝑇
−. 

Proof Let 𝐺 be any graph and 𝑣 Є 𝑉(𝐺) such that 𝑣 ∉ 𝑉𝑇
𝑖 . 

Let the subgraph induced by 𝑁(𝑤) be complete for every 

𝑤 Є 𝑁(𝑣). To prove 𝑣 ∉ 𝑉𝑇
−.                                                                                         

Suppose 𝑣 Є 𝑉𝑇
−. Therefore, there is a minimum total 

dominating set 𝑆 in the graph 𝐺 not containing 𝑣 and a 

vertex 𝑧 in 𝑆 such that 𝑇𝑃𝑟[𝑧, 𝑆] = {𝑣}. Therefore, 𝑣 ∉ 𝑆 is 

adjacent to only one vertex 𝑧 in 𝑆. Therefore, 𝑧 Є 𝑁(𝑣). 

Also, 𝑧 Є 𝑆 and 𝑆 is a total dominating set in the graph 𝐺. 

Then, 𝑧 is adjacent to some vertex 𝑥 in 𝑆. Therefore both 𝑥 

and 𝑣 are in 𝑁(𝑧). But, the subgraph induced by 𝑁(𝑧) is 

complete. Therefore, 𝑣 is adjacent to a vertex 𝑥. Therefore, 

𝑣 is adjacent to two distinct vertices 𝑥, 𝑧 of 𝑆. Therefore, 

𝑣 ∉ 𝑇𝑃𝑟[𝑧, 𝑆], a contradiction to the fact that 𝑇𝑃𝑟[𝑧, 𝑆] =
{𝑣}. Therefore, the assumption is wrong. Therefore, 𝑣 ∉
𝑉𝑇

−.              
 

Theorem 2.3 Suppose 𝑣 Є 𝑉𝑇
+ and 𝑆  is a minimum total 

dominating set in the graph 𝐺 containing 𝑣 with 𝑣 ∉ 𝑉𝑇
𝑖 . 

Then the following statements are true: 

(i) If  𝑇𝑃𝑟[𝑣, 𝑆] = {𝑤}, then 𝑤 ∉ 𝑆.            

(ii) 𝑇𝑃𝑟[𝑣, 𝑆] contains at least two vertices different from 

𝑣.                            

(iii) If 𝑇𝑃𝑟[𝑣, 𝑆] contains more than one vertex 

an𝑑 𝑤1 , 𝑤2, are such adjacent vertices, then at least 

one 𝑤𝑖 ∉ 𝑆. 
 

Proof  (i) Let 𝐺 be any graph and 𝑣 ∈ 𝑉(𝐺) such that 𝑣 ∉
𝑉𝑇

𝑖 . Let 𝑣 Є 𝑉𝑇
+ and 𝑆 be a minimum total dominating set in 

the graph 𝐺 containing 𝑣. Suppose 𝑇𝑃𝑟 [𝑣, 𝑆] = {𝑤}. To 

show that 𝑤 ∉ 𝑆. Suppose 𝑤 Є 𝑆. Therefore, 𝑤 is adjacent 

to only 𝑣 in 𝑆. But 𝑣 Є 𝑉𝑇
+ imply 𝑣 ∉ 𝑉𝑇 

𝑖 . Therefore, the 

graph 𝐺– 𝑣 does not contain any isolated vertex. Therefore, 

find some vertex 𝑧 ∉ 𝑆 such that 𝑤 is adjacent to 𝑧(because 

if 𝑧 Є 𝑆,then 𝑤 ∉ 𝑇𝑃𝑟 [𝑣, 𝑆]). Let 𝑆1 = 𝑆– {𝑣} ∪ {𝑧}.  
 

Case 1.   If 𝑥 = 𝑤, then 𝑥 is adjacent to a vertex 𝑧 Є 𝑆1. 

 

Case 2. If 𝑥 ≠ 𝑤 Є 𝑉(𝐺 − 𝑣), then 𝑥 is adjacent to some 

vertex 𝑦 Є 𝑆 different from 𝑣 (because 𝑆 is a total 

dominating set in the graph 𝐺 and therefore if 𝑥 is 

adjacent to only 𝑣 Є 𝑆, then 𝑇𝑃𝑟[𝑣, 𝑆] contains 𝑥 
different from 𝑤, a contradiction to the fact that 

𝑇𝑃𝑟 [𝑣, 𝑆] = {𝑤}). That is if 𝑥 ≠ 𝑤 Є 𝑉(𝐺– 𝑣), then 𝑥 is 

adjacent to some vertex 𝑦 Є 𝑆1. 

 

Case 3.  If 𝑥 = 𝑣, then 𝑥 is adjacent to a vertex 𝑤 Є 𝑆1. 

Thus, from all cases can say that 𝑆1 is a total dominating 

set in the graph 𝐺 not containing 𝑣 with |𝑆1| = 𝛾𝑇(𝐺). That 

is, 𝑆1 is a 𝛾𝑇-set in the graph 𝐺 not containing 𝑣, a 

contradiction to the fact that 𝑣 Є 𝑉𝑇
+. Therefore, 𝑤 ∉ 𝑆. 

 

(ii) Suppose 𝑣 Є 𝑉𝑇
+ and 𝑆 is a minimum total 

dominating set in 𝐺 containing 𝑣. Therefore, Let 𝐺 be a 

graph and 𝑆 be a subset of 𝑉(𝐺). A total dominating set S 

in the graph 𝐺 is a minimal total dominating set in 𝐺 if and 

only if for every vertex 𝑣 ∈ 𝑆, 𝑇𝑃𝑟[𝑣, 𝑆] ≠ ∅. Suppose, 

𝑇𝑃𝑟[𝑣, 𝑆] = {𝑤}. Therefore, 𝑤 ∉ 𝑆(by Theorem 2.3(i)). 

Also 𝑣 ∉ 𝑉𝑇
𝑖 . Therefore, the graph 𝐺 − 𝑣 does not contain 

any isolated vertex. Therefore, there is a vertex 𝑧 ≠ 𝑣 in 

𝑣(𝐺) such that 𝑤 is adjacent to 𝑧.(because if 𝑤 is adjacent 

to only 𝑣 in 𝐺, then 𝐺 − 𝑣 contains an isolated vertex 𝑤 

and therefore 𝑣 Є 𝑉𝑇
𝑖 , a contradiction to the fact that 𝑣 ∉ 𝑉𝑇 

𝑖 ). 

Also 𝑧 ∉ 𝑆 (because if 𝑧 Є 𝑆, then 𝑤 is adjacent to two 

distinct vertices 𝑧, 𝑣 of 𝑆 and therefore 𝑤 ∉ 𝑇𝑃𝑟 [𝑣, 𝑆], a 

contradiction to the fact that 𝑇𝑃𝑟 [𝑣, 𝑆]  =  {𝑤}). But 𝑆 is a 

total dominating set in 𝐺. Therefore, 𝑧 is adjacent to some 

vertex 𝑥 Є 𝑆 different from 𝑣 (because if 𝑧 is adjacent to 

only 𝑣 in 𝑆, then 𝑇𝑃𝑟 [𝑣, 𝑆] contains one element 

𝑧 different from  𝑤, a contradiction to the fact that 

𝑇𝑃𝑟 [𝑣, 𝑆] = {𝑤}). Let  𝑆1= 𝑆– {𝑣} ∪ {𝑧}. 
 

Case 1. If 𝑦 = 𝑤, then 𝑦 is adjacent to a vertex 𝑧 Є 𝑆1. 

Case 2. If 𝑦 ≠ 𝑤 Є 𝑉(𝐺– 𝑣), then 𝑦  is adjacent to some 

vertex 𝑝 Є 𝑆 different from 𝑣 (because 𝑆 is a total 

dominating set  in the  graph 𝐺 and if 𝑦 is adjacent to only 

𝑣 Є 𝑆, then 𝑇𝑃𝑟 [𝑣, 𝑆] contains 𝑦 different from 𝑤, a 

contradiction to the fact that 𝑇𝑃𝑟 [𝑣, 𝑆] = {𝑤}). That is, if 

𝑦 ≠ 𝑤 Є 𝑉(𝐺– 𝑣), then 𝑦 is adjacent to some vertex 𝑝 Є 𝑆1.   
 

Case 3. If  𝑦 = 𝑣, then 𝑦 is adjacent to some vertex 𝑝 in  𝑆 

(because 𝑆 is a total dominating set in the graph 𝐺). 

Therefore 𝑦 = 𝑣, then 𝑦 is adjacent to some vertex  𝑝 in 𝑆1. 

Thus, from all cases can say that 𝑆1 is a total dominating 

set in the given graph 𝐺 not containing 𝑣 with |𝑆1| =
𝛾𝑇(𝐺).Therefore, 𝑆1 is a 𝛾𝑇-set in the graph 𝐺 not 
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containing 𝑣, a contradiction to the fact that 𝑣 Є 𝑉𝑇
+. 

Therefore, 𝑇𝑃𝑟 [𝑣, 𝑆] contains at least two vertices. 

Therefore, 𝑇𝑃𝑟 [𝑣, 𝑆] contains at least two vertices 

different from 𝑣. 
 

(iii) Let 𝑤1, 𝑤2 ∈ 𝑇𝑃𝑟[𝑣, 𝑆] and 𝑤1, 𝑤2 are two adjacent 

vertices. Suppose𝑤1, 𝑤2 ∈ 𝑆. Therefore, 𝑤1 is adjacent 

to 𝑤2 and 𝑣, both are in 𝑆. Therefore, 𝑤1 ∉ 𝑇𝑃𝑟[𝑣, 𝑆], a 

contradiction to the fact that 𝑤1 ∈ 𝑇𝑃𝑟[𝑣, 𝑆]. Therefore, the 

assumption is wrong. Therefore, at least one 𝑤𝑖 ∉ 𝑆 for 𝑖 =
1,2.                                                                                                 
Theorem 2.4 Let 𝐺 be any graph and 𝑉𝑇

𝑖 = ∅. If 𝑣 Є 𝑉𝑇
+ and 

 𝑤 Є 𝑉𝑇
−, then 𝑣 and 𝑤 are non-adjacent vertices. 

Proof Let 𝐺 be any graph. Let 𝑣 Є VT
+ and 𝑤 Є 𝑉𝑇

−. Suppose 

𝑣 and 𝑤 are adjacent. Since 𝑤 Є 𝑉𝑇
−,  there is a minimum total 

dominating set 𝑆 in the graph 𝐺 not containing 𝑤 and a vertex 

𝑧 Є S different from 𝑣 such that 𝑇𝑃𝑟[𝑣, 𝑆] = {𝑤} (because if 

𝑧 = 𝑣 and 𝑣 Є 𝑉𝑇
+ such that 𝑣 ∉  𝑉𝑇

𝑖 , then by theorem 2.3(ii), 

𝑇𝑃𝑟[𝑣, 𝑆] contains at least two vertices different from 𝑣, a 

contradiction to the fact that 𝑇𝑃𝑟 [𝑣, 𝑆] = {𝑤}). 

But 𝑣 Є 𝑉𝑇
+.Therefore 𝑣 Є S.Therefore, 𝑤 is adjacent to two 

vertices 𝑣 and 𝑧, both are in 𝑆. Therefore 𝑤 ∉ 𝑇𝑃𝑟[𝑧, 𝑆], a 

contradiction to the fact that  𝑇𝑃𝑟[𝑧, 𝑆] = {𝑤}. Therefore, 

the assumption is wrong. Therefore, 𝑣 and 𝑤 are non-

adjacent.         

Theorem 2.5 Let 𝐺 be any graph and 𝑉𝑇
𝑖 = ∅. Then, |𝑉𝑇

0| ≥
2|𝑉𝑇

+|.  
 

Proof Let 𝐺 be any graph and 𝑉𝑇
𝑖 = ∅. Let 𝑣 Є 𝑉𝑇

+ and 𝑆 be 

a 𝛾𝑇-set in the graph 𝐺 containing 𝑣. Therefore by theorem 

2.3(ii), 𝑇𝑃𝑟 [𝑣, 𝑆] contains at least two vertices 𝑤1, 𝑤2 
different from 𝑣. Since 𝑤1 is adjacent to 𝑣, 𝑤1 ∉ 𝑉𝑇

− (by 

theorem 2.4. Similarly say that 𝑤2 ∉ 𝑉𝑇
−. 

 

Case 1. Suppose 𝑤1 , 𝑤2 ∉ 𝑆.Therefore 𝑤1, 𝑤2 ∉ 𝑉𝑇
+(by 

theorem 2.1). Therefore 𝑤1, 𝑤2 Є 𝑉𝑇
0. Thus, a vertex 

𝑣 Є VT
+ gives rise to at least two vertices of  𝑉𝑇

0.  

 

Case 2. Suppose 𝑤1 or 𝑤2 belongs to 𝑆. Without loss of 

generality, suppose 𝑤1Є 𝑆 and 𝑤2 ∉ 𝑆. From the above 

case, 𝑤2Є 𝑉𝑇
0. If  𝑤1 ∉  𝑉𝑇

+, then 𝑤1Є 𝑉𝑇
0. Thus, a vertex of 

 𝑉𝑇
+ give rise to at least two vertices of  𝑉𝑇

0. If 𝑤1Є 𝑉𝑇
+, then by 

theorem 2.3(ii), 𝑇𝑃𝑟[𝑤1, 𝑆] contains at least two vertices 

different from 𝑤1 in which one vertex(say) 𝑧1 is different 

from 𝑣 and 𝑧1 ∉ 𝑆 (because if  𝑧1 Є 𝑆, then 𝑤1 is adjacent 

to two vertices 𝑣 and 𝑧1, both are in S and therefore 𝑤1 ∉
𝑇𝑃𝑟[𝑣, 𝑆]. Therefore 𝑧1 ∉  𝑉𝑇

+(by theorem 2.1) and 𝑤1 is 

adjacent  𝑧1. It follows that 𝑧1 ∉  𝑉𝑇
−(by theorem 2.4). 

Therefore, 𝑧1Є 𝑉𝑇
0. Also,𝑤2 ∉ 𝑇𝑃𝑟[𝑤1, 𝑆] (because if 

𝑤2Є 𝑇𝑃𝑟[𝑤1, 𝑆], then 𝑤1 is adjacent to 𝑣 and 𝑤2(both are 

in 𝑆) and therefore 𝑤1 ∉ 𝑇𝑃𝑟[𝑣, 𝑆], a contradiction to the 

fact 𝑤1Є 𝑇𝑃𝑟 [𝑣, 𝑆]). Therefore, 𝑧1 ≠ 𝑤2 and 𝑧1, 𝑤2Є 𝑉𝑇
0. 

Thus, a vertex 𝑣 Є 𝑉𝑇
+ gives rise to two distinct vertices of 

 𝑉𝑇
0.  

 

 

 

 

Case 3.  Let 𝑤1, 𝑤2 Є 𝑆. If  𝑤1 ∉  𝑉𝑇
+ and 𝑤2 ∉  𝑉𝑇

+, then 

𝑤1, 𝑤2Є 𝑉𝑇
0. Thus, a vertex 𝑣 Є 𝑉𝑇

+ gives rise to two distinct 

vertices of  𝑉𝑇
0. If 𝑤1Є 𝑉𝑇

+ and 𝑤2 ∉  𝑉𝑇
+, then from case 2, say 

that a vertex 𝑣 Є 𝑉𝑇
+ gives rise to two distinct vertices of  𝑉𝑇

0. If 
𝑤1, 𝑤2 Є 𝑉𝑇

+, then as per above case, there exists two 

distinct vertices 𝑧1,𝑧2 such that 𝑧𝑖Є 𝑇𝑃𝑟[𝑤𝑖 , 𝑆], for 𝑖 = 1, 2 

with both 𝑧1, 𝑧2 ∉ 𝑆 (because if 𝑧𝑖  Є 𝑆, then 𝑤𝑖  is adjacent 

to 𝑣 and 𝑧𝑖, both are in 𝑆 and therefore 𝑤𝑖 ∉ 𝑇𝑃𝑟[𝑣, 𝑆], 𝑖 =
, 2).  Hence, 𝑧1, 𝑧2 ∉  𝑉𝑇

+  (by theorem 2.1). But 𝑤𝑖  is 

adjacent to 𝑧𝑖 and 𝑤𝑖 Є  𝑉𝑇
+ for 𝑖 = 1, 2. Therefore, 𝑧𝑖 ∉

 𝑉𝑇
− , 𝑖 = 1, 2 (by theorem 2.4). Therefore,  

𝑧1, 𝑧2 Є  𝑉𝑇
0.Therefore, a vertex 𝑣 Є 𝑉𝑇

+ gives rise to two 

distinct vertices of  𝑉𝑇
0. Thus, proved that every vertex 𝑣 Є 𝑉𝑇

+ 

gives rise to at least two distinct vertices of  𝑉𝑇
0. Suppose 𝑣1 and 

𝑣2 are two distinct vertices of  𝑉𝑇
+ such that 𝑥1, 𝑥2Є 𝑉𝑇

0 

corresponds to 𝑣1 with respect to a 𝛾𝑇-set in 𝑆 in the graph 𝐺 

and 𝑥3, 𝑥4Є 𝑉𝑇
0 corresponds to a vertex 𝑣2 with respect to the 

same 𝛾𝑇-set 𝑆.   
 

                        𝑉1                                   𝑉2        
                                        
 

         𝑋1                    𝑋2          𝑋3                      𝑋4 
                                      

Fig 1 
 

Here the possibility for 𝑥𝑖 is either 𝑤𝑖  or 𝑧𝑖. Suppose 𝑥2 =
𝑥3. Then, 𝑥2 is adjacent to two distinct vertices of 𝑆. 

Therefore, 𝑥2 ∉ 𝑇𝑃𝑟[𝑤, 𝑆]  for any 𝑤 Є 𝑆. Therefore, 𝑥2 ∉
𝑇𝑃𝑟[𝑤, 𝑆], for 𝑤 = 𝑤1, 𝑤2, 𝑣1, 𝑣2, a contradiction. Thus, 

proved that two distinct vertices of  𝑉𝑇
+ gives rise to two 

distinct two elements sets of  𝑉𝑇
0. Therefore, | 𝑉𝑇

0| ≥ 2| 𝑉𝑇
+|.            

                                                            
Theorem 2.6 Let 𝐺 be any graph and  𝑉𝑇

𝑖 = ∅. If  

𝛾𝑇(𝐺– 𝑣) ≠ 𝛾𝑇(𝐺) for every vertex 𝑣 Є 𝑉(𝐺), then 

𝛾𝑇(𝐺– 𝑣) < 𝛾𝑇(𝐺) for every 𝑣 Є 𝑉(𝐺). 
 

Proof To prove that 𝑣 Є 𝑉𝑇
−. That is,  𝑉𝑇

− = 𝑉(𝐺). Since 

𝛾𝑇(𝐺– 𝑣) ≠ 𝛾𝑇(𝐺) for every 𝑣 Є 𝑉(𝐺), 𝑣 ∉  𝑉𝑇
0 for every 

𝑣 Є 𝑉(𝐺). Therefore,  𝑉𝑇
0 = ∅. Therefore, | 𝑉𝑇

0| = 0. But 

| 𝑉𝑇
0| ≥ 2| 𝑉𝑇

+| (by theorem 2.4). Therefore, | 𝑉𝑇
+| = 0. 

Therefore,  𝑉𝑇
+ = ∅. Also given that  𝑉𝑇

𝑖 = ∅. But,  𝑉𝑇
+ ∪

𝑉𝑇
− ∪  𝑉𝑇

0  ∪  𝑉𝑇
𝑖 = 𝑉(𝐺). Therefore,𝑉(𝐺) = 𝑉𝑇

−. Therefore, 

𝛾𝑇(𝐺– 𝑣) < 𝛾𝑇(𝐺) for every 𝑣 Є 𝑉(𝐺).                  
 

3. CONCLUSION 
Finally this paper concludes that if the total 

domination number changes whenever every edge is 

removed, then the total domination number increases. 

Accordingly, the total domination number decreases after 

the removal of any vertex. 
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